SlideShare a Scribd company logo
1 of 19
Download to read offline
DECEMBER	
  12,	
  2014	
  
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  
2013	
  DATA	
  
JAMES	
  LARSON	
  
SUBMITTED	
  TO	
  DR.	
  W.	
  ROBERT	
  STEPHENSON
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
   1	
  
Executive	
  Summary	
  
Subject:	
  Variation	
  in	
  Dishwasher	
  Rinse	
  Cycle	
  Temperatures	
  
The	
  process	
  being	
  analyzed	
  is	
  the	
  temperature	
  (°F)	
  for	
  the	
  four	
  rinse	
  cycles	
  in	
  the	
  main	
  commercial-­‐grade	
  
dishwasher	
  being	
  used	
  at	
  an	
  Iowa	
  State	
  Dining	
  facility.	
   These	
  are	
  classified	
  as	
  Prewash	
  120,	
  Wash	
  150,	
  Rinse	
  160,	
  
and	
  Final	
  Rinse	
  180.	
   The	
  manufacturer	
  specifications	
  are	
  then	
  assumed	
  to	
  be	
  120°F,	
  150°F,	
  160°F,	
  and	
  180°F	
  
respectively.	
   Using	
  the	
  raw	
  data	
  procured	
  for	
  this	
  study,	
  there	
  are	
  three	
  readings	
  per	
  day	
  for	
  each	
  meal	
  time	
  
(Breakfast,	
  6:30-­‐10:30;	
  Lunch,	
  10:30-­‐2:30;	
  Dinner,	
  4:00-­‐8:00	
  PM)	
  and	
  five	
  operators	
  recording	
  said	
  temperatures	
  
for	
  the	
  main	
  dishwasher	
  at	
  different	
  times	
  over	
  the	
  course	
  of	
  335	
  days	
  (January	
  14-­‐December	
  15).	
  The	
  readings	
  do	
  
not	
  account	
  for	
  the	
  times	
  at	
  which	
  they	
  were	
  taken.	
  
Looking	
  at	
  all	
  the	
  rinse	
  cycles	
  using	
  subgroups	
  of	
  one	
  week	
  (3*7=21,	
  seven	
  days	
  times	
  the	
  three	
  meals	
  and	
  readings	
  
taken),	
  there	
  are	
  several	
  subgroups	
  that	
  fall	
  outside	
  the	
  specification	
  limits.	
  The	
  respective	
  control	
  charts	
  (X-­‐bar	
  
and	
  R-­‐bar)	
  are	
  included	
  as	
  Figures	
  1-­‐4	
  in	
  the	
  appendix.	
  Some	
  samples	
  were	
  discarded	
  from	
  the	
  analysis	
  due	
  to	
  lack	
  
of	
  entries	
  ruling	
  out	
  special	
  causes	
  (i.e.	
  federal	
  holidays,	
  university	
  breaks,	
  cleaning	
  week).	
  This	
  will	
  be	
  discussed	
  
later.	
  Looking	
  at	
  the	
  X-­‐bar	
  chart	
  for	
  Pre	
  Wash	
  120,	
  samples	
  1	
  (Jan	
  14-­‐20),	
  3	
  (Jan	
  28-­‐30),	
  5	
  (Feb	
  11-­‐	
  
17),	
  8	
  (Apr	
  8-­‐14),	
  13	
  (April	
  8-­‐14),	
  15	
  (Apr	
  22-­‐28),	
  24	
  (Jun	
  24-­‐30),	
  30	
  (Aug	
  5-­‐11),	
  35	
  (Sept	
  9-­‐15),	
  39	
  (Oct	
  7-­‐13),	
  and	
  41	
  
(Oct	
  21-­‐27)	
  fall	
  outside	
  of	
  the	
  control	
  limits	
  in	
  the	
  X-­‐Bar	
  chart	
  for	
  the	
  Prewash	
  120	
  cycle.	
   Samples	
  1,	
  4,	
  25	
  (Jul	
  1-­‐7),	
  
33	
  (Aug	
  26-­‐Sept	
  1),	
  34	
  (Sept	
  2-­‐8),	
  35	
  (Sept	
  9-­‐15),	
  38	
  (Sept	
  30-­‐Oct	
  6),	
  and	
  41	
  (October	
  21-­‐27)	
  fall	
  outside	
  of	
  the	
  
control	
  limits	
  on	
  the	
  R-­‐Bar	
  chart	
  (average	
  of	
  ranges	
  per	
  subgroup).	
  Other	
  rinse	
  cycles	
  are	
  depicted	
  on	
  the	
  appendix	
  
in	
  Figures	
  1-­‐4.	
  From	
  the	
  process	
  and	
  data	
  given,	
  it	
  can	
  be	
  said	
  the	
  dishwasher	
  is	
  not	
  operating	
  within	
  statistical	
  
control	
  for	
  all	
  rinse	
  cycles.	
  Further	
  investigation	
  in	
  these	
  subgroups	
  may	
  explain	
  the	
  special	
  cause	
  in	
  the	
  
measurement	
  (machine	
  breakdown,	
  higher	
  than	
  average	
  capacity,	
  lack	
  of	
  filter	
  cleaning,	
  etc.).	
  This	
  study	
  provides	
  
several	
  enumerative	
  methods,	
  though	
  can	
  be	
  used	
  for	
  analytic	
  purposes	
  for	
  possible	
  future	
  decisions	
  with	
  respect	
  to	
  
the	
  methods	
  and	
  maintenance	
  of	
  the	
  dishwasher.
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
*The	
  overall	
  process	
  diagram	
  is	
  included	
  in	
  the	
  Appendix	
  under	
  Figure	
  11	
  
JAMES	
  LARSON	
   2	
  
Variability of Dishwasher Temperatures
People
The	
  people	
  involved	
  in	
  the	
  process	
  are	
  the	
  several	
  dining	
  facility	
  staff	
  and	
  student	
  staff,	
  including	
  but	
  not	
  limited	
  to	
  
student	
  workers,	
  student	
  supervisors,	
  and	
  student	
  assistant	
  managers.	
  Non-­‐student	
  staff	
  includes	
  the	
  managers,	
  
chefs,	
  and	
  non-­‐student	
  supervisors	
  within	
  the	
  facility.	
  
Process*
The	
  washing	
  of	
  dishes	
  begins	
  with	
  the	
  source	
  of	
  the	
  used	
  dishes	
  and	
  what	
  type	
  was	
  used.	
  Certain	
  dishes	
  (bulk	
  
plates/bowls,	
  metal	
  serving/prep	
  pans	
  and	
  pan	
  covers,	
  silverware,	
  plastic	
  trays/containers/lids,	
  plastic/ceramic	
  
cups)	
  are	
  sent	
  through	
  the	
  main	
  dishwasher	
  after	
  being	
  pre	
  washed	
  on	
  either	
  the	
  belt	
  line	
  or	
  the	
  “Pots	
  and	
  Pans”	
  
section	
  of	
  the	
  dish	
  room.	
   When	
  used	
  dishes	
  are	
  sent	
  via	
  the	
  conveyor	
  belt	
  (belt	
  line),	
  the	
  dishes	
  are	
  first	
  dumped	
  
of	
  excess	
  food	
  matter	
  in	
  compost	
  bins;	
  afterwards,	
  they	
  are	
  sent	
  via	
  the	
  belt	
  to	
  a	
  series	
  of	
  spray	
  nozzles	
  where	
  they	
  
are	
  then	
  further	
  cleaned	
  by	
  either	
  student	
  workers	
  or	
  supervisors	
  (depending	
  on	
  staffing	
  that	
  day)	
  and	
  sent	
  via	
  
another	
  conveyor	
  belt	
  to	
  the	
  dishwasher.	
  These	
  dishes	
  are	
  then	
  placed	
  in	
  their	
  respective	
  containers	
  (bulk	
  dish	
  
carts)	
  or	
  place	
  of	
  origin	
  (Back	
  of	
  House,	
  other	
  venues)	
  
Metal	
  serving/prep	
  pans	
  and	
  plastic	
  trays/containers	
  are	
  taken	
  to	
  Pots	
  and	
  Pans	
  where	
  they	
  are	
  first	
  rid	
  of	
  excess	
  
food	
  matter	
  and	
  sprayed	
  by	
  a	
  separate	
  nozzle	
  apparatus;	
  the	
  pan	
  is	
  then	
  set	
  to	
  soak	
  in	
  a	
  large	
  sink	
  of	
  warm,	
  soapy	
  
water	
  to	
  loosen	
  the	
  remaining/burned	
  matter	
  and	
  is	
  cleaned	
  further	
  before	
  being	
  sent	
  to	
  the	
  main	
  dishwasher.	
  
When	
  these	
  are	
  put	
  through	
  the	
  dishwasher	
  cycles,	
  they	
  are	
  shelved	
  close-­‐by	
  before	
  being	
  placed	
  in	
  their	
  place	
  of	
  
origin	
  (Back	
  of	
  House	
  or	
  other	
  venue)	
  
Silverware	
  is	
  deposited	
  through	
  chutes	
  above	
  the	
  main	
  conveyor	
  belt	
  entering	
  the	
  dish	
  room.	
  The	
  silverware	
  is	
  
soaked	
  in	
  a	
  cleaning	
  agent	
  before	
  being	
  sent	
  through	
  the	
  dishwasher	
  for	
  an	
  initial	
  cleaning.	
  The	
  silverware	
  is	
  then	
  
organized	
  into	
  round	
  containers	
  for	
  each	
  type	
  of	
  silverware	
  (forks,	
  knives,	
  spoons)	
  and	
  sent	
  through	
  the	
  
dishwasher	
  again.	
  
Cooking	
  utensils	
  (knives,	
  spatulas,	
  etc.),	
  metal	
  sheet	
  trays	
  used	
  (often	
  from	
  another	
  dining	
  facility),	
  and	
  other	
  
metal	
  dishes	
  are	
  sent	
  through	
  a	
  different	
  dishwasher	
  denoted	
  as	
  “Pots	
  and	
  Pans”.	
  
Maintenance
The	
  maintenance	
  of	
  the	
  dishwasher	
  typically	
  occurs	
  once	
  per	
  shift	
  by	
  one	
  or	
  several	
  student	
  workers	
  or	
  a	
  
supervisor,	
  though	
  this	
  varies	
  depending	
  on	
  new	
  student	
  staffing	
  inflows	
  and	
  student/visitor	
  traffic	
  and	
  facility	
  
capacity	
  at	
  a	
  given	
  time.	
   Each	
  rinse	
  cycle	
  has	
  a	
  filter;	
  the	
  water	
  for	
  each	
  is	
  first	
  drained	
  one	
  at	
  a	
  time	
  before	
  each	
  
filter	
  has	
  its	
  contents	
  dumped	
  and	
  sprayed	
  out	
  to	
  remove	
  other	
  excess	
  food	
  matter.	
  
Measurement
Dishwasher	
  rinse	
  cycle	
  temperatures	
  are	
  read	
  from	
  gauges	
  on	
  the	
  side	
  of	
  the	
  in	
  degrees	
  Fahrenheit	
  (ºF).	
  A	
  measurement	
  
is	
  logged	
  during	
  one	
  mealtime	
  per	
  day	
  with	
  three	
  meals	
  per	
  day	
  (hence	
  three	
  readings	
  a	
  day).	
  Five	
  operators	
  took	
  
three	
  readings	
  per	
  day	
  (21	
  readings	
  a	
  week,	
  the	
  subgroup	
  used)	
  at	
  several	
  different	
  times	
  (i.e.	
  370	
  of	
  the	
  1005	
  
readings	
  are	
  from	
  Operator	
  1,	
  while	
  8	
  are	
  from	
  Operator	
  5).	
  These	
  operators	
  are	
  typically	
  the	
  non-­‐student	
  
supervisors	
  during	
  the	
  respective	
  meal	
  times.
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
   3	
  
Further Quantitative Results
Data Log Issues
As	
  discussed	
  earlier	
  in	
  this	
  document,	
  there	
  are	
  several	
  instances	
  of	
  no	
  entry	
  during	
  the	
  mealtime	
  specified	
  from	
  
the	
  raw	
  data.	
  347	
  temperature	
  logs	
  were	
  not	
  entered	
  during	
  a	
  given	
  operator’s	
  shift.	
  This	
  lack	
  of	
  data	
  may	
  have	
  
led	
  to	
  the	
  exclusion	
  of	
  subgroups	
  in	
  the	
  control	
  charts	
  in	
  Figures	
  1-­‐4	
  in	
  the	
  appendix.	
  A	
  Pareto	
  chart	
  has	
  been	
  
constructed	
  below	
  depicting	
  several	
  of	
  the	
  issues	
  found	
  within	
  the	
  data	
  logs,	
  though	
  the	
  lack	
  of	
  entries	
  is	
  most	
  
alarming—roughly	
  98%	
  of	
  the	
  problems	
  with	
  the	
  data	
  have	
  stemmed	
  from	
  the	
  lack	
  of	
  entries.	
  Special	
  causes	
  
(federal	
  holidays,	
  University	
  breaks,	
  cleaning	
  week)	
  were	
  diagnosed	
  and	
  accordingly	
  left	
  out.	
  	
  
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
   4	
  
Rinse Cycle Pre Wash 120 Wash 150 Rinse 160 Final Rinse 180
0.1744 0.1245 0.2618
0.2849 0.4004 0.0889
Operator and Dishwasher Variability (%)
A Gauge R&R study was used to differentiate whether the variability in dishwasher cycle temperatures
was from the dishwasher itself (repeatability), the operator at the time (reproducibility). The study is
attached at the end of this document. The dishwasher often caused most of the variability in
dishwasher rinse cycle temperatures from the data and methods used; at times 90-97% of the
temperature variability was attributed to the dishwasher. These are shown in Figures 5-8 in the
appendix, though these variance measures use a restricted maximum likelihood (REML) rather than a
traditional variance (range-based) due to the inconsistent amount of entries per operator.
Potential and Capability of Process
The two metrics presented, Cp-hat and Cpk-hat, represent respectively the potential and capability of
a process based on the variability of readings the process has given by readings over time. Specification
limits used were 5ºF about a target temperature (manufacturer specification) for each rinse cycle for
both the Cp-hat and Cpk-hat calculations with respect to an upper specification limit (USL) and lower
specification limit (LSL); for example, 115ºF-125ºF for Pre Wash 120, 145ºF-155ºF for Wash 150, etc.
The respective formulas used for the calculations are shown in Figure 9a in the Appendix.
Using the range-based sigma, the Cp-hat and Cpk-hat values are as follows:
Considering the value for Cp-hat (process potential) is a measure (%) of how well a process might be
able to perform a process with respect to the variability of the process data, a Cp-hat value greater
than 1 would indicate the process may be able to perform the process given; likewise, a Cpk-hat
greater than 1 indicates the equipment is not capable of performing the process with respect to
process variability.
In summation, the respective Cp-hat and Cpk-hat values calculated in the table above show that each
rinse cycle is experiencing too much variability within the process-given mean; alternatively, the
specification limits used would have to be several times larger to account for the variability in each
rinse cycle. This may imply higher maintenance costs and higher probability of machine breakdowns
for the dishwasher over the timeline of the data and the time following the historical data.
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
   5	
  
Possible Solutions
Future Entry and Special Cause Identification
As stated earlier, most of the issues are not due to the operator; however, if more supervisors present
in the dish room this will help alleviate the instance of no entry in the temperature control logs. Since
the enumerative study was using subgroups of the overall week average temperatures (n=21),
construction of a new entry method with more supervisors should be considered. Using the calculation
of gauge R&R reproducibility error as a reference and the lack of operators per day logging the
temperature (typically 1-2 operators during the day currently), the error between readings between
the current handful of operators (and in turn the repeatability [machine] error) should be decrease and
may make it easier to identify special causes. Consider the current entry method:
TIME DATE DISH MACHINE POTS AND PANS INITIALS
PREWASH
120
WASH
150
RINSE
160
FINAL
RINSE
180
WASH
150
FINAL
RINSE
180
BREAKFAST
LUNCH
DINNER
The current method for recording temperatures accounts for one entry per mealtime and leaves the
time of entry (8:34 AM, 12:34 PM, etc.) ambiguous, making it difficult to identify special causes (above
normal capacity, continuous/maintenance hours, time since last cleaned, etc.) in temperature
readings, and only leaves room for one operator to enter the rinse cycle temperature data.
Given there are two dish room supervisors at a given time during each shift and one non-student
supervisor present in the dish room, let’s say each gives one reading per meal time giving three
readings per meal time. Accounting for three meals a day, there will be nine readings per day. Over
the course of a typical month’s timespan (seven days per week with roughly four weeks per month),
there will be roughly 252 readings/month. If it is also desired to identify and maintain the process
such that the dishwasher’s temperature data falls outside of statistical control (i.e. once a month),
this gives an average run length (ARL) of the amount of readings before the process has a subgroup
outside of statistical control that can possibly be attributed to a special cause. If the overall process
distribution is normal or normalized, this would imply a desired failure rate or the probability of a
subgroup of measurements falling outside of statistical control to be roughly 0.39%
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
   6	
  
If it is desired to see how many readings per subgroup it would require for at least one reading was seen
one process standard deviation above the average reading for a given rinse cycle, a probability model
using a random sampling distribution to calculate the amount of readings in the subgroup results in a
subgroup size of 8.9766 or 9 readings. Knowing the ideal daily amount of readings (9) by the three
operators per meal (breakfast, lunch, dinner) if the points outside of statistical control are found to be
special causes and if the process is brought to be within statistical control. This will also alleviate the
issue of data aggregation from this study for future studies. The respective ARL and subgroup
calculations used are found in Figure 9b of the appendix in this document.
These daily readings can be much more responsive to special causes than to that of the weekly
subgroups; this way, the special causes of unusually high or low dishwasher rinse cycle temperatures
can be much more easily identified. A template for the suggested new logging is included in Figure 10
of the appendix.
Methods and Maintenance
Some if not most of the machine wear and unusual temperatures logged over time may be attributed to
the lack of filter cleaning during a given shift (new inexperienced staff, large inflow of customers at a
given time). Though the filters for each respective rinse cycle are emptied and cleaned roughly three
times a day, this is highly variable considering lack of staff and high customer capacity at given times
in the dish room and facility respectively.
Some plastic dishes are not dumped or rinsed before being placed through the dishwasher; likewise,
though the silverware is placed in a soaking agent to loosen excess food matter, it is not rinsed and
said matter will be caught in the filter and over time if not cleaned regularly may cause more wear
on the machinery.
A suggested maintenance goal would be to try cleaning the filters twice per mealtime to ensure less
wear on the main dishwasher. Other pre washing methods, including using the spray nozzle by the Pots
and Pans section on the silverware, may lead to more stable temperatures as less food matter is
present when put in the dishwasher. Maintenance methods used during Cleaning Week before opening
up for weekend (Saturday, Sunday) may also assist in bringing temperatures within statistical control if
possible; otherwise machine temperatures should be monitored and recorded during preparation
times before the brunch and dinner shifts to ensure an even amount of data within each subgroup
each day to achieve these goals.
Machine
Using the methods suggested above may be able to decrease the variability in temperature data in
future studies. For example, a survey similar to the one presented for future dates (possibly a frame
of next year, 2015, or this coming semester) should be studied to evaluate the effectiveness of the
suggested methods based on the results of future data (i.e. control charts and Cp-hat/Cpk-hat
indices). If there is an improvement (i.e. more points within statistical increased process potential
and/or capability), continue doing so and improving on other results. If results do not improve after
changes to the methods along with continued frequency of extensive machine wear (breakdowns),
maintenance, and process then this historical data may give empirical evidence for the possible future
petitioning for funding for a new commercial dishwasher to ISU Dining’s upper managers or board of
directors.
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LAR	
  
APPENDIX
FIGURE 1
	
  	
  SON	
  	
  	
  7
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
  	
  	
  	
  	
  8	
  
FIGURE 2
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
  	
  	
  	
  	
  9	
  
FIGURE 3
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
  	
  	
  	
  	
  10	
  
FIGURE 4
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
  	
  	
  	
  	
  11	
  
FIGURE 5
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
  	
  	
  	
  	
  12	
  
FIGURE 6
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
  	
  	
  	
  	
  13	
  
FIGURE 7
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
  	
  	
  	
  	
  14	
  
FIGURE 8
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
  	
  	
  	
  	
  15	
  
FIGURE 9a
𝐶𝑃𝑈 =
𝑈𝑆𝐿 − 𝑋
3𝜎
  
𝐶𝑃𝐿 =
𝑋 − 𝐿𝑆𝐿
3𝜎
  
𝐶𝑝𝑘 = min 𝐶𝑃𝑈, 𝐶𝑃𝐿   
𝐶𝑝 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿
6𝜎
FIGURE 9b.
𝑈𝐶𝐿 − (𝜇 − 𝜎)
𝜎/ 𝑛
=
𝜇 + 3
𝜎
𝑛
− (𝜇 − 𝜎)
𝜎/ 𝑛
=
3
𝜎
𝑛
− 𝜎
𝜎/ 𝑛
3
𝜎
𝑛
− 𝜎
𝜎/ 𝑛
∗
𝑛
𝜎
𝑛
𝜎
= 3 − 𝑛
𝐴𝑅𝐿 =
1
𝑟
  
𝑟 =
1
𝐴𝑅𝐿
=
1
252
= 0.0039  
𝑟 = Pr 𝑍 < −3 − 𝑛 + Pr 𝑍 > 3 − 𝑛   
0.0039 = 0 + 3 − 𝑛   
0.0039 = 3 − 𝑛  
2.9961 = 𝑛  
𝑛 = 8.9766 ≈ 9  
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
   12/12/2014	
  
JAMES	
  LARSON	
  	
  	
  	
  	
  16	
  
FIGURE 10
MEAL TIME CAPACITY DISHWASHER Pots and Pans Signature
(%) 120 150 160 180 150 180
B
B
B
L
L
L
D
D
D
DISHWASHER	
  TEMPERATURE	
  CONTROL	
  SUMMARY	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  12/12/2014	
  
FIGURE 11
JAMES	
  LARSON	
  	
  	
  	
  1
(417898087) larson.james stat495 Project

More Related Content

Featured

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by HubspotMarius Sescu
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 

Featured (20)

2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot2024 State of Marketing Report – by Hubspot
2024 State of Marketing Report – by Hubspot
 
Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 

(417898087) larson.james stat495 Project

  • 1. DECEMBER  12,  2014   DISHWASHER  TEMPERATURE  CONTROL   2013  DATA   JAMES  LARSON   SUBMITTED  TO  DR.  W.  ROBERT  STEPHENSON
  • 2. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON   1   Executive  Summary   Subject:  Variation  in  Dishwasher  Rinse  Cycle  Temperatures   The  process  being  analyzed  is  the  temperature  (°F)  for  the  four  rinse  cycles  in  the  main  commercial-­‐grade   dishwasher  being  used  at  an  Iowa  State  Dining  facility.   These  are  classified  as  Prewash  120,  Wash  150,  Rinse  160,   and  Final  Rinse  180.   The  manufacturer  specifications  are  then  assumed  to  be  120°F,  150°F,  160°F,  and  180°F   respectively.   Using  the  raw  data  procured  for  this  study,  there  are  three  readings  per  day  for  each  meal  time   (Breakfast,  6:30-­‐10:30;  Lunch,  10:30-­‐2:30;  Dinner,  4:00-­‐8:00  PM)  and  five  operators  recording  said  temperatures   for  the  main  dishwasher  at  different  times  over  the  course  of  335  days  (January  14-­‐December  15).  The  readings  do   not  account  for  the  times  at  which  they  were  taken.   Looking  at  all  the  rinse  cycles  using  subgroups  of  one  week  (3*7=21,  seven  days  times  the  three  meals  and  readings   taken),  there  are  several  subgroups  that  fall  outside  the  specification  limits.  The  respective  control  charts  (X-­‐bar   and  R-­‐bar)  are  included  as  Figures  1-­‐4  in  the  appendix.  Some  samples  were  discarded  from  the  analysis  due  to  lack   of  entries  ruling  out  special  causes  (i.e.  federal  holidays,  university  breaks,  cleaning  week).  This  will  be  discussed   later.  Looking  at  the  X-­‐bar  chart  for  Pre  Wash  120,  samples  1  (Jan  14-­‐20),  3  (Jan  28-­‐30),  5  (Feb  11-­‐   17),  8  (Apr  8-­‐14),  13  (April  8-­‐14),  15  (Apr  22-­‐28),  24  (Jun  24-­‐30),  30  (Aug  5-­‐11),  35  (Sept  9-­‐15),  39  (Oct  7-­‐13),  and  41   (Oct  21-­‐27)  fall  outside  of  the  control  limits  in  the  X-­‐Bar  chart  for  the  Prewash  120  cycle.   Samples  1,  4,  25  (Jul  1-­‐7),   33  (Aug  26-­‐Sept  1),  34  (Sept  2-­‐8),  35  (Sept  9-­‐15),  38  (Sept  30-­‐Oct  6),  and  41  (October  21-­‐27)  fall  outside  of  the   control  limits  on  the  R-­‐Bar  chart  (average  of  ranges  per  subgroup).  Other  rinse  cycles  are  depicted  on  the  appendix   in  Figures  1-­‐4.  From  the  process  and  data  given,  it  can  be  said  the  dishwasher  is  not  operating  within  statistical   control  for  all  rinse  cycles.  Further  investigation  in  these  subgroups  may  explain  the  special  cause  in  the   measurement  (machine  breakdown,  higher  than  average  capacity,  lack  of  filter  cleaning,  etc.).  This  study  provides   several  enumerative  methods,  though  can  be  used  for  analytic  purposes  for  possible  future  decisions  with  respect  to   the  methods  and  maintenance  of  the  dishwasher.
  • 3. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   *The  overall  process  diagram  is  included  in  the  Appendix  under  Figure  11   JAMES  LARSON   2   Variability of Dishwasher Temperatures People The  people  involved  in  the  process  are  the  several  dining  facility  staff  and  student  staff,  including  but  not  limited  to   student  workers,  student  supervisors,  and  student  assistant  managers.  Non-­‐student  staff  includes  the  managers,   chefs,  and  non-­‐student  supervisors  within  the  facility.   Process* The  washing  of  dishes  begins  with  the  source  of  the  used  dishes  and  what  type  was  used.  Certain  dishes  (bulk   plates/bowls,  metal  serving/prep  pans  and  pan  covers,  silverware,  plastic  trays/containers/lids,  plastic/ceramic   cups)  are  sent  through  the  main  dishwasher  after  being  pre  washed  on  either  the  belt  line  or  the  “Pots  and  Pans”   section  of  the  dish  room.   When  used  dishes  are  sent  via  the  conveyor  belt  (belt  line),  the  dishes  are  first  dumped   of  excess  food  matter  in  compost  bins;  afterwards,  they  are  sent  via  the  belt  to  a  series  of  spray  nozzles  where  they   are  then  further  cleaned  by  either  student  workers  or  supervisors  (depending  on  staffing  that  day)  and  sent  via   another  conveyor  belt  to  the  dishwasher.  These  dishes  are  then  placed  in  their  respective  containers  (bulk  dish   carts)  or  place  of  origin  (Back  of  House,  other  venues)   Metal  serving/prep  pans  and  plastic  trays/containers  are  taken  to  Pots  and  Pans  where  they  are  first  rid  of  excess   food  matter  and  sprayed  by  a  separate  nozzle  apparatus;  the  pan  is  then  set  to  soak  in  a  large  sink  of  warm,  soapy   water  to  loosen  the  remaining/burned  matter  and  is  cleaned  further  before  being  sent  to  the  main  dishwasher.   When  these  are  put  through  the  dishwasher  cycles,  they  are  shelved  close-­‐by  before  being  placed  in  their  place  of   origin  (Back  of  House  or  other  venue)   Silverware  is  deposited  through  chutes  above  the  main  conveyor  belt  entering  the  dish  room.  The  silverware  is   soaked  in  a  cleaning  agent  before  being  sent  through  the  dishwasher  for  an  initial  cleaning.  The  silverware  is  then   organized  into  round  containers  for  each  type  of  silverware  (forks,  knives,  spoons)  and  sent  through  the   dishwasher  again.   Cooking  utensils  (knives,  spatulas,  etc.),  metal  sheet  trays  used  (often  from  another  dining  facility),  and  other   metal  dishes  are  sent  through  a  different  dishwasher  denoted  as  “Pots  and  Pans”.   Maintenance The  maintenance  of  the  dishwasher  typically  occurs  once  per  shift  by  one  or  several  student  workers  or  a   supervisor,  though  this  varies  depending  on  new  student  staffing  inflows  and  student/visitor  traffic  and  facility   capacity  at  a  given  time.   Each  rinse  cycle  has  a  filter;  the  water  for  each  is  first  drained  one  at  a  time  before  each   filter  has  its  contents  dumped  and  sprayed  out  to  remove  other  excess  food  matter.   Measurement Dishwasher  rinse  cycle  temperatures  are  read  from  gauges  on  the  side  of  the  in  degrees  Fahrenheit  (ºF).  A  measurement   is  logged  during  one  mealtime  per  day  with  three  meals  per  day  (hence  three  readings  a  day).  Five  operators  took   three  readings  per  day  (21  readings  a  week,  the  subgroup  used)  at  several  different  times  (i.e.  370  of  the  1005   readings  are  from  Operator  1,  while  8  are  from  Operator  5).  These  operators  are  typically  the  non-­‐student   supervisors  during  the  respective  meal  times.
  • 4. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON   3   Further Quantitative Results Data Log Issues As  discussed  earlier  in  this  document,  there  are  several  instances  of  no  entry  during  the  mealtime  specified  from   the  raw  data.  347  temperature  logs  were  not  entered  during  a  given  operator’s  shift.  This  lack  of  data  may  have   led  to  the  exclusion  of  subgroups  in  the  control  charts  in  Figures  1-­‐4  in  the  appendix.  A  Pareto  chart  has  been   constructed  below  depicting  several  of  the  issues  found  within  the  data  logs,  though  the  lack  of  entries  is  most   alarming—roughly  98%  of  the  problems  with  the  data  have  stemmed  from  the  lack  of  entries.  Special  causes   (federal  holidays,  University  breaks,  cleaning  week)  were  diagnosed  and  accordingly  left  out.    
  • 5. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON   4   Rinse Cycle Pre Wash 120 Wash 150 Rinse 160 Final Rinse 180 0.1744 0.1245 0.2618 0.2849 0.4004 0.0889 Operator and Dishwasher Variability (%) A Gauge R&R study was used to differentiate whether the variability in dishwasher cycle temperatures was from the dishwasher itself (repeatability), the operator at the time (reproducibility). The study is attached at the end of this document. The dishwasher often caused most of the variability in dishwasher rinse cycle temperatures from the data and methods used; at times 90-97% of the temperature variability was attributed to the dishwasher. These are shown in Figures 5-8 in the appendix, though these variance measures use a restricted maximum likelihood (REML) rather than a traditional variance (range-based) due to the inconsistent amount of entries per operator. Potential and Capability of Process The two metrics presented, Cp-hat and Cpk-hat, represent respectively the potential and capability of a process based on the variability of readings the process has given by readings over time. Specification limits used were 5ºF about a target temperature (manufacturer specification) for each rinse cycle for both the Cp-hat and Cpk-hat calculations with respect to an upper specification limit (USL) and lower specification limit (LSL); for example, 115ºF-125ºF for Pre Wash 120, 145ºF-155ºF for Wash 150, etc. The respective formulas used for the calculations are shown in Figure 9a in the Appendix. Using the range-based sigma, the Cp-hat and Cpk-hat values are as follows: Considering the value for Cp-hat (process potential) is a measure (%) of how well a process might be able to perform a process with respect to the variability of the process data, a Cp-hat value greater than 1 would indicate the process may be able to perform the process given; likewise, a Cpk-hat greater than 1 indicates the equipment is not capable of performing the process with respect to process variability. In summation, the respective Cp-hat and Cpk-hat values calculated in the table above show that each rinse cycle is experiencing too much variability within the process-given mean; alternatively, the specification limits used would have to be several times larger to account for the variability in each rinse cycle. This may imply higher maintenance costs and higher probability of machine breakdowns for the dishwasher over the timeline of the data and the time following the historical data.
  • 6. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON   5   Possible Solutions Future Entry and Special Cause Identification As stated earlier, most of the issues are not due to the operator; however, if more supervisors present in the dish room this will help alleviate the instance of no entry in the temperature control logs. Since the enumerative study was using subgroups of the overall week average temperatures (n=21), construction of a new entry method with more supervisors should be considered. Using the calculation of gauge R&R reproducibility error as a reference and the lack of operators per day logging the temperature (typically 1-2 operators during the day currently), the error between readings between the current handful of operators (and in turn the repeatability [machine] error) should be decrease and may make it easier to identify special causes. Consider the current entry method: TIME DATE DISH MACHINE POTS AND PANS INITIALS PREWASH 120 WASH 150 RINSE 160 FINAL RINSE 180 WASH 150 FINAL RINSE 180 BREAKFAST LUNCH DINNER The current method for recording temperatures accounts for one entry per mealtime and leaves the time of entry (8:34 AM, 12:34 PM, etc.) ambiguous, making it difficult to identify special causes (above normal capacity, continuous/maintenance hours, time since last cleaned, etc.) in temperature readings, and only leaves room for one operator to enter the rinse cycle temperature data. Given there are two dish room supervisors at a given time during each shift and one non-student supervisor present in the dish room, let’s say each gives one reading per meal time giving three readings per meal time. Accounting for three meals a day, there will be nine readings per day. Over the course of a typical month’s timespan (seven days per week with roughly four weeks per month), there will be roughly 252 readings/month. If it is also desired to identify and maintain the process such that the dishwasher’s temperature data falls outside of statistical control (i.e. once a month), this gives an average run length (ARL) of the amount of readings before the process has a subgroup outside of statistical control that can possibly be attributed to a special cause. If the overall process distribution is normal or normalized, this would imply a desired failure rate or the probability of a subgroup of measurements falling outside of statistical control to be roughly 0.39%
  • 7. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON   6   If it is desired to see how many readings per subgroup it would require for at least one reading was seen one process standard deviation above the average reading for a given rinse cycle, a probability model using a random sampling distribution to calculate the amount of readings in the subgroup results in a subgroup size of 8.9766 or 9 readings. Knowing the ideal daily amount of readings (9) by the three operators per meal (breakfast, lunch, dinner) if the points outside of statistical control are found to be special causes and if the process is brought to be within statistical control. This will also alleviate the issue of data aggregation from this study for future studies. The respective ARL and subgroup calculations used are found in Figure 9b of the appendix in this document. These daily readings can be much more responsive to special causes than to that of the weekly subgroups; this way, the special causes of unusually high or low dishwasher rinse cycle temperatures can be much more easily identified. A template for the suggested new logging is included in Figure 10 of the appendix. Methods and Maintenance Some if not most of the machine wear and unusual temperatures logged over time may be attributed to the lack of filter cleaning during a given shift (new inexperienced staff, large inflow of customers at a given time). Though the filters for each respective rinse cycle are emptied and cleaned roughly three times a day, this is highly variable considering lack of staff and high customer capacity at given times in the dish room and facility respectively. Some plastic dishes are not dumped or rinsed before being placed through the dishwasher; likewise, though the silverware is placed in a soaking agent to loosen excess food matter, it is not rinsed and said matter will be caught in the filter and over time if not cleaned regularly may cause more wear on the machinery. A suggested maintenance goal would be to try cleaning the filters twice per mealtime to ensure less wear on the main dishwasher. Other pre washing methods, including using the spray nozzle by the Pots and Pans section on the silverware, may lead to more stable temperatures as less food matter is present when put in the dishwasher. Maintenance methods used during Cleaning Week before opening up for weekend (Saturday, Sunday) may also assist in bringing temperatures within statistical control if possible; otherwise machine temperatures should be monitored and recorded during preparation times before the brunch and dinner shifts to ensure an even amount of data within each subgroup each day to achieve these goals. Machine Using the methods suggested above may be able to decrease the variability in temperature data in future studies. For example, a survey similar to the one presented for future dates (possibly a frame of next year, 2015, or this coming semester) should be studied to evaluate the effectiveness of the suggested methods based on the results of future data (i.e. control charts and Cp-hat/Cpk-hat indices). If there is an improvement (i.e. more points within statistical increased process potential and/or capability), continue doing so and improving on other results. If results do not improve after changes to the methods along with continued frequency of extensive machine wear (breakdowns), maintenance, and process then this historical data may give empirical evidence for the possible future petitioning for funding for a new commercial dishwasher to ISU Dining’s upper managers or board of directors.
  • 8. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LAR   APPENDIX FIGURE 1    SON      7
  • 9. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON          8   FIGURE 2
  • 10. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON          9   FIGURE 3
  • 11. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON          10   FIGURE 4
  • 12. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON          11   FIGURE 5
  • 13. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON          12   FIGURE 6
  • 14. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON          13   FIGURE 7
  • 15. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON          14   FIGURE 8
  • 16. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON          15   FIGURE 9a 𝐶𝑃𝑈 = 𝑈𝑆𝐿 − 𝑋 3𝜎   𝐶𝑃𝐿 = 𝑋 − 𝐿𝑆𝐿 3𝜎   𝐶𝑝𝑘 = min 𝐶𝑃𝑈, 𝐶𝑃𝐿   𝐶𝑝 = 𝑈𝑆𝐿 − 𝐿𝑆𝐿 6𝜎 FIGURE 9b. 𝑈𝐶𝐿 − (𝜇 − 𝜎) 𝜎/ 𝑛 = 𝜇 + 3 𝜎 𝑛 − (𝜇 − 𝜎) 𝜎/ 𝑛 = 3 𝜎 𝑛 − 𝜎 𝜎/ 𝑛 3 𝜎 𝑛 − 𝜎 𝜎/ 𝑛 ∗ 𝑛 𝜎 𝑛 𝜎 = 3 − 𝑛 𝐴𝑅𝐿 = 1 𝑟   𝑟 = 1 𝐴𝑅𝐿 = 1 252 = 0.0039   𝑟 = Pr 𝑍 < −3 − 𝑛 + Pr 𝑍 > 3 − 𝑛   0.0039 = 0 + 3 − 𝑛   0.0039 = 3 − 𝑛   2.9961 = 𝑛   𝑛 = 8.9766 ≈ 9  
  • 17. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY   12/12/2014   JAMES  LARSON          16   FIGURE 10 MEAL TIME CAPACITY DISHWASHER Pots and Pans Signature (%) 120 150 160 180 150 180 B B B L L L D D D
  • 18. DISHWASHER  TEMPERATURE  CONTROL  SUMMARY                                                                                                                                                                                                                                  12/12/2014   FIGURE 11 JAMES  LARSON        1