SlideShare a Scribd company logo
1 of 121
Distance Functions and  Metric Learning: Part 1  12/1/2011  version. Updated Version: http://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/ Michael Werman Ofir Pele The Hebrew University of Jerusalem
Rough Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Distance ?
Metric  ² N o n - n e g a t i v i t y : D ( P ; Q ) ¸ 0 ² I d e n t i t y o f i n d i s c e r n i b l e s : D ( P ; Q ) = 0 i ® P = Q ² S y m m e t r y : D ( P ; Q ) = D ( Q ; P ) ² S u b a d d i t i v i t y ( t r i a n g l e i n e q u a l i t y ) : D ( P ; Q ) · D ( P ; K ) + D ( K ; Q )
Pseudo-Metric  (aka Semi-Metric) ² N o n - n e g a t i v i t y : D ( P ; Q ) ¸ 0 ² P r o p e r t y c h a n g e d t o : D ( P ; Q ) = 0 i f P = Q ² S y m m e t r y : D ( P ; Q ) = D ( Q ; P ) ² S u b a d d i t i v i t y ( t r i a n g l e i n e q u a l i t y ) : D ( P ; Q ) · D ( P ; K ) + D ( K ; Q )
Metric  A n o b j e c t i s m o s t s i m i l a r t o i t s e l f ² N o n - n e g a t i v i t y : D ( P ; Q ) ¸ 0 ² I d e n t i t y o f i n d i s c e r n i b l e s : D ( P ; Q ) = 0 i ® P = Q
Metric  ² S y m m e t r y : D ( P ; Q ) = D ( Q ; P ) ² S u b a d d i t i v i t y ( t r i a n g l e i n e q u a l i t y ) : D ( P ; Q ) · D ( P ; K ) + D ( K ; Q ) U s e f u l f o r m a n y a l g o r i t h m s
Minkowski-Form Distances  L p ( P ; Q ) = Ã X i j P i ¡ Q i j p ! 1 p
Minkowski-Form Distances  L 2 ( P ; Q ) = s X i ( P i ¡ Q i ) 2 L 1 ( P ; Q ) = X i j P i ¡ Q i j L 1 ( P ; Q ) = m a x i j P i ¡ Q i j
Kullback-Leibler Divergence ,[object Object],[object Object],K L ( P ; Q ) = X i P i l o g P i Q i Q i = 0 ?
Jensen-Shannon Divergence J S ( P ; Q ) = 1 2 K L ( P ; M ) + 1 2 K L ( Q ; M ) M = 1 2 ( P + Q ) J S ( P ; Q ) = 1 2 X i P i l o g 2 P i P i + Q i + 1 2 X i Q i l o g 2 Q i P i + Q i
Jensen-Shannon Divergence ,[object Object],[object Object],[object Object],J S ( P ; Q ) = 1 2 K L ( P ; M ) + 1 2 K L ( Q ; M ) M = 1 2 ( P + Q ) p J S
Jensen-Shannon Divergence ,[object Object],J S ( P ; Q ) = 1 X n = 1 1 2 n ( 2 n ¡ 1 ) X i ( P i ¡ Q i ) 2 n ( P i + Q i ) 2 n ¡ 1 = 1 2 X i ( P i ¡ Q i ) 2 ( P i + Q i ) + 1 1 2 X i ( P i ¡ Q i ) 4 ( P i + Q i ) 3 + : : :
Histogram Distance   ,[object Object],[object Object],[object Object],[object Object], 2  2 ( P ; Q ) = 1 2 X i ( P i ¡ Q i ) 2 ( P i + Q i ) p  2
Histogram Distance   < Â 2 Â 2 ( ; ) Â 2 ( ; )
Histogram Distance   > Â 2 L 1 ( ; ) L 1 ( ; )
Histogram Distance   ,[object Object], 2 L 2  2 ( P ; Q ) = 1 2 X i ( P i ¡ Q i ) 2 ( P i + Q i )
Bin-to-Bin Distances ,[object Object],> L 1 ( ; ) L 1 ; L 2 ; Â 2 L 1 ( ; )
[object Object],[object Object],Bin-to-Bin Distances robustness  distinctiveness robustness  distinctiveness  > L 1 ( ; ) L 1 ( ; )
[object Object],[object Object],Bin-to-Bin Distances robustness  distinctiveness robustness  distinctiveness  Can we achieve  robustness   and  distinctiveness  ?
The Quadratic-Form Histogram Distance   ,[object Object],[object Object],A i j = s X i j ( P i ¡ Q i ) ( P j ¡ Q j ) A i j ( 1 ) Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q ) ( 1 ) A
The Quadratic-Form Histogram Distance   Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q ) = s X i j ( P i ¡ Q i ) ( P j ¡ Q j ) A i j A = I = s X i j ( P i ¡ Q i ) 2 = L 2 ( P ; Q )
The Quadratic-Form Histogram Distance   ,[object Object],[object Object],[object Object],A i j Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q )
The Quadratic-Form Histogram Distance   ,[object Object],Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q )
Pseudo-Metric  (aka Semi-Metric) ² N o n - n e g a t i v i t y : D ( P ; Q ) ¸ 0 ² P r o p e r t y c h a n g e d t o : D ( P ; Q ) = 0 i f P = Q ² S y m m e t r y : D ( P ; Q ) = D ( Q ; P ) ² S u b a d d i t i v i t y ( t r i a n g l e i n e q u a l i t y ) : D ( P ; Q ) · D ( P ; K ) + D ( K ; Q )
The Quadratic-Form Histogram Distance   ,[object Object],Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q )
The Quadratic-Form Histogram Distance   Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q ) = q ( P ¡ Q ) T W T W ( P ¡ Q ) = L 2 ( W P ; W Q )
The Quadratic-Form Histogram Distance   We assume there is a  linear transformation   that makes bins  independent  There are cases where this is  not true e.g.   COLOR Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q ) = L 2 ( W P ; W Q )
The Quadratic-Form Histogram Distance   ,[object Object],Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q ) A i j = 1 ¡ D i j m a x i j ( D i j )
The Quadratic-Form Histogram Distance   ,[object Object],Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q ) A i j = e ¡ ® D ( i ; j ) m a x i j ( D ( i ; j ) ) I f ® i s l a r g e e n o u g h , A w i l l b e p o s i t i v e - d e ¯ n i t i v e
The Quadratic-Form Histogram Distance   ,[object Object],Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q )
The Quadratic-Chi Histogram Distance   ,[object Object],[object Object],[object Object],[object Object],[object Object], 2 Q C A m ( P ; Q ) = v u u t X i j ( P i ¡ Q i ) ( P j ¡ Q j ) A i j ( P c ( P c + Q c ) A c i ) m ( P c ( P c + Q c ) A c j ) m A i j A i j Q F
The Quadratic-Chi Histogram Distance   ,[object Object],[object Object],[object Object],[object Object],Q C A m ( P ; Q ) = v u u t X i j ( P i ¡ Q i ) ( P j ¡ Q j ) A i j ( P c ( P c + Q c ) A c i ) m ( P c ( P c + Q c ) A c j ) m 0 · m < 1 0 0 = 0
Similarity-Matrix-Quantization-Invariant Property ( , ) D ) ( , = D
Sparseness-Invariant = D ) ( , Empty bins D ( , )
The Quadratic-Chi Histogram Distance  Code f u n c t i o n d i s t = Q u a d r a t i c C h i ( P , Q , A , m ) Z = ( P + Q ) * A ; % 1 c a n b e a n y n u m b e r a s Z _ i = = 0 i f f D _ i = 0 Z ( Z = = 0 ) = 1 ; Z = Z . ^ m ; D = ( P - Q ) . / Z ; % m a x i s r e d u n d a n t i f A i s % p o s i t i v e - s e m i d e f i n i t e d i s t = s q r t ( m a x ( D * A * D ' , 0 ) ) ;
The Quadratic-Chi Histogram Distance  Code f u n c t i o n d i s t = Q u a d r a t i c C h i ( P , Q , A , m ) Z = ( P + Q ) * A ; % 1 c a n b e a n y n u m b e r a s Z _ i = = 0 i f f D _ i = 0 Z ( Z = = 0 ) = 1 ; Z = Z . ^ m ; D = ( P - Q ) . / Z ; % m a x i s r e d u n d a n t i f A i s % p o s i t i v e - s e m i d e f i n i t e d i s t = s q r t ( m a x ( D * A * D ' , 0 ) ) ; T i m e C o m p l e x i t y : O ( # A i j 6 = 0 )
The Quadratic-Chi Histogram Distance  Code f u n c t i o n d i s t = Q u a d r a t i c C h i ( P , Q , A , m ) Z = ( P + Q ) * A ; % 1 c a n b e a n y n u m b e r a s Z _ i = = 0 i f f D _ i = 0 Z ( Z = = 0 ) = 1 ; Z = Z . ^ m ; D = ( P - Q ) . / Z ; % m a x i s r e d u n d a n t i f A i s % p o s i t i v e - s e m i d e f i n i t e d i s t = s q r t ( m a x ( D * A * D ' , 0 ) ) ; W h a t a b o u t s p a r s e ( e . g . B o W ) h i s t o g r a m s ?
The Quadratic-Chi Histogram Distance Code 0 0 0 0 0 0 0 0 0 4 5 0 -3 P ¡ Q = W h a t a b o u t s p a r s e ( e . g . B o W ) h i s t o g r a m s ? T i m e C o m p l e x i t y : O ( S K )
The Quadratic-Chi Histogram Distance Code 0 0 0 0 0 0 0 0 0 4 5 0 -3 P ¡ Q = # ( P 6 = 0 ) + # ( Q 6 = 0 ) W h a t a b o u t s p a r s e ( e . g . B o W ) h i s t o g r a m s ? T i m e C o m p l e x i t y : O ( S K )
The Quadratic-Chi Histogram Distance Code A v e r a g e o f n o n - z e r o e n t r i e s 0 0 0 0 0 0 0 0 0 4 5 0 -3 P ¡ Q = i n e a c h r o w o f A W h a t a b o u t s p a r s e ( e . g . B o W ) h i s t o g r a m s ? T i m e C o m p l e x i t y : O ( S K )
The Earth Mover’s Distance
The Earth Mover’s Distance ,[object Object]
The Earth Mover’s Distance ≠
The Earth Mover’s Distance =
The Earth Mover’s Distance E M D D ( P ; Q ) = m i n F = f F i j g X i ; j F i j D i j s : t : X j F i j = P i X i F i j = Q j X i ; j F i j = X i P i = X j Q j = 1 F i j ¸ 0
The Earth Mover’s Distance E M D D ( P ; Q ) = m i n F = f F i j g P i ; j F i j D i j P i F i j s : t : X j F i j · P i X i F i j · Q j X i ; j F i j = m i n ( X i P i ; X j Q j ) f a l s e F i j ¸ 0
[object Object],The Earth Mover’s Distance E M D
Definition: E M D D C ( P ; Q ) = m i n F = f F i j g X i ; j F i j D i j + ¯ ¯ ¯ ¯ ¯ ¯ X i P i ¡ X j Q j ¯ ¯ ¯ ¯ ¯ ¯ £ C s : t : X j F i j · P i X i F i j · Q j X i ; j F i j = m i n ( X i P i ; X j Q j ) F i j ¸ 0 f a l s e
S u p p l i e r E M D D e m a n d e r D i j = 0 P D e m a n d e r · P S u p p l i e r
D e m a n d e r S u p p l i e r P D e m a n d e r · P S u p p l i e r D i j = C E M D
When to Use  ,[object Object],E M D ¡ ; ¢ = E M D ¡ ; ¢ E M D
When to Use  ,[object Object],¡ ; ¢ < ¡ ; ¢ E M D ¡ ; ¢ = E M D ¡ ; ¢ E M D E M D E M D
When to Use  ,[object Object],E M D ¡ ; ¢ = E M D ¡ ; ¢ = 0 E M D
When to Use  ,[object Object],¡ ; ¢ < ¡ ; ¢ E M D ¡ ; ¢ = E M D ¡ ; ¢ = 0 E M D E M D E M D
When to Use  ,[object Object],² E M D i s a m e t r i c o n l y f o r n o r m a l i z e d h i s t o g r a m s . ² E M D i s a m e t r i c f o r a l l h i s t o g r a m s ( C ¸ 1 2 ¢ ) . E M D
C = 1 D i j = ( 0 i f i = j 2 o t h e r w i s e E M D D C ( P ; Q ) = m i n F = f F i j g X i ; j F i j D i j + ¯ ¯ ¯ ¯ ¯ ¯ X i P i ¡ X j Q j ¯ ¯ ¯ ¯ ¯ ¯ £ C ² E M D = L 1 i f : E M D - a N a t u r a l E x t e n s i o n t o L 1
The Earth Mover’s Distance Complexity Zoo ,[object Object],[object Object],[object Object],[object Object],L 1 O ( N 3 l o g N ) O ( N )
The Earth Mover’s Distance Complexity Zoo ,[object Object],[object Object],L 1 O ( N )
The Earth Mover’s Distance Complexity Zoo ,[object Object],[object Object],O ( N 2 l o g N ( D + l o g N ) ) L 1
[object Object],The Earth Mover’s Distance Complexity Zoo
[object Object],The Earth Mover’s Distance Complexity Zoo
[object Object],The Earth Mover’s Distance Complexity Zoo
The Earth Mover’s Distance Complexity Zoo ,[object Object],[object Object],L 1 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 l 2 l 1 l ` 2 O ( N 2 l o g 2 D ¡ 1 N )
The Earth Mover’s Distance Complexity Zoo ,[object Object],[object Object],m i n ( L 1 ; 2 ) O ( N ) f 1 ; 2 ; : : : ; ¢ g
The Earth Mover’s Distance Complexity Zoo ,[object Object],[object Object],m i n ( L 1 ; 2 ) O ( N ) f 1 ; 2 ; : : : ; ¢ g
The Earth Mover’s Distance Complexity Zoo ,[object Object],[object Object],[object Object],m i n ( L 1 ; 2 ) f 1 ; 2 ; : : : ; ¢ g D K O ( N 2 K l o g ( N K ) )
The Earth Mover’s Distance Complexity Zoo ,[object Object],[object Object],O ( N 2 l o g N ( K + l o g N ) ) ,[object Object],[object Object],K = O ( l o g N ) O ( N 2 l o g 2 N )
Thresholded Distances ,[object Object],[object Object],[object Object]
The Flow Network Transformation Original Network Simplified Network
The Flow Network Transformation Original Network Simplified Network
The Flow Network Transformation Flowing the Monge sequence  (if ground distance is a metric,  zero-cost edges are a Monge sequence)
The Flow Network Transformation Removing Empty Bins and their edges
The Flow Network Transformation We actually finished here….
Combining Algorithms ,[object Object],[object Object],L 1
Combining Algorithms ,[object Object],[object Object],L 1
The Earth Mover’s Distance Approximations
[object Object],[object Object],[object Object],The Earth Mover’s Distance Approximations L 1 f 1 ; : : : ; ¢ g d O ( T N d l o g ¢ ) O ( d l o g ¢ )
The Earth Mover’s Distance Approximations ,[object Object],[object Object],[object Object],[object Object],L 1
The Earth Mover’s Distance Approximations ,[object Object]
The Earth Mover’s Distance Approximations ,[object Object],+ + + + + + + + + + + + + + + + + + + + + + + + x 1 / 8 x 1 / 4 x 1 / 2 + + + level 1 level 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
The Earth Mover’s Distance Approximations
The Earth Mover’s Distance Approximations ,[object Object],D i f f e r e n c e P Q Wavelet Transform j=0 j=1 Absolute values + £ 2 ¡ 2 £ 0 £ 2 ¡ 2 £ 1
The Earth Mover’s Distance Approximations ,[object Object],[object Object],[object Object],L 1 ­ ( d ) s O ( l o g s l o g d ) f 0 ; 1 ; : : : ; ¢ g 2 ­ ( p l o g ¢ )
Robust Distances ,[object Object]
Robust Distances ,[object Object],0 0 20 40 60 80 100 120 CIEDE200 Distance from Blue
Robust Distances ( b l u e ; r e d ) = 5 6 ¢E 0 0 ( b l u e ; y e l l o w ) = 1 0 2 ¢E 0 0
Robust Distances - Exponent ,[object Object],² L e t d ( a ; b ) b e a d i s t a n c e m e a s u r e b e t w e e n t w o f e a t u r e s - a ; b . ² T h e n e g a t i v e e x p o n e n t d i s t a n c e i s : d e ( a ; b ) = 1 ¡ e ¡ d ( a ; b ) ¾
Robust Distances - Exponent ,[object Object],[object Object],[object Object]
Robust Distances - Thresholded ² L e t d ( a ; b ) b e a d i s t a n c e m e a s u r e b e t w e e n t w o f e a t u r e s - a ; b . ² T h e t h r e s h o l d e d d i s t a n c e w i t h a t h r e s h o l d o f t > 0 i s : d t ( a ; b ) = m i n ( d ( a ; b ) ; t ) .
Thresholded Distances ,[object Object],[object Object],[object Object],[object Object],A i j = 1 ¡ D i j m a x i j ( D i j )
Thresholded Distances ,[object Object],[object Object],[object Object]
Thresholded Distances ,[object Object],0 50 100 150 distance from blue ¢ E 0 0 m i n ( ¢ E 0 0 ; 1 0 ) 1 0 ( 1 ¡ e ¡ ¢ E 0 0 4 ) 1 0 ( 1 ¡ e ¡ ¢ E 0 0 5 )
Thresholded Distances ,[object Object],¢ E 0 0 m i n ( ¢ E 0 0 ; 1 0 ) 1 0 ( 1 ¡ e ¡ ¢ E 0 0 4 ) 1 0 ( 1 ¡ e ¡ ¢ E 0 0 5 ) 0 5 10 distance from blue
A Ground Distance for SIFT  d R = j j ( x i ; y i ) ¡ ( x j ; y j ) j j 2 + m i n ( j o i ¡ o j j ; M ¡ j o i ¡ o j j ) d T = m i n ( d R ; T ) T h e g r o u n d d i s t a n c e b e t w e e n t w o S I F T b i n s ( x i ; y i ; o i ) a n d ( x j ; y j ; o j ) :
A Ground Distance for Color Image T h e g r o u n d d i s t a n c e s b e t w e e n t w o L A B i m a g e b i n s ( x i ; y i ; L i ; a i ; b i ) a n d ( x j ; y j ; L j ; a j ; b j ) w e u s e a r e : d c T = m i n ( ( j j ( x i ; y i ) ¡ ( x j ; y j ) j j 2 ) + ¢ 0 0 ( ( L i ; a i ; b i ) ; ( L j ; a j ; b j ) ) ; T )
Perceptual Color Differences
Perceptual Color Differences ,[object Object],0 100 200 300 distance from blue j j L a b j j 2
Perceptual Color Differences 0 20 40 60 adist2 distance from blue ,[object Object],j j L a b j j 2
Perceptual Color Differences ,[object Object],[object Object],distance from blue 0 5 10 15 20 ¢ E 0 0 ¢ E 0 0
Perceptual Color Differences ,[object Object],¢ E 0 0 j j L a b j j 2 ¢ E 0 0
Perceptual Color Differences 0 50 100 150 distance from blue ,[object Object],¢ E 0 0 ¢ E 0 0
Perceptual Color Differences ,[object Object],[object Object],[object Object],( b l u e ; r e d ) = 5 6 ¢E 0 0 ( b l u e ; y e l l o w ) = 1 0 2 ¢E 0 0 ¢ E 0 0
Perceptual Color Differences ,[object Object],0 50 100 150 distance from blue ¢ E 0 0 m i n ( ¢ E 0 0 ; 1 0 ) 1 0 ( 1 ¡ e ¡ ¢ E 0 0 4 ) 1 0 ( 1 ¡ e ¡ ¢ E 0 0 5 )
Thresholded Distances ,[object Object],¢ E 0 0 m i n ( ¢ E 0 0 ; 1 0 ) 1 0 ( 1 ¡ e ¡ ¢ E 0 0 4 ) 1 0 ( 1 ¡ e ¡ ¢ E 0 0 5 ) 0 5 10 distance from blue
Perceptual Color Descriptors
Perceptual Color Descriptors ,[object Object],white red green yellow blue brown purple pink orange grey black
Perceptual Color Descriptors ,[object Object]
Perceptual Color Descriptors ,[object Object],[object Object]
Perceptual Color Descriptors ,[object Object]
Perceptual Color Descriptors ,[object Object]
Perceptual Color Descriptors ,[object Object]
Perceptual Color Descriptors ,[object Object]
Perceptual Color Descriptors ,[object Object],chip-based real-world
Perceptual Color Descriptors ,[object Object],[object Object],white red green yellow blue brown purple pink orange grey black
Perceptual Color Descriptors ,[object Object],[object Object]
Perceptual Color Descriptors ,[object Object],[object Object],[object Object]
Perceptual Color Descriptors ,[object Object],[object Object],[object Object],[object Object],0 0 0 0 0 0 0 0 0 1 0
Open Questions ,[object Object],[object Object],[object Object]
Hands-On Code Example http://www.cs.huji.ac.il/~ofirpele/FastEMD/code/ http://www.cs.huji.ac.il/~ofirpele/QC/code/
Tutorial: Or  “Ofir Pele” http://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/

More Related Content

What's hot

18 polar coordinates x
18 polar coordinates x18 polar coordinates x
18 polar coordinates xmath260
 
Single source shortes path in dag
Single source shortes path in dagSingle source shortes path in dag
Single source shortes path in dagKiran K
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetDhaval Shukla
 
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmString Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmKiran K
 
Bellman ford
Bellman fordBellman ford
Bellman fordKiran K
 
Longest common subsequence
Longest common subsequenceLongest common subsequence
Longest common subsequenceKiran K
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinatesmath267
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphsmath267
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinatesmath266
 
Diktat Geometri Transformasi (English)
Diktat Geometri Transformasi (English)Diktat Geometri Transformasi (English)
Diktat Geometri Transformasi (English)Fajar Arwadi
 
Transformación de coordenadas
Transformación de coordenadasTransformación de coordenadas
Transformación de coordenadasAndres32698
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations xmath266
 
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...Laurent Duval
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinatemath266
 
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Mahmood Adel
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equationsmath266
 

What's hot (20)

18 polar coordinates x
18 polar coordinates x18 polar coordinates x
18 polar coordinates x
 
Single source shortes path in dag
Single source shortes path in dagSingle source shortes path in dag
Single source shortes path in dag
 
Linear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent SetLinear Combination, Span And Linearly Independent, Dependent Set
Linear Combination, Span And Linearly Independent, Dependent Set
 
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmString Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
 
Bellman ford
Bellman fordBellman ford
Bellman ford
 
Longest common subsequence
Longest common subsequenceLongest common subsequence
Longest common subsequence
 
1 polar coordinates
1 polar coordinates1 polar coordinates
1 polar coordinates
 
Qp cdsi18-math
Qp cdsi18-mathQp cdsi18-math
Qp cdsi18-math
 
Polar coordinates
Polar coordinatesPolar coordinates
Polar coordinates
 
20 polar equations and graphs
20 polar equations and graphs20 polar equations and graphs
20 polar equations and graphs
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
Pc 10.7 notes_polar
Pc 10.7 notes_polarPc 10.7 notes_polar
Pc 10.7 notes_polar
 
Diktat Geometri Transformasi (English)
Diktat Geometri Transformasi (English)Diktat Geometri Transformasi (English)
Diktat Geometri Transformasi (English)
 
Transformación de coordenadas
Transformación de coordenadasTransformación de coordenadas
Transformación de coordenadas
 
Introduction to coordinate geometry by pratima nayak
Introduction to coordinate geometry by pratima nayakIntroduction to coordinate geometry by pratima nayak
Introduction to coordinate geometry by pratima nayak
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations x
 
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
BEADS : filtrage asymétrique de ligne de base (tendance) et débruitage pour d...
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinate
 
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
 

Similar to ECCV2010: distance function and metric learning part 1

Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...IJRTEMJOURNAL
 
Orthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth processOrthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth processgidc engineering college
 
CLASS X MATHS Coordinate geometry
CLASS X MATHS Coordinate geometryCLASS X MATHS Coordinate geometry
CLASS X MATHS Coordinate geometryRc Os
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restrictionVjekoslavKovac1
 
Learning Algorithms For Life Scientists
Learning Algorithms For Life ScientistsLearning Algorithms For Life Scientists
Learning Algorithms For Life ScientistsBrian Frezza
 
Doc1.doc nobel[1]2
Doc1.doc nobel[1]2Doc1.doc nobel[1]2
Doc1.doc nobel[1]2Mark Hilbert
 
Doc1.doc nobel[1]1[1]
Doc1.doc nobel[1]1[1]Doc1.doc nobel[1]1[1]
Doc1.doc nobel[1]1[1]Mark Hilbert
 
Doc1.doc nobel[1]3
Doc1.doc nobel[1]3Doc1.doc nobel[1]3
Doc1.doc nobel[1]3Mark Hilbert
 
Notes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.modelNotes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.modelsun peiyuan
 
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...Frank Nielsen
 
The Moore-Spiegel Oscillator
The Moore-Spiegel OscillatorThe Moore-Spiegel Oscillator
The Moore-Spiegel OscillatorAbhranil Das
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Frank Nielsen
 
Various relations on new information
Various relations on new informationVarious relations on new information
Various relations on new informationijitjournal
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Vladimir Bakhrushin
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 

Similar to ECCV2010: distance function and metric learning part 1 (20)

Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...
 
Orthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth processOrthogonal basis and gram schmidth process
Orthogonal basis and gram schmidth process
 
CGc10.pdf
CGc10.pdfCGc10.pdf
CGc10.pdf
 
CLASS X MATHS Coordinate geometry
CLASS X MATHS Coordinate geometryCLASS X MATHS Coordinate geometry
CLASS X MATHS Coordinate geometry
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
Learning Algorithms For Life Scientists
Learning Algorithms For Life ScientistsLearning Algorithms For Life Scientists
Learning Algorithms For Life Scientists
 
Doc1.doc nobel[1]2
Doc1.doc nobel[1]2Doc1.doc nobel[1]2
Doc1.doc nobel[1]2
 
Doc1.doc nobel[1]1[1]
Doc1.doc nobel[1]1[1]Doc1.doc nobel[1]1[1]
Doc1.doc nobel[1]1[1]
 
Doc1.doc nobel[1]3
Doc1.doc nobel[1]3Doc1.doc nobel[1]3
Doc1.doc nobel[1]3
 
Notes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.modelNotes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.model
 
Escola naval 2015
Escola naval 2015Escola naval 2015
Escola naval 2015
 
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
 
The Moore-Spiegel Oscillator
The Moore-Spiegel OscillatorThe Moore-Spiegel Oscillator
The Moore-Spiegel Oscillator
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
 
Various relations on new information
Various relations on new informationVarious relations on new information
Various relations on new information
 
kactl.pdf
kactl.pdfkactl.pdf
kactl.pdf
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 

More from zukun

My lyn tutorial 2009
My lyn tutorial 2009My lyn tutorial 2009
My lyn tutorial 2009zukun
 
ETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVzukun
 
ETHZ CV2012: Information
ETHZ CV2012: InformationETHZ CV2012: Information
ETHZ CV2012: Informationzukun
 
Siwei lyu: natural image statistics
Siwei lyu: natural image statisticsSiwei lyu: natural image statistics
Siwei lyu: natural image statisticszukun
 
Lecture9 camera calibration
Lecture9 camera calibrationLecture9 camera calibration
Lecture9 camera calibrationzukun
 
Brunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionBrunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionzukun
 
Modern features-part-4-evaluation
Modern features-part-4-evaluationModern features-part-4-evaluation
Modern features-part-4-evaluationzukun
 
Modern features-part-3-software
Modern features-part-3-softwareModern features-part-3-software
Modern features-part-3-softwarezukun
 
Modern features-part-2-descriptors
Modern features-part-2-descriptorsModern features-part-2-descriptors
Modern features-part-2-descriptorszukun
 
Modern features-part-1-detectors
Modern features-part-1-detectorsModern features-part-1-detectors
Modern features-part-1-detectorszukun
 
Modern features-part-0-intro
Modern features-part-0-introModern features-part-0-intro
Modern features-part-0-introzukun
 
Lecture 02 internet video search
Lecture 02 internet video searchLecture 02 internet video search
Lecture 02 internet video searchzukun
 
Lecture 01 internet video search
Lecture 01 internet video searchLecture 01 internet video search
Lecture 01 internet video searchzukun
 
Lecture 03 internet video search
Lecture 03 internet video searchLecture 03 internet video search
Lecture 03 internet video searchzukun
 
Icml2012 tutorial representation_learning
Icml2012 tutorial representation_learningIcml2012 tutorial representation_learning
Icml2012 tutorial representation_learningzukun
 
Advances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionAdvances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionzukun
 
Gephi tutorial: quick start
Gephi tutorial: quick startGephi tutorial: quick start
Gephi tutorial: quick startzukun
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysiszukun
 
Object recognition with pictorial structures
Object recognition with pictorial structuresObject recognition with pictorial structures
Object recognition with pictorial structureszukun
 
Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities zukun
 

More from zukun (20)

My lyn tutorial 2009
My lyn tutorial 2009My lyn tutorial 2009
My lyn tutorial 2009
 
ETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCV
 
ETHZ CV2012: Information
ETHZ CV2012: InformationETHZ CV2012: Information
ETHZ CV2012: Information
 
Siwei lyu: natural image statistics
Siwei lyu: natural image statisticsSiwei lyu: natural image statistics
Siwei lyu: natural image statistics
 
Lecture9 camera calibration
Lecture9 camera calibrationLecture9 camera calibration
Lecture9 camera calibration
 
Brunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionBrunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer vision
 
Modern features-part-4-evaluation
Modern features-part-4-evaluationModern features-part-4-evaluation
Modern features-part-4-evaluation
 
Modern features-part-3-software
Modern features-part-3-softwareModern features-part-3-software
Modern features-part-3-software
 
Modern features-part-2-descriptors
Modern features-part-2-descriptorsModern features-part-2-descriptors
Modern features-part-2-descriptors
 
Modern features-part-1-detectors
Modern features-part-1-detectorsModern features-part-1-detectors
Modern features-part-1-detectors
 
Modern features-part-0-intro
Modern features-part-0-introModern features-part-0-intro
Modern features-part-0-intro
 
Lecture 02 internet video search
Lecture 02 internet video searchLecture 02 internet video search
Lecture 02 internet video search
 
Lecture 01 internet video search
Lecture 01 internet video searchLecture 01 internet video search
Lecture 01 internet video search
 
Lecture 03 internet video search
Lecture 03 internet video searchLecture 03 internet video search
Lecture 03 internet video search
 
Icml2012 tutorial representation_learning
Icml2012 tutorial representation_learningIcml2012 tutorial representation_learning
Icml2012 tutorial representation_learning
 
Advances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionAdvances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer vision
 
Gephi tutorial: quick start
Gephi tutorial: quick startGephi tutorial: quick start
Gephi tutorial: quick start
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysis
 
Object recognition with pictorial structures
Object recognition with pictorial structuresObject recognition with pictorial structures
Object recognition with pictorial structures
 
Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities
 

Recently uploaded

4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvRicaMaeCastro1
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...DhatriParmar
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...DhatriParmar
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQuiz Club NITW
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Developmentchesterberbo7
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 

Recently uploaded (20)

4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Using Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea DevelopmentUsing Grammatical Signals Suitable to Patterns of Idea Development
Using Grammatical Signals Suitable to Patterns of Idea Development
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 

ECCV2010: distance function and metric learning part 1

  • 1. Distance Functions and Metric Learning: Part 1 12/1/2011 version. Updated Version: http://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/ Michael Werman Ofir Pele The Hebrew University of Jerusalem
  • 2.
  • 4. Metric ² N o n - n e g a t i v i t y : D ( P ; Q ) ¸ 0 ² I d e n t i t y o f i n d i s c e r n i b l e s : D ( P ; Q ) = 0 i ® P = Q ² S y m m e t r y : D ( P ; Q ) = D ( Q ; P ) ² S u b a d d i t i v i t y ( t r i a n g l e i n e q u a l i t y ) : D ( P ; Q ) · D ( P ; K ) + D ( K ; Q )
  • 5. Pseudo-Metric (aka Semi-Metric) ² N o n - n e g a t i v i t y : D ( P ; Q ) ¸ 0 ² P r o p e r t y c h a n g e d t o : D ( P ; Q ) = 0 i f P = Q ² S y m m e t r y : D ( P ; Q ) = D ( Q ; P ) ² S u b a d d i t i v i t y ( t r i a n g l e i n e q u a l i t y ) : D ( P ; Q ) · D ( P ; K ) + D ( K ; Q )
  • 6. Metric A n o b j e c t i s m o s t s i m i l a r t o i t s e l f ² N o n - n e g a t i v i t y : D ( P ; Q ) ¸ 0 ² I d e n t i t y o f i n d i s c e r n i b l e s : D ( P ; Q ) = 0 i ® P = Q
  • 7. Metric ² S y m m e t r y : D ( P ; Q ) = D ( Q ; P ) ² S u b a d d i t i v i t y ( t r i a n g l e i n e q u a l i t y ) : D ( P ; Q ) · D ( P ; K ) + D ( K ; Q ) U s e f u l f o r m a n y a l g o r i t h m s
  • 8. Minkowski-Form Distances L p ( P ; Q ) = Ã X i j P i ¡ Q i j p ! 1 p
  • 9. Minkowski-Form Distances L 2 ( P ; Q ) = s X i ( P i ¡ Q i ) 2 L 1 ( P ; Q ) = X i j P i ¡ Q i j L 1 ( P ; Q ) = m a x i j P i ¡ Q i j
  • 10.
  • 11. Jensen-Shannon Divergence J S ( P ; Q ) = 1 2 K L ( P ; M ) + 1 2 K L ( Q ; M ) M = 1 2 ( P + Q ) J S ( P ; Q ) = 1 2 X i P i l o g 2 P i P i + Q i + 1 2 X i Q i l o g 2 Q i P i + Q i
  • 12.
  • 13.
  • 14.
  • 15. Histogram Distance < Â 2 Â 2 ( ; ) Â 2 ( ; )
  • 16. Histogram Distance > Â 2 L 1 ( ; ) L 1 ( ; )
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22. The Quadratic-Form Histogram Distance Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q ) = s X i j ( P i ¡ Q i ) ( P j ¡ Q j ) A i j A = I = s X i j ( P i ¡ Q i ) 2 = L 2 ( P ; Q )
  • 23.
  • 24.
  • 25. Pseudo-Metric (aka Semi-Metric) ² N o n - n e g a t i v i t y : D ( P ; Q ) ¸ 0 ² P r o p e r t y c h a n g e d t o : D ( P ; Q ) = 0 i f P = Q ² S y m m e t r y : D ( P ; Q ) = D ( Q ; P ) ² S u b a d d i t i v i t y ( t r i a n g l e i n e q u a l i t y ) : D ( P ; Q ) · D ( P ; K ) + D ( K ; Q )
  • 26.
  • 27. The Quadratic-Form Histogram Distance Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q ) = q ( P ¡ Q ) T W T W ( P ¡ Q ) = L 2 ( W P ; W Q )
  • 28. The Quadratic-Form Histogram Distance We assume there is a linear transformation that makes bins independent There are cases where this is not true e.g. COLOR Q F A ( P ; Q ) = q ( P ¡ Q ) T A ( P ¡ Q ) = L 2 ( W P ; W Q )
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 35. Sparseness-Invariant = D ) ( , Empty bins D ( , )
  • 36. The Quadratic-Chi Histogram Distance Code f u n c t i o n d i s t = Q u a d r a t i c C h i ( P , Q , A , m ) Z = ( P + Q ) * A ; % 1 c a n b e a n y n u m b e r a s Z _ i = = 0 i f f D _ i = 0 Z ( Z = = 0 ) = 1 ; Z = Z . ^ m ; D = ( P - Q ) . / Z ; % m a x i s r e d u n d a n t i f A i s % p o s i t i v e - s e m i d e f i n i t e d i s t = s q r t ( m a x ( D * A * D ' , 0 ) ) ;
  • 37. The Quadratic-Chi Histogram Distance Code f u n c t i o n d i s t = Q u a d r a t i c C h i ( P , Q , A , m ) Z = ( P + Q ) * A ; % 1 c a n b e a n y n u m b e r a s Z _ i = = 0 i f f D _ i = 0 Z ( Z = = 0 ) = 1 ; Z = Z . ^ m ; D = ( P - Q ) . / Z ; % m a x i s r e d u n d a n t i f A i s % p o s i t i v e - s e m i d e f i n i t e d i s t = s q r t ( m a x ( D * A * D ' , 0 ) ) ; T i m e C o m p l e x i t y : O ( # A i j 6 = 0 )
  • 38. The Quadratic-Chi Histogram Distance Code f u n c t i o n d i s t = Q u a d r a t i c C h i ( P , Q , A , m ) Z = ( P + Q ) * A ; % 1 c a n b e a n y n u m b e r a s Z _ i = = 0 i f f D _ i = 0 Z ( Z = = 0 ) = 1 ; Z = Z . ^ m ; D = ( P - Q ) . / Z ; % m a x i s r e d u n d a n t i f A i s % p o s i t i v e - s e m i d e f i n i t e d i s t = s q r t ( m a x ( D * A * D ' , 0 ) ) ; W h a t a b o u t s p a r s e ( e . g . B o W ) h i s t o g r a m s ?
  • 39. The Quadratic-Chi Histogram Distance Code 0 0 0 0 0 0 0 0 0 4 5 0 -3 P ¡ Q = W h a t a b o u t s p a r s e ( e . g . B o W ) h i s t o g r a m s ? T i m e C o m p l e x i t y : O ( S K )
  • 40. The Quadratic-Chi Histogram Distance Code 0 0 0 0 0 0 0 0 0 4 5 0 -3 P ¡ Q = # ( P 6 = 0 ) + # ( Q 6 = 0 ) W h a t a b o u t s p a r s e ( e . g . B o W ) h i s t o g r a m s ? T i m e C o m p l e x i t y : O ( S K )
  • 41. The Quadratic-Chi Histogram Distance Code A v e r a g e o f n o n - z e r o e n t r i e s 0 0 0 0 0 0 0 0 0 4 5 0 -3 P ¡ Q = i n e a c h r o w o f A W h a t a b o u t s p a r s e ( e . g . B o W ) h i s t o g r a m s ? T i m e C o m p l e x i t y : O ( S K )
  • 43.
  • 44. The Earth Mover’s Distance ≠
  • 45. The Earth Mover’s Distance =
  • 46. The Earth Mover’s Distance E M D D ( P ; Q ) = m i n F = f F i j g X i ; j F i j D i j s : t : X j F i j = P i X i F i j = Q j X i ; j F i j = X i P i = X j Q j = 1 F i j ¸ 0
  • 47. The Earth Mover’s Distance E M D D ( P ; Q ) = m i n F = f F i j g P i ; j F i j D i j P i F i j s : t : X j F i j · P i X i F i j · Q j X i ; j F i j = m i n ( X i P i ; X j Q j ) f a l s e F i j ¸ 0
  • 48.
  • 49. Definition: E M D D C ( P ; Q ) = m i n F = f F i j g X i ; j F i j D i j + ¯ ¯ ¯ ¯ ¯ ¯ X i P i ¡ X j Q j ¯ ¯ ¯ ¯ ¯ ¯ £ C s : t : X j F i j · P i X i F i j · Q j X i ; j F i j = m i n ( X i P i ; X j Q j ) F i j ¸ 0 f a l s e
  • 50. S u p p l i e r E M D D e m a n d e r D i j = 0 P D e m a n d e r · P S u p p l i e r
  • 51. D e m a n d e r S u p p l i e r P D e m a n d e r · P S u p p l i e r D i j = C E M D
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57. C = 1 D i j = ( 0 i f i = j 2 o t h e r w i s e E M D D C ( P ; Q ) = m i n F = f F i j g X i ; j F i j D i j + ¯ ¯ ¯ ¯ ¯ ¯ X i P i ¡ X j Q j ¯ ¯ ¯ ¯ ¯ ¯ £ C ² E M D = L 1 i f : E M D - a N a t u r a l E x t e n s i o n t o L 1
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70. The Flow Network Transformation Original Network Simplified Network
  • 71. The Flow Network Transformation Original Network Simplified Network
  • 72. The Flow Network Transformation Flowing the Monge sequence (if ground distance is a metric, zero-cost edges are a Monge sequence)
  • 73. The Flow Network Transformation Removing Empty Bins and their edges
  • 74. The Flow Network Transformation We actually finished here….
  • 75.
  • 76.
  • 77. The Earth Mover’s Distance Approximations
  • 78.
  • 79.
  • 80.
  • 81.
  • 82. The Earth Mover’s Distance Approximations
  • 83.
  • 84.
  • 85.
  • 86.
  • 87. Robust Distances ( b l u e ; r e d ) = 5 6 ¢E 0 0 ( b l u e ; y e l l o w ) = 1 0 2 ¢E 0 0
  • 88.
  • 89.
  • 90. Robust Distances - Thresholded ² L e t d ( a ; b ) b e a d i s t a n c e m e a s u r e b e t w e e n t w o f e a t u r e s - a ; b . ² T h e t h r e s h o l d e d d i s t a n c e w i t h a t h r e s h o l d o f t > 0 i s : d t ( a ; b ) = m i n ( d ( a ; b ) ; t ) .
  • 91.
  • 92.
  • 93.
  • 94.
  • 95. A Ground Distance for SIFT d R = j j ( x i ; y i ) ¡ ( x j ; y j ) j j 2 + m i n ( j o i ¡ o j j ; M ¡ j o i ¡ o j j ) d T = m i n ( d R ; T ) T h e g r o u n d d i s t a n c e b e t w e e n t w o S I F T b i n s ( x i ; y i ; o i ) a n d ( x j ; y j ; o j ) :
  • 96. A Ground Distance for Color Image T h e g r o u n d d i s t a n c e s b e t w e e n t w o L A B i m a g e b i n s ( x i ; y i ; L i ; a i ; b i ) a n d ( x j ; y j ; L j ; a j ; b j ) w e u s e a r e : d c T = m i n ( ( j j ( x i ; y i ) ¡ ( x j ; y j ) j j 2 ) + ¢ 0 0 ( ( L i ; a i ; b i ) ; ( L j ; a j ; b j ) ) ; T )
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120. Hands-On Code Example http://www.cs.huji.ac.il/~ofirpele/FastEMD/code/ http://www.cs.huji.ac.il/~ofirpele/QC/code/
  • 121. Tutorial: Or “Ofir Pele” http://www.cs.huji.ac.il/~ofirpele/DFML_ECCV2010_tutorial/

Editor's Notes

  1. Endres, D. M.; J. E. Schindelin (2003). &amp;quot;A new metric for probability distributions&amp;quot;. IEEE Trans. Inf. Theory 49 : pp. 1858–1860. doi : 10.1109/TIT.2003.813506 . Ôsterreicher, F.; I. Vajda (2003). &amp;quot;A new class of metric divergences on probability spaces and its statistical applications&amp;quot;. Ann. Inst. Statist. Math. 55 : pp. 639–653. doi : 10.1007/BF02517812
  2. 3 – Rubner’s thesis + Pele and Werman ECCV 2010
  3. Pele and Werman ECCV 2010
  4. Pele and Werman ECCV 2010
  5. Pele and Werman ECCV 2010
  6. Pele and Werman ECCV 2010
  7. Pele and Werman ECCV 2010
  8. Pele and Werman ECCV 2010
  9. Pele and Werman ECCV 2010
  10. Pele and Werman ECCV 2010
  11. Pele and Werman ECCV 2010
  12. Pele and Werman ECCV 2010
  13. Full net
  14. Full net
  15. Full net
  16. Full net
  17. Full net
  18. Full net
  19. Full net
  20. T = #random placements of grids N = #elements in histogram
  21. Graph fonts changed to 24