SlideShare a Scribd company logo
1 of 279
Download to read offline
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
I 
Graduation Team Members 
1. Amr Kamal El-Din Gamal El-Din. 
2. Eman Magdy Ibrahim. 
3. Islam Haytham Ahmad. 
4. Khaled Salah Mohamad. 
5. Mohamad Hashem Abd-El-Rehem. 
6. Omnia Ahmad Mohmoud Akl. 
7. Sarah Mostafa Mohamad. 
Acknowledgments 
We wrote this book throughout our fourth year at the Department of Communications and Electronics Engineering in Alexandria University and it applies our communications theoretical studies and we spared no effort to make this graduation project appears in the best form, Certainly, it could not have been written without the support and patience of many people. Therefore, we are indebted to many people for their information, feedback, and assistance during the development of this book. 
First of all, we must thank Allah who always assists us, we owing to him with any success and progress we made in our life. 
We want to express our gratitude to our supervisor Doctor  Karim G. Seddik for all the helpful advices, encouragement, and discussions. The opportunity to work under his supervision was a precious experience, he exerts all the effort and time to help us to learn, search, and do our best in this project. 
Also we want to thank Our Professors in the communication department, who made their best to give us their experience in the field of Communication Engineering, and deep thanks to teacher assistant / Karim Banwan who was our beacon through our project journey. 
Most of all, we thank our beloved families for their immeasurable support, encouragement, and patience while working on this project.
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
II 
Preface 
Technological developments should not be regarded as exogenous determining factors but rather as the product of activities and relationships within society as a whole. Beside the technical factors involved, scientific, economic, market, political, and legal factors can determine the establishment of technologies in society. This book aims to provide an overview of these aspects with regard to DTV and to help explain how DTV, including conditional access, can be successfully embedded in society. 
Broadcasting is the distribution of audio and video content to a dispersed audience via radio, television, or other. Receiving parties may include the general public or a relatively large subset of thereof. 
The original term broadcast referred to the literal sowing of seeds on farms by scattering them over a wide field. 
It was first adopted by early radio engineers from the Midwestern United States to refer to the analogous dissemination of radio signals. Broadcasting forms a very large segment of the mass media. Broadcasting to a very narrow range of audience is called narrowcasting. 
The DVB-T standard is the most successful digital terrestrial television standards in the world. First published in 1995, it has been adopted by more than half of all countries in the world. Since the publication of the DVB-T standard, however, research in transmission technology has continued, and new options for modulating and error- protecting broadcast steams have been developed. Simultaneously, the demand for broadcasting frequency spectrum has increased as has the pressure to release broadcast spectrum for non-broadcast applications, making it is ever more necessary to maximize spectrum efficiency. In response, the DVB Project has developed the second- generation digital terrestrial television (DVB-T2) standard. The specification, first published by the DVB Project in June 2008, has been standardized by European Telecommunication Standardizations Institute (ETSI) since September 2009. Implementation and product development using this new standard has already begun. The possibility to increase the capacity in a digital terrestrial television (DTT) multiplex is one of the key benefits of the DVB-T2 standard. In comparison with the current digital terrestrial television standard, DVB-T, the second-generation standard, DVB-T2, provides a minimum increase in capacity of at least 30% in equivalent reception conditions using existing receiving antennas. Some preliminary testing, however, suggests that the increase in capacity obtained in practice may be closer to 50%. This can make possible the launch of new broadcast services that make intensive use of frequency capacity. 
However, the implementation of a new digital terrestrial television (DTT) standard will have a profound impact upon the broadcast industry. The cost of developing, distributing, and implementing new equipment will need to be borne by manufacturers, network operators, and viewers. Business issues related to financing the launch of services the DVB-T2 standard need to be explored. The demand for services using DVB-T2 will likely vary depending on the demands of the market as will the approach for launching such services. Broadcasters will also need to consider possible business cases and how current revenue streams can be maintained and/or augmented. 
Two excellent documents, the DVB-T2 specification (ETSI EN302755) and the Implementation Guidelines (DVB Bluebook A133), are available with the details of the technology. However, this handbook seeks to provide a wider understanding of the DVB-T2 standard to encompass issues beyond the technology. It addresses the key technical, business, and regulatory issues that must be taken into consideration by the broadcast industry when contemplating a launch of services using the DVBT2 standard.
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
A | P a g e 
Table of Contents 
Chapter Number 1: Television History ------------------------------------------------------------------------------------ 1 
1.1 – Early History of Television ------------------------------------------------------------------------------------------------------ 1 
1.2 – Why it’s called Television? ------------------------------------------------------------------------------------------------------ 3 
1.3 – The very first Broadcasts -------------------------------------------------------------------------------------------------------- 6 
1.4 – Color Television Transmission ------------------------------------------------------------------------------------------------- 8 
1.5 – Analog Television (ATV) ------------------------------------------------------------------------------------------------------- 10 
1.5.1 –Scanning an Original Black/White Picture --------------------------------------------------------------------------------------------- 12 
1.5.2 –Horizontal and Vertical Synchronization Pulses -------------------------------------------------------------------------------------- 13 
1.5.3 –Adding Colors Information ----------------------------------------------------------------------------------------------------------------- 14 
1.6 – Digital Television (DTV) -------------------------------------------------------------------------------------------------------- 16 
1.6.1 –What is Digital Television? ----------------------------------------------------------------------------------------------------------------- 16 
1.6.2 –Shannon’s Information Theorem --------------------------------------------------------------------------------------------------------- 17 
1.6.3 –Digitizing a Video Signal --------------------------------------------------------------------------------------------------------------------- 17 
1.6.3.1 – Why? -------------------------------------------------------------------------------------------------------------------------------------- 17 
1.6.3.2 – How? -------------------------------------------------------------------------------------------------------------------------------------- 18 
1.6.4 –Digital Video Signal --------------------------------------------------------------------------------------------------------------------------- 19 
1.6.5 –Compressing Digital Signal ----------------------------------------------------------------------------------------------------------------- 20 
1.6.5.1 – Compressing Still Images ------------------------------------------------------------------------------------------------------------ 20 
1.6.5.2 – Compressing Non-Still Images (Movies) ----------------------------------------------------------------------------------------- 20 
1.6.6 –Encapsulating into Transport Stream Packets ---------------------------------------------------------------------------------------- 20 
1.6.7 –System Information -------------------------------------------------------------------------------------------------------------------------- 22 
1.6.8 –Picture and Sound Quality ----------------------------------------------------------------------------------------------------------------- 22 
1.6.9 –Advantages of Digital Transmission ----------------------------------------------------------------------------------------------------- 22 
1.7 – High Definition Television (HDTV) ------------------------------------------------------------------------------------------ 23 
1.7.1 –Historical view over HD development -------------------------------------------------------------------------------------------------- 23 
1.7.2 –Interlaced and Progressive Scanning ---------------------------------------------------------------------------------------------------- 24 
1.7.3 –HDTV Display Resolutions ------------------------------------------------------------------------------------------------------------------ 24 
1.7.4 –Practical Aspects of Receiving HDTV ---------------------------------------------------------------------------------------------------- 24 
1.8 – Stereoscopic Television (3DTV) ---------------------------------------------------------------------------------------------- 25 
1.8.1 –Historical View -------------------------------------------------------------------------------------------------------------------------------- 25 
1.8.2 –Used Technologies --------------------------------------------------------------------------------------------------------------------------- 25 
1.8.2.1 – Anaglyphic 3D -------------------------------------------------------------------------------------------------------------------------- 26 
1.8.2.2 – Polarization 3D ------------------------------------------------------------------------------------------------------------------------- 27 
1.8.2.3 – Alternate Frame Sequencing 3D --------------------------------------------------------------------------------------------------- 28 
1.8.2.4 – Alternate Frame Sequencing 3D --------------------------------------------------------------------------------------------------- 28 
Chapter Number 2: Digital Video Broadcasting ---------------------------------------------------------------------- 29 
2.1 – History ------------------------------------------------------------------------------------------------------------------------------ 29 
2.2 – Digital Video Broadcasting Standards ------------------------------------------------------------------------------------- 30 
2.2.1 –Digital Video Broadcasting – Satellite (DVB-S) ---------------------------------------------------------------------------------------- 30 
2.2.2 –Digital Video Broadcasting – Cable (DVB-C) ------------------------------------------------------------------------------------------- 32
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
B | P a g e 
2.2.2.1 – DVB-C Transmitter -------------------------------------------------------------------------------------------------------------------- 32 
2.2.2.2 – DVB-C Receiver ------------------------------------------------------------------------------------------------------------------------- 33 
2.2.3 –Digital Video Broadcasting – Handheld (DVB-H) ------------------------------------------------------------------------------------- 34 
2.2.4 –Digital Video Broadcasting – Satellite services to Handheld (DVB-SH) --------------------------------------------------------- 36 
2.2.4.1 – DVB-H vs. DVB-SH --------------------------------------------------------------------------------------------------------------------- 37 
2.2.5 –Digital Video Broadcasting – Terrestrial (DVB-T) ------------------------------------------------------------------------------------- 37 
2.2.5.1 – DVB-T2 ------------------------------------------------------------------------------------------------------------------------------------ 39 
2.2.5.2 – DVB-T2 vs. DVB-T ---------------------------------------------------------------------------------------------------------------------- 40 
2.2.5.3 – DVB-T representation on world map --------------------------------------------------------------------------------------------- 40 
Chapter Number 3: Source Coding --------------------------------------------------------------------------------------- 41 
3.1 – Introduction ----------------------------------------------------------------------------------------------------------------------- 41 
3.2 – Moving Pictures Experts Group (MPEG) Data Stream ----------------------------------------------------------------- 42 
3.3 – Video Compression Technique ----------------------------------------------------------------------------------------------- 44 
3.4 – The Packetized Elementary Stream (PES) --------------------------------------------------------------------------------- 44 
3.5 – MPEG-2 Coding ------------------------------------------------------------------------------------------------------------------- 45 
3.6 – MPEG-2 Transport Stream Packet ------------------------------------------------------------------------------------------ 47 
3.7 – Information for the Receiver ------------------------------------------------------------------------------------------------- 49 
3.7.1 –Synchronizing to the Transport Stream ------------------------------------------------------------------------------------------------ 49 
3.7.2 –Reading out the Current Program Structure ------------------------------------------------------------------------------------------ 49 
3.7.3 –Accessing a Program ------------------------------------------------------------------------------------------------------------------------- 51 
3.7.4 –Accessing Scrambled Programs ----------------------------------------------------------------------------------------------------------- 51 
3.7.5 –Program Synchronization (PCR, DTS, and PTS) --------------------------------------------------------------------------------------- 52 
3.7.6 –Additional Information in the Transport Stream ------------------------------------------------------------------------------------- 52 
3.7.7 –Non-Private and Private Sections and Tables ----------------------------------------------------------------------------------------- 52 
3.8 – Scalability -------------------------------------------------------------------------------------------------------------------------- 53 
3.9 – MPEG-2 Picture Types ---------------------------------------------------------------------------------------------------------- 53 
3.10 – MPEG-2 Problems-------------------------------------------------------------------------------------------------------------- 54 
3.10.1 –Problems in Coding at Low Bit-Rate --------------------------------------------------------------------------------------------------- 54 
3.10.2 –Problems in Coding of Chrominance Components in Interlaced Video ------------------------------------------------------ 54 
Chapter Number 4: Digital Modulation Techniques ----------------------------------------------------------------- 55 
4.1 – Concept of Modulation -------------------------------------------------------------------------------------------------------- 55 
4.1.1 – Importance of Modulation ---------------------------------------------------------------------------------------------------------------- 55 
4.1.1.1 – Main Aim of Analog Modulation -------------------------------------------------------------------------------------------------- 55 
4.1.1.2 – Main Aim of Digital Modulation --------------------------------------------------------------------------------------------------- 55 
4.1.1.3 – Benefits of Signal Modulation ------------------------------------------------------------------------------------------------------ 55 
4.1.2 – Digital vs. Analog ----------------------------------------------------------------------------------------------------------------------------- 56 
4.1.3 – Modulation Techniques Performance -------------------------------------------------------------------------------------------------- 56 
4.1.3.1 – Power Efficiency ----------------------------------------------------------------------------------------------------------------------- 57 
4.1.3.2 – Bandwidth Efficiency ( )----------------------------------------------------------------------------------------------------------- 57 
4.1.3.3 – Tradeoff between Power Efficiency and Bandwidth Efficiency ( ) ---------------------------------------------------- 57 
4.1.3.4 – Power Spectral Density (PSD) ------------------------------------------------------------------------------------------------------ 58 
4.1.3.5 – System Complexity -------------------------------------------------------------------------------------------------------------------- 58 
4.1.4 – Digital Modulation Schemes -------------------------------------------------------------------------------------------------------------- 58 
4.1.5 – Geometric Representation of Modulated Signals ----------------------------------------------------------------------------------- 59
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
C | P a g e 
4.1.5.1 – Basis Signal “ ” Conditions ---------------------------------------------------------------------------------------------------- 59 
4.1.5.2 – Constellation Diagrams -------------------------------------------------------------------------------------------------------------- 59 
4.1.5.3 – Probability of Error Calculation using Constellation Diagrams ------------------------------------------------------------ 60 
4.1.6 – Types of Modulation Technique used in different Communication Systems ------------------------------------------------ 61 
4.2 – Line Codes ------------------------------------------------------------------------------------------------------------------------- 62 
4.2.1 –Non Return to Zero (NRZ) Line Coding -------------------------------------------------------------------------------------------------- 62 
4.2.1.1 – Unipolar Non Return to Zero Line Coding --------------------------------------------------------------------------------------- 62 
4.2.1.2 – Polar Non Return to Zero Line Coding ------------------------------------------------------------------------------------------- 63 
4.2.1.3 – Non Return to Zero Space Line Coding ------------------------------------------------------------------------------------------ 63 
4.2.1.4 – Non Return to Zero Inverted (Mark) Line Coding ----------------------------------------------------------------------------- 63 
4.2.2 –Return to Zero (RZ) Line Coding ---------------------------------------------------------------------------------------------------------- 63 
4.2.2.1 – Unipolar Return to Zero Line Coding --------------------------------------------------------------------------------------------- 64 
4.2.2.2 – Polar Return to Zero Line Coding -------------------------------------------------------------------------------------------------- 64 
4.2.2.3 – Bipolar Return to Zero Line Coding (AMI) --------------------------------------------------------------------------------------- 64 
4.2.3 –Manchester Line Coding -------------------------------------------------------------------------------------------------------------------- 65 
4.2.4 –Differential Line Coding --------------------------------------------------------------------------------------------------------------------- 65 
4.3 – Amplitude Shift Keying (ASK) Modulation Technique ----------------------------------------------------------------- 66 
4.3.1 –Binary Amplitude Shift Keying (BASK) --------------------------------------------------------------------------------------------------- 66 
4.3.1.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 66 
4.3.1.2 – Calculating Probability of Error ---------------------------------------------------------------------------------------------------- 67 
4.3.2 –M’ary Amplitude Shift Keying (MASK) -------------------------------------------------------------------------------------------------- 68 
4.3.2.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 68 
4.3.2.2 – Calculating Probability of Error ---------------------------------------------------------------------------------------------------- 68 
4.4 – Phase Shift Keying (PSK) Modulation Technique ----------------------------------------------------------------------- 69 
4.4.1 –Binary Phase Shift Keying (BPSK) --------------------------------------------------------------------------------------------------------- 69 
4.4.1.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 69 
4.4.1.2 – BPSK Representation ----------------------------------------------------------------------------------------------------------------- 69 
4.4.1.2.1 – Equations Representation ---------------------------------------------------------------------------------------------------- 69 
4.4.1.2.2 – Time Domain Representation ------------------------------------------------------------------------------------------------ 70 
4.4.1.2.3 – Spectrum and Bandwidth Representation-------------------------------------------------------------------------------- 70 
4.4.1.2.4 – Constellation Representation ------------------------------------------------------------------------------------------------ 71 
4.4.1.3 – BPSK Modulator ------------------------------------------------------------------------------------------------------------------------ 71 
4.4.1.4 – BPSK De-Modulator ------------------------------------------------------------------------------------------------------------------- 71 
4.4.1.5 – Power and Bandwidth Properties of BPSK -------------------------------------------------------------------------------------- 72 
4.4.16 – Probability of Error for BPSK Modulation Scheme ---------------------------------------------------------------------------- 72 
4.4.2 –Differential Phase Shift Keying (DPSK) -------------------------------------------------------------------------------------------------- 72 
4.4.2.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 72 
4.4.2.2 – Differential Encoding and Decoding Method ---------------------------------------------------------------------------------- 72 
4.4.2.3 – DPSK Modulation ---------------------------------------------------------------------------------------------------------------------- 72 
4.4.2.4 – DPSK De-Modulation ----------------------------------------------------------------------------------------------------------------- 73 
4.4.2.4.1 – Suboptimum Receiver ---------------------------------------------------------------------------------------------------------- 73 
4.4.2.4.2 – Optimum Receiver -------------------------------------------------------------------------------------------------------------- 73 
4.4.2.5 – DPSK Advantages and Disadvantages -------------------------------------------------------------------------------------------- 74 
4.4.2.6 – DPSK Power Spectral Density Representation --------------------------------------------------------------------------------- 74 
4.4.2.7 – Probability of Error in DPSK System ---------------------------------------------------------------------------------------------- 74 
4.4.3 –M’ary Phase Shift Keying (MPSK) --------------------------------------------------------------------------------------------------------- 75 
4.4.3.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 75 
4.4.3.2 – MPSK Representations --------------------------------------------------------------------------------------------------------------- 75 
4.4.3.2.1 – Signal Equation Representation --------------------------------------------------------------------------------------------- 75 
4.4.3.2.2 – Constellation Representation ------------------------------------------------------------------------------------------------ 76
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
D | P a g e 
4.4.3.3 – Probability of Error in MPSK Scheme --------------------------------------------------------------------------------------------- 76 
4.4.3.4 –Power and Bandwidth Efficiency of MPSK --------------------------------------------------------------------------------------- 76 
4.4.3.5 –MPSK Modulator ----------------------------------------------------------------------------------------------------------------------- 78 
4.4.3.6 –MPSK De-Modulator ------------------------------------------------------------------------------------------------------------------- 78 
4.4.4 –Special MPSK Techniques: “QPSK” ------------------------------------------------------------------------------------------------------- 79 
4.4.4.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 79 
4.4.4.2 – QPSK Representations---------------------------------------------------------------------------------------------------------------- 79 
4.4.4.2.1 – Signal Equation Representation --------------------------------------------------------------------------------------------- 79 
4.4.4.2.2 – Constellation Representation ------------------------------------------------------------------------------------------------ 80 
4.4.4.3 – QPSK Probability of Error ------------------------------------------------------------------------------------------------------------ 80 
4.4.4.4 – Bandwidth of QPSK ------------------------------------------------------------------------------------------------------------------- 80 
4.4.4.5 – QPSK Modulator ----------------------------------------------------------------------------------------------------------------------- 81 
4.4.4.6 – QPSK De-Modulator ------------------------------------------------------------------------------------------------------------------ 81 
4.4.5 – Special MPSK Techniques: “OQPSK” ---------------------------------------------------------------------------------------------------- 82 
4.4.6 – Special MPSK Techniques: “π/4-QPSK” ------------------------------------------------------------------------------------------------ 83 
4.4.6.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 83 
4.4.6.2 – “π/4” QPSK Constellation Representation -------------------------------------------------------------------------------------- 83 
4.4.6.3 – “π/4” QPSK Phase Distribution ---------------------------------------------------------------------------------------------------- 83 
4.4.6.4 – “π/4” QPSK Illustrating Example --------------------------------------------------------------------------------------------------- 84 
4.5 – Frequency Shift Keying (FSK) Modulation Technique ----------------------------------------------------------------- 85 
4.5.1 –Historical View -------------------------------------------------------------------------------------------------------------------------------- 85 
4.5.2 –Binary Frequency Shift Keying (BFSK) --------------------------------------------------------------------------------------------------- 85 
4.5.2.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 85 
4.5.2.2 – BFSK Representations ---------------------------------------------------------------------------------------------------------------- 85 
4.5.2.2.1 – Signal Representation ---------------------------------------------------------------------------------------------------------- 85 
4.5.2.2.2 – Orthogonality Condition ------------------------------------------------------------------------------------------------------- 86 
4.5.2.3 – BFSK Illustrating Example ------------------------------------------------------------------------------------------------------------ 86 
4.5.2.4 – Power Spectral Density Evaluations ---------------------------------------------------------------------------------------------- 87 
4.5.2.5 – BFSK Modulator ------------------------------------------------------------------------------------------------------------------------ 87 
4.5.2.6 – BFSK De-Modulators ------------------------------------------------------------------------------------------------------------------ 88 
4.5.2.6.1 – Coherent Detector -------------------------------------------------------------------------------------------------------------- 88 
4.5.2.6.2 – Non-Coherent Detector ------------------------------------------------------------------------------------------------------- 88 
4.5.2.7 – Probability of Error for BFSK -------------------------------------------------------------------------------------------------------- 89 
4.5.2.7.1 –Coherent Detector --------------------------------------------------------------------------------------------------------------- 89 
4.5.2.7.2 – Non-Coherent Detector ------------------------------------------------------------------------------------------------------- 89 
4.5.3 –M’ary Frequency Shift Keying (MFSK) --------------------------------------------------------------------------------------------------- 90 
4.5.3.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 90 
4.5.3.2 – MFSK Representations --------------------------------------------------------------------------------------------------------------- 90 
4.5.3.2.1 – Signal Representation ---------------------------------------------------------------------------------------------------------- 90 
4.5.3.2.2 – Orthogonality Condition ------------------------------------------------------------------------------------------------------- 90 
4.5.3.3 – Symbol and Bit Probability of Error in MFSK Systems ----------------------------------------------------------------------- 90 
4.5.3.3.1 – Symbol Probability of Error --------------------------------------------------------------------------------------------------- 90 
4.5.3.3.2 – Bit Probability of Error --------------------------------------------------------------------------------------------------------- 90 
4.5.3.3.3 – Effect of Changing “M” on the Probability of Error -------------------------------------------------------------------- 91 
4.5.4 –Other FSK Techniques ----------------------------------------------------------------------------------------------------------------------- 91 
4.5.4.1 – Minimum Shift Keying (MSK) ------------------------------------------------------------------------------------------------------- 91 
4.5.4.2 – Gaussian Minimum Shift Keying (GMSK) ---------------------------------------------------------------------------------------- 92 
4.6 – Quadrature Amplitude Modulation (QAM) Modulation Technique ----------------------------------------------- 93 
4.6.1 –Overview ---------------------------------------------------------------------------------------------------------------------------------------- 93 
4.6.2 –QAM types-------------------------------------------------------------------------------------------------------------------------------------- 93 
4.6.2.1 – Circular QAM---------------------------------------------------------------------------------------------------------------------------- 93
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
E | P a g e 
4.6.2.1.1 – 16-QAM as an Example on Circular QAM --------------------------------------------------------------------------------- 94 
4.6.2.2 – Rectangular QAM ---------------------------------------------------------------------------------------------------------------------- 94 
4.6.2.2.1 – 16-QAM as an Example on Rectangular QAM --------------------------------------------------------------------------- 95 
4.6.3 –Calculating Probability of Error ----------------------------------------------------------------------------------------------------------- 95 
4.6.4 –QAM Modulator ------------------------------------------------------------------------------------------------------------------------------ 96 
4.6.5 –QAM De-Modulator -------------------------------------------------------------------------------------------------------------------------- 96 
4.6.6 –QAM Bandwidth Efficiency ---------------------------------------------------------------------------------------------------------------- 96 
4.7 –Coherent Detection -------------------------------------------------------------------------------------------------------------- 97 
4.7.1 –Carrier Recovery and Symbol Synchronization --------------------------------------------------------------------------------------- 97 
4.7.2 –Clock Recovery -------------------------------------------------------------------------------------------------------------------------------- 97 
4.8 –Comparison between different Modulation Techniques -------------------------------------------------------------- 98 
4.8.1 –Probability of Error --------------------------------------------------------------------------------------------------------------------------- 98 
4.8.2 –Bit Error Rate Curves ------------------------------------------------------------------------------------------------------------------------ 99 
4.8.2.1 – Phase Shift Keying BER curves --------------------------------------------------------------------------------------------------- 100 
4.8.2.1.1 – Notes on Phase Shift Keying BER curves -------------------------------------------------------------------------------- 101 
4.8.2.2 – Frequency Shift Keying BER curves --------------------------------------------------------------------------------------------- 101 
4.8.2.2.1 – Notes on Frequency Shift Keying BER curves -------------------------------------------------------------------------- 102 
4.8.2.3 – Quadrature Amplitude Modulation BER curves ----------------------------------------------------------------------------- 103 
4.8.2.3.1 – Notes on Quadrature Amplitude Modulation BER curves ---------------------------------------------------------- 103 
4.8.2.4 – Comparative Simulations ---------------------------------------------------------------------------------------------------------- 104 
4.8.2.4.1 – At Fixed Modulation Order ------------------------------------------------------------------------------------------------- 104 
4.8.2.4.2 – All Introduced Modulation Techniques --------------------------------------------------------------------------------- 105 
4.8.3 –Overall Modulation Techniques Discussion ----------------------------------------------------------------------------------------- 106 
4.8.4 –Modulation and Demodulation using Matlab -------------------------------------------------------------------------------------- 106 
Chapter Number 5: Wireless Channel Problems -------------------------------------------------------------------- 108 
5.1 – Introduction ---------------------------------------------------------------------------------------------------------------------- 108 
5.1.1 –Analog and Digital Channel Models --------------------------------------------------------------------------------------------------- 108 
5.1.2 –Noise in Wireless Channel ---------------------------------------------------------------------------------------------------------------- 109 
5.1.3 –Basic Propagation Mechanisms --------------------------------------------------------------------------------------------------------- 109 
5.1.3.1 – Reflection ------------------------------------------------------------------------------------------------------------------------------ 109 
5.1.3.2 – Diffraction ----------------------------------------------------------------------------------------------------------------------------- 110 
5.1.3.3 – Scattering ------------------------------------------------------------------------------------------------------------------------------ 112 
5.2 – Path-loss in Wireless Communication Channels ----------------------------------------------------------------------- 113 
5.2.1 –Free Space Model -------------------------------------------------------------------------------------------------------------------------- 114 
5.2.2 – 2-Ray Model --------------------------------------------------------------------------------------------------------------------------------- 114 
5.2.3 – General Ray Model ------------------------------------------------------------------------------------------------------------------------ 115 
5.2.4 – Empirical Path Loss Models ------------------------------------------------------------------------------------------------------------- 115 
5.2.4.1 – Okumura’s Model ------------------------------------------------------------------------------------------------------------------- 116 
5.2.4.2 – Hata’s Model -------------------------------------------------------------------------------------------------------------------------- 117 
5.2.4.2.1 – Hata Model for Suburban Areas ------------------------------------------------------------------------------------------- 117 
5.2.4.2.2 – Hata Model for Urban Areas ----------------------------------------------------------------------------------------------- 117 
5.2.4.2.4 – Hata Model for Open Areas ------------------------------------------------------------------------------------------------ 118 
5.2.4.3 – Cost 231-Hata Model --------------------------------------------------------------------------------------------------------------- 118 
5.2.4.4 – Walfisch-Bertoni Model------------------------------------------------------------------------------------------------------------ 119 
5.2.4.5 – Cost 231-walfisch Ikegami Model ----------------------------------------------------------------------------------------------- 121 
5.2.4.6 – Stanford University Interim (SUI) Model -------------------------------------------------------------------------------------- 123 
5.2.4.7 – Comparison between Empirical Models --------------------------------------------------------------------------------------- 124 
5.3 – Interference in Wireless Communication Channels ------------------------------------------------------------------- 126
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
F | P a g e 
5.3.1 –Main reasons of Interference ----------------------------------------------------------------------------------------------------------- 126 
5.3.1.1 – Multiple signals in the Front Ends of a Communication System -------------------------------------------------------- 127 
5.3.1.2 – Receiver Overload ------------------------------------------------------------------------------------------------------------------- 127 
5.3.1.3 – Out Of Band Emission (OOBE) ---------------------------------------------------------------------------------------------------- 127 
5.3.1.4 – Base-Station Intermodulation Products --------------------------------------------------------------------------------------- 127 
5.3.1.5 – Skip -------------------------------------------------------------------------------------------------------------------------------------- 127 
5.3.1.6 – Ducting --------------------------------------------------------------------------------------------------------------------------------- 127 
5.3.1.7 – General RF Noises ------------------------------------------------------------------------------------------------------------------- 127 
5.3.2 –Inter-Symbol Interference (ISI)---------------------------------------------------------------------------------------------------------- 128 
5.3.2.1 – Causes of Inter-Symbol Interference ------------------------------------------------------------------------------------------- 128 
5.3.2.2 – Countering Inter-Symbol Interference ----------------------------------------------------------------------------------------- 129 
5.3.3 –Inter-Carrier Interference (ICI) ---------------------------------------------------------------------------------------------------------- 130 
5.3.3.1 – Doppler Effect ------------------------------------------------------------------------------------------------------------------------ 130 
5.3.3.2 – Synchronization Error -------------------------------------------------------------------------------------------------------------- 131 
5.3.3.3 – Multi-Path Fading ------------------------------------------------------------------------------------------------------------------- 131 
5.3.3.4 – Solutions for Inter-Carrier Interference --------------------------------------------------------------------------------------- 132 
5.3.3.4.1 – CFO Estimation ----------------------------------------------------------------------------------------------------------------- 132 
5.3.3.4.2 – Windowing Estimation ------------------------------------------------------------------------------------------------------- 132 
5.3.3.4.3 – Inter-Carrier Interference Self-Cancellation ---------------------------------------------------------------------------- 132 
5.4 – Large Scale Fading in Wireless Communication Channels ----------------------------------------------------------- 133 
5.4.1 –Shadowing Model -------------------------------------------------------------------------------------------------------------------------- 133 
5.4.2 –Combined Path Loss and Shadowing Model ---------------------------------------------------------------------------------------- 135 
5.4.3 –Outage Probability under Path Loss and Shadowing Effects -------------------------------------------------------------------- 136 
5.5 – Small Scale Fading in Wireless Communication Channels ----------------------------------------------------------- 136 
5.5.1 –Introduction ---------------------------------------------------------------------------------------------------------------------------------- 136 
5.5.2 –Flat Fading ------------------------------------------------------------------------------------------------------------------------------------ 137 
5.5.3 –Fast Fading ----------------------------------------------------------------------------------------------------------------------------------- 139 
5.5.4 –Slow Fading ---------------------------------------------------------------------------------------------------------------------------------- 139 
5.5.5 –Rayleigh Fading ----------------------------------------------------------------------------------------------------------------------------- 140 
5.5.6 –Ricean Fading -------------------------------------------------------------------------------------------------------------------------------- 142 
5.5.7 –Nakagami-m Fading ------------------------------------------------------------------------------------------------------------------------ 143 
Chapter Number 6: Channel Coding ----------------------------------------------------------------------------------- 146 
6.1 – Introduction ---------------------------------------------------------------------------------------------------------------------- 146 
6.1.1 –Difference between Channel Coding and Source Coding ------------------------------------------------------------------------ 147 
6.1.2 –Minimum Distance Considerations ---------------------------------------------------------------------------------------------------- 147 
6.1.3 –Modulo-2 Arithmetic Operations ------------------------------------------------------------------------------------------------------ 149 
6.2 – Comparison between Typical Coded versus Un-coded Systems Performance -------------------------------- 150 
6.2.1 –Error Performance versus Band-Width Performance ----------------------------------------------------------------------------- 150 
6.2.2 –Power Performance versus Band-Width Performance --------------------------------------------------------------------------- 150 
6.2.3 –Data Rate Performance versus Band-Width Performance ---------------------------------------------------------------------- 150 
6.3 – Hard Decisions versus Soft Decisions ------------------------------------------------------------------------------------- 151 
6.3.1 –Hard Decision Decoding ------------------------------------------------------------------------------------------------------------------ 152 
6.3.2 –Soft Decision Decoding-------------------------------------------------------------------------------------------------------------------- 152 
6.4 – Error Control Coding ----------------------------------------------------------------------------------------------------------- 152 
6.4.1 –Linear Block Codes ------------------------------------------------------------------------------------------------------------------------- 152 
6.4.1.1 – Design Equations -------------------------------------------------------------------------------------------------------------------- 153 
6.4.1.2 – Properties of Linear Block Codes ------------------------------------------------------------------------------------------------ 155 
6.4.2 –Cyclic Codes ---------------------------------------------------------------------------------------------------------------------------------- 155
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
G | P a g e 
6.4.2.1 – Introduction --------------------------------------------------------------------------------------------------------------------------- 155 
6.4.2.2 – Generator Polynomial -------------------------------------------------------------------------------------------------------------- 156 
6.4.2.3 – Parity-Check Polynomial ----------------------------------------------------------------------------------------------------------- 157 
6.4.2.4 – Generator and Parity-Check Matrices representations ------------------------------------------------------------------- 158 
6.4.2.5 – Case Study I: Cyclic Redundancy Check Codes (CRC) ----------------------------------------------------------------------- 159 
6.4.2.5.1 – 16-Bits CRC- CCITT (USA Model) ------------------------------------------------------------------------------------------- 159 
6.4.2.5.2 – 16-Bits CRC- ATM -------------------------------------------------------------------------------------------------------------- 160 
6.4.2.6 – Case Study II: B. C. H. Codes ------------------------------------------------------------------------------------------------------ 160 
6.4.2.6.1 – Introduction--------------------------------------------------------------------------------------------------------------------- 160 
6.4.2.6.2 – Encoding Algorithm ----------------------------------------------------------------------------------------------------------- 161 
6.4.2.6.3 – Decoding Algorithm ---------------------------------------------------------------------------------------------------------- 161 
6.4.3 –Convolutional Codes ----------------------------------------------------------------------------------------------------------------------- 163 
6.4.3.1 – Introduction --------------------------------------------------------------------------------------------------------------------------- 163 
6.4.3.2 – Encoder Structure ------------------------------------------------------------------------------------------------------------------- 163 
6.4.3.3 – Connection Representation ------------------------------------------------------------------------------------------------------- 164 
6.4.3.4 – Convolutional Encoder Representation --------------------------------------------------------------------------------------- 165 
6.4.3.4.1 – Polynomial Representation ------------------------------------------------------------------------------------------------- 165 
6.4.3.4.2 – State Representation --------------------------------------------------------------------------------------------------------- 165 
6.4.3.4.3 – Tree Diagram Representation ---------------------------------------------------------------------------------------------- 166 
6.4.3.4.4 – Trellis Diagram Representation -------------------------------------------------------------------------------------------- 167 
6.4.3.5 – Case Study: Low Parity Check Codes (LDPC) --------------------------------------------------------------------------------- 169 
6.4.3.5.1 – Introduction--------------------------------------------------------------------------------------------------------------------- 169 
6.4.3.5.1 – Matrix Representation of LDPC Codes ----------------------------------------------------------------------------------- 169 
6.4.3.5.2 – Graphical Representation of LDPC Codes ------------------------------------------------------------------------------- 170 
6.4.3.5.3 – Regular and Irregular LDPC Codes ---------------------------------------------------------------------------------------- 170 
6.4.3.5.4 – Constructing LDPC Codes---------------------------------------------------------------------------------------------------- 170 
6.4.3.5.5 – Hard Decoding of LDPC Codes --------------------------------------------------------------------------------------------- 170 
6.4.3.5.6 – Soft-Decision Decoding ------------------------------------------------------------------------------------------------------ 172 
6.4.3.5.7 – LDPC Performance ------------------------------------------------------------------------------------------------------------ 173 
Chapter Number 7: Orthogonal Frequency Division Multiplexing --------------------------------------------- 174 
7.1 – Introduction ---------------------------------------------------------------------------------------------------------------------- 174 
7.2 – OFDM Historical Overview --------------------------------------------------------------------------------------------------- 175 
7.3 – Important Definitions --------------------------------------------------------------------------------------------------------- 175 
7.3.1 – Inter-Symbol Interference (ISI) --------------------------------------------------------------------------------------------------------- 175 
7.3.2 – Inter-Carrier Interference (ICI) --------------------------------------------------------------------------------------------------------- 176 
7.4 – OFDM as a Multicarrier Transmission Technique ---------------------------------------------------------------------- 177 
7.5 – OFDM Concept ------------------------------------------------------------------------------------------------------------------ 179 
7.5.1 –Illustrative Example ------------------------------------------------------------------------------------------------------------------------ 179 
7.5.2 – Analysis --------------------------------------------------------------------------------------------------------------------------------------- 179 
7.5.2.1 – Time Domain Analysis -------------------------------------------------------------------------------------------------------------- 180 
7.5.2.2 – Frequency Domain Analysis ------------------------------------------------------------------------------------------------------ 180 
7.5.2.3 – Conclusion from both Domains Analysis -------------------------------------------------------------------------------------- 181 
7.6 – Orthogonality of OFDM ------------------------------------------------------------------------------------------------------- 181 
7.7 – Comparing FDM to OFDM ---------------------------------------------------------------------------------------------------- 182 
7.7.1 –Frequency Division Multiplexing (FDM) ---------------------------------------------------------------------------------------------- 182 
7.7.2 – Orthogonal Frequency Division Multiplexing (OFDM) --------------------------------------------------------------------------- 183
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
H | P a g e 
7.8 – OFDM Implementation ------------------------------------------------------------------------------------------------------- 184 
7.8.1 –Implementation using “FFT/IFFT” ------------------------------------------------------------------------------------------------------ 185 
7.9 – OFDM Transmitter ------------------------------------------------------------------------------------------------------------- 185 
7.10 – OFDM Receiver ---------------------------------------------------------------------------------------------------------------- 186 
7.11 – Cyclic Prefix --------------------------------------------------------------------------------------------------------------------- 186 
7.11.1 – Cyclic Prefix Representation in OFDM System ----------------------------------------------------------------------------------- 187 
7.11.2 – Advantages of using Cyclic Prefix ---------------------------------------------------------------------------------------------------- 188 
7.11.3 – Disadvantages of using Cyclic Prefix ------------------------------------------------------------------------------------------------ 188 
7.12 – Coded Orthogonal Frequency Division Multiplexing (COFDM) --------------------------------------------------- 188 
7.13 –Orthogonal Frequency Division Multiple Access (OFDMA) -------------------------------------------------------- 190 
7.14 – Peak to Average Power Ratio (PAPR) ----------------------------------------------------------------------------------- 191 
7.14.1 –Conceptual Meaning --------------------------------------------------------------------------------------------------------------------- 191 
7.14.2 – The cause of PAPR ----------------------------------------------------------------------------------------------------------------------- 192 
7.14.3 – PAPR Effect -------------------------------------------------------------------------------------------------------------------------------- 193 
7.14.4 – PAPR Reduction Techniques ---------------------------------------------------------------------------------------------------------- 193 
7.14.4.1 – Distorting Method ----------------------------------------------------------------------------------------------------------------- 193 
7.14.4.2 – Non-Distorting Method ---------------------------------------------------------------------------------------------------------- 193 
7.14.4.2.1 – Selective Mapping Method ----------------------------------------------------------------------------------------------- 193 
Chapter Number 8: Space Time Coding ------------------------------------------------------------------------------- 194 
8.1 – Space Time Coding Concept ------------------------------------------------------------------------------------------------- 194 
8.2 – Diversity --------------------------------------------------------------------------------------------------------------------------- 194 
8.2.1 –Diversity Classes ---------------------------------------------------------------------------------------------------------------------------- 194 
8.2.1.1 – Time Diversity ------------------------------------------------------------------------------------------------------------------------ 194 
8.2.1.2 – Frequency Diversity ----------------------------------------------------------------------------------------------------------------- 195 
8.2.1.3 – Antenna Diversity-------------------------------------------------------------------------------------------------------------------- 196 
8.2.1.3.1 – Multiple Input Single Output (MISO) ------------------------------------------------------------------------------------- 197 
8.2.1.3.2 – Single Input Multiple Output (SIMO) ------------------------------------------------------------------------------------- 197 
8.2.1.3.3 – Multiple Input Multiple Output (MIMO) -------------------------------------------------------------------------------- 198 
8.2.1.3.4 – Multiple Input Multiple Output Multi Users (MIMO-Mu) ---------------------------------------------------------- 199 
8.2.2 –Diversity Effect on Bit-Error-Rate ------------------------------------------------------------------------------------------------------ 199 
8.2.3 –Diversity Condition ------------------------------------------------------------------------------------------------------------------------- 200 
8.2.3.1 – Polarization Diversity --------------------------------------------------------------------------------------------------------------- 201 
8.2.3.2 – Angle Diversity ----------------------------------------------------------------------------------------------------------------------- 201 
8.3 – Spatial Multiplexing------------------------------------------------------------------------------------------------------------ 201 
8.4 – MIMO Concept ------------------------------------------------------------------------------------------------------------------ 201 
8.4.1 –Advantages of MIMO Systems ---------------------------------------------------------------------------------------------------------- 202 
8.4.2 –MIMO General Model --------------------------------------------------------------------------------------------------------------------- 202 
8.4.3 –MIMO General Capacity Equation ----------------------------------------------------------------------------------------------------- 203 
8.4.4 –Factors Affecting MIMO System Capacity ------------------------------------------------------------------------------------------- 204 
8.4.5 –How MIMO System works? -------------------------------------------------------------------------------------------------------------- 205 
8.5 – Receiving Space Time Codes ------------------------------------------------------------------------------------------------- 205 
8.5.1 – Maximum Likelihood Decoder --------------------------------------------------------------------------------------------------------- 205 
8.5.2 – Zero Forcing Decoder --------------------------------------------------------------------------------------------------------------------- 206 
8.5.3 – Minimum Mean Square Error (MMSE) Decoder ---------------------------------------------------------------------------------- 206
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
I | P a g e 
8.5.4 – Successive Cancellation Decoder ------------------------------------------------------------------------------------------------------ 206 
8.5.4.1 – Order Successive Interference Cancellation Algorithm ------------------------------------------------------------------- 207 
8.5.4.2 – Vertical-Ball Laboratories Layered Space-Time Algorithm --------------------------------------------------------------- 207 
Chapter Number 9: Digital Video Broadcasting 2nd Generation Terrestrial Simulation ------------------ 208 
9.1 – Introduction ---------------------------------------------------------------------------------------------------------------------- 208 
9.1.1 –DVB-T2 Key Features ---------------------------------------------------------------------------------------------------------------------- 208 
9.1.1.1 – Physical Layer Pipes (PLPs) -------------------------------------------------------------------------------------------------------- 208 
9.1.1.1.1 – Input Mode “A” ---------------------------------------------------------------------------------------------------------------- 208 
9.1.1.1.2 – Input Mode “B” ---------------------------------------------------------------------------------------------------------------- 208 
9.1.1.2 – Additional Band-Widths (1.7 MHz, 10 MHz) --------------------------------------------------------------------------------- 209 
9.1.1.3 – Extended Carrier Mode (8K, 16K, 32K)----------------------------------------------------------------------------------------- 209 
9.1.1.4 – Alamouti-Based MISO (In Frequency direction) ----------------------------------------------------------------------------- 209 
9.1.1.5 – Pre-ambles (P1 and P2) ------------------------------------------------------------------------------------------------------------ 209 
9.1.1.6 – Pilot Patterns ------------------------------------------------------------------------------------------------------------------------- 210 
9.1.1.7 – 256-QAM Modulation Technique ----------------------------------------------------------------------------------------------- 210 
9.1.1.8 – Rotated Constellations ------------------------------------------------------------------------------------------------------------- 210 
9.1.1.9 – 16K and 32K FFT Sizes and (1/128) guard-interval fraction -------------------------------------------------------------- 211 
9.1.1.10 – LDPC and BCH error correcting codes ---------------------------------------------------------------------------------------- 211 
9.1.1.11 – Interleavers (Bit, Cell, Time, and Frequency) ------------------------------------------------------------------------------- 211 
9.1.1.12 – Peak-Average Power Reduction Techniques ------------------------------------------------------------------------------- 211 
9.1.1.13 – Future Extension Frames (FEFs) ------------------------------------------------------------------------------------------------ 212 
9.1.2 –System Architecture ----------------------------------------------------------------------------------------------------------------------- 212 
9.1.2.1 – Mode Adaptation Module -------------------------------------------------------------------------------------------------------- 212 
9.1.2.2 – Stream Adaptation Module ------------------------------------------------------------------------------------------------------- 213 
9.1.2.3 – Bit Interleaved Coding and Modulation Module ---------------------------------------------------------------------------- 213 
9.1.2.4 – Frame Mapper Module ------------------------------------------------------------------------------------------------------------ 213 
9.1.2.5 – Modulator Module ------------------------------------------------------------------------------------------------------------------ 213 
9.2 – Mode Adaptation Module --------------------------------------------------------------------------------------------------- 213 
9.2.1 –Input Formats-------------------------------------------------------------------------------------------------------------------------------- 214 
9.2.2 –Input Interface ------------------------------------------------------------------------------------------------------------------------------ 214 
9.2.3 –Input Stream Synchronization ---------------------------------------------------------------------------------------------------------- 214 
9.2.4 –Compensating Delay for Transport Stream ------------------------------------------------------------------------------------------ 215 
9.2.5 –Null Packet Deletion ----------------------------------------------------------------------------------------------------------------------- 215 
9.2.6 –CRC-Encoding -------------------------------------------------------------------------------------------------------------------------------- 216 
9.2.7 –Base-Band Header Insertion ------------------------------------------------------------------------------------------------------------- 216 
9.2.8 –Mode Adaptation sub-system Output Stream Formats -------------------------------------------------------------------------- 217 
9.2.8.1 – Normal Mode, GDPS and TS ------------------------------------------------------------------------------------------------------ 217 
9.2.8.2 – High Efficiency Mode, Transport Stream -------------------------------------------------------------------------------------- 218 
9.2.8.3 – Normal Mode, GCS and GSE ------------------------------------------------------------------------------------------------------ 219 
9.2.8.4 – High Efficiency Mode, GSE -------------------------------------------------------------------------------------------------------- 219 
9.3 – Stream Adaptation Module -------------------------------------------------------------------------------------------------- 220 
9.3.1 –Scheduler ------------------------------------------------------------------------------------------------------------------------------------- 220 
9.3.2 –Padding ---------------------------------------------------------------------------------------------------------------------------------------- 220 
9.3.3 –Using Padding Fields for in-band Signaling ------------------------------------------------------------------------------------------ 220 
9.3.4 –Scrambler ------------------------------------------------------------------------------------------------------------------------------------- 221 
9.4 – Bit Interleaving and Modulation Module -------------------------------------------------------------------------------- 222 
9.4.1 –Forward Error Correction Encoding --------------------------------------------------------------------------------------------------- 222 
9.4.1.1 – Outer Coding (B. C. H.) ------------------------------------------------------------------------------------------------------------- 223 
9.4.1.2 – Inner Coding (LDPC) ----------------------------------------------------------------------------------------------------------------- 223
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
J | P a g e 
9.4.1.2.1 – Inner Coding for Normal FEC Frame -------------------------------------------------------------------------------------- 224 
9.4.1.2.2 – Inner Coding for Short FEC Frame ---------------------------------------------------------------------------------------- 225 
9.4.1.2.2 – Inner Coding Simulation Results ------------------------------------------------------------------------------------------ 225 
9.4.2 –Bit Interleaver ------------------------------------------------------------------------------------------------------------------------------- 226 
9.4.3 –Mapping Bits onto Constellations ------------------------------------------------------------------------------------------------------ 227 
9.4.3.1 – Bits to Cells Word De-Multiplexer ---------------------------------------------------------------------------------------------- 227 
9.4.3.3 – Cell Word Mapping into I/Q constellations ----------------------------------------------------------------------------------- 230 
9.4.3.3.1 – Equation Representation ---------------------------------------------------------------------------------------------------- 230 
9.4.3.3.2 – Constellation Representation ---------------------------------------------------------------------------------------------- 231 
9.4.4 –Constellation Rotation and Cyclic Q-Delay ------------------------------------------------------------------------------------------ 234 
9.5 – Frame Mapper Module ------------------------------------------------------------------------------------------------------- 235 
9.5.1 –Cell Interleaver ------------------------------------------------------------------------------------------------------------------------------ 235 
9.5.2 –Time Interleaver ---------------------------------------------------------------------------------------------------------------------------- 236 
9.5.2.1 – Case I --------------------------------------------------------------------------------------------------------------------------------- 237 
9.5.2.2 – Case II ----------------------------------------------------------------------------------------------------------------------------------- 237 
9.5.2.2 – Case III ---------------------------------------------------------------------------------------------------------------------------------- 237 
9.5.3 –Frame Builder -------------------------------------------------------------------------------------------------------------------------------- 238 
9.5.3.1 – Frame Structure ---------------------------------------------------------------------------------------------------------------------- 239 
9.5.3.2 – Super Frame -------------------------------------------------------------------------------------------------------------------------- 239 
9.5.3.3 – T2-Frame ------------------------------------------------------------------------------------------------------------------------------- 240 
9.5.3.4 – Duration of the T2-Frame --------------------------------------------------------------------------------------------------------- 240 
9.5.3.5 – Capacity and Structure of T2-Frame -------------------------------------------------------------------------------------------- 240 
9.5.3.6 – Signaling of the T2-Frame structure and PLPs ------------------------------------------------------------------------------- 241 
9.5.3.7 – Overview over T2-Frame Mapping --------------------------------------------------------------------------------------------- 242 
9.5.3.8 – Auxiliary Stream Insertion --------------------------------------------------------------------------------------------------------- 242 
9.5.3.9 – Future Extension Frames ---------------------------------------------------------------------------------------------------------- 243 
9.5.4 –Frequency Interleaver --------------------------------------------------------------------------------------------------------------------- 243 
9.6 – Modulator Module ------------------------------------------------------------------------------------------------------------- 244 
9.6.1 –Alamouti Space Time Coding ------------------------------------------------------------------------------------------------------------ 244 
9.6.1.1 – Alamouti Encoding ------------------------------------------------------------------------------------------------------------------ 245 
9.6.1.2 – Alamouti Modified Encoding ----------------------------------------------------------------------------------------------------- 246 
9.6.1.3 – Alamouti Modified Decoding using Zeros Forcing Decoder -------------------------------------------------------------- 247 
9.6.1.4 – Alamouti Performance ------------------------------------------------------------------------------------------------------------- 247 
9.6.2 –Pilot Insertion -------------------------------------------------------------------------------------------------------------------------------- 248 
9.6.2.1 – Definition of Reference Plane ---------------------------------------------------------------------------------------------------- 249 
9.6.2.1.1 – Symbol Level -------------------------------------------------------------------------------------------------------------------- 249 
9.6.2.1.2 – Frame Level --------------------------------------------------------------------------------------------------------------------- 249 
9.6.2.2 – Scattered Pilots ---------------------------------------------------------------------------------------------------------------------- 249 
9.6.2.2.1 – Locations ------------------------------------------------------------------------------------------------------------------------- 250 
9.6.2.2.2 – Modulation ---------------------------------------------------------------------------------------------------------------------- 250 
9.6.2.3 – Continual Pilots ---------------------------------------------------------------------------------------------------------------------- 250 
9.6.2.3.1 – Locations ------------------------------------------------------------------------------------------------------------------------- 251 
9.6.2.2.2 – Modulation ---------------------------------------------------------------------------------------------------------------------- 251 
9.6.2.4 – Edge Pilots ----------------------------------------------------------------------------------------------------------------------------- 251 
9.6.2.5 – P2 Pilots -------------------------------------------------------------------------------------------------------------------------------- 251 
9.6.2.5.1 – Locations ------------------------------------------------------------------------------------------------------------------------- 251 
9.6.2.5.2 – Modulation ---------------------------------------------------------------------------------------------------------------------- 251 
9.6.2.6 – P2 Pilots -------------------------------------------------------------------------------------------------------------------------------- 252 
9.6.2.6.1 – Locations ------------------------------------------------------------------------------------------------------------------------- 252 
9.6.2.5.2 – Modulation ---------------------------------------------------------------------------------------------------------------------- 252 
9.6.2.7 – Modifications on Pilots for MISO Operation --------------------------------------------------------------------------------- 252
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
K | P a g e 
9.6.3 –Channel Estimation ------------------------------------------------------------------------------------------------------------------------ 253 
9.6.3.1 – Least Square Estimator------------------------------------------------------------------------------------------------------------- 254 
9.6.3.2 – Interpolation -------------------------------------------------------------------------------------------------------------------------- 254 
9.6.3.2.1 – Temporal Interpolation ------------------------------------------------------------------------------------------------------ 254 
9.6.3.2.1 – Frequency Interpolation ----------------------------------------------------------------------------------------------------- 255 
9.6.4 –OFDM implementation using IFFT ----------------------------------------------------------------------------------------------------- 255 
9.6.5 –Peak-to-Average Power Reduction ---------------------------------------------------------------------------------------------------- 255 
9.6.5.1 – PAPR De-Mapping ------------------------------------------------------------------------------------------------------------------- 257 
9.6.5 –Guard Interval Insertion ------------------------------------------------------------------------------------------------------------------ 257 
9.7 – Synchronization using Control Signals ------------------------------------------------------------------------------------ 257 
9.7.1 –P1-Symbols ----------------------------------------------------------------------------------------------------------------------------------- 257 
9.7.1.1 – P1-Symbol Over-view --------------------------------------------------------------------------------------------------------------- 258 
9.7.1.2 – P1-Symbol Description ------------------------------------------------------------------------------------------------------------- 258 
9.7.1.3 – P1-Symbol Generation ------------------------------------------------------------------------------------------------------------- 259 
9.7.1.4 – Carrier Distribution in P1-Symbol ----------------------------------------------------------------------------------------------- 259 
9.7.1.5 – Modulation of the Active Carriers in P1-Symbol ---------------------------------------------------------------------------- 259 
9.7.1.6 – P1-Symbol Decoding ---------------------------------------------------------------------------------------------------------------- 261 
9.7.2 –P2-Symbols ----------------------------------------------------------------------------------------------------------------------------------- 261 
9.7.2.1 – L1-Signaling Data -------------------------------------------------------------------------------------------------------------------- 261 
9.7.2.2 – Repetition of L1-Post dynamic data -------------------------------------------------------------------------------------------- 262 
9.7.2.3 – L1-Post Extension Field------------------------------------------------------------------------------------------------------------- 263 
9.7.2.4 – CRC for the L1-Post Signaling ----------------------------------------------------------------------------------------------------- 263 
9.7.2.5 – Error Correction Coding and Modulation of L1-Pre Signaling ----------------------------------------------------------- 263 
9.7.2.6 – Error Correction Coding and Modulation of L1-Post Signaling ---------------------------------------------------------- 263
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
L | P a g e 
Book Structure 
Chapter Number one: Television History 
This chapter illustrates the history of television that records the work of numerous engineers and inventors in several countries over many decades. The fundamental principles of television were initially explored using electromechanical methods to scan, transmit and reproduce an image. As electronic camera and display tubes were perfected, electromechanical television gave way to all-electronic systems in nearly all applications. 
Chapter Number two: Digital Video Broadcasting 
This chapter discusses Digital Video Broadcasting (DVB) which is a suite of internationally accepted open standards for digital television. DVB standards are maintained by the DVB Project, an international industry consortium with more than 270 members, and they are published by a Joint Technical Committee (JTC) of European Telecommunications Standards Institute (ETSI), European Committee for Electro-technical Standardization (CENELEC) and European Broadcasting Union (EBU). The interaction of the DVB sub-standards is described in the DVB Cookbook. Many aspects of DVB are patented, including elements of MPEG video coding and audio coding. 
Chapter Number three: Source Coding 
This chapter devoted to source coding specially MPEG-2 which is a standard for "the generic coding of moving pictures and associated audio information". It describes a combination of lossy compression and lossy audio data compression methods which permit storage and transmission of movies using currently available storage media and transmission bandwidth. 
Chapter Number four: Digital Modulation Techniques 
This chapter illustrates Digital modulation schemes which transform digital signals into waveforms that are compatible with the nature of the communications channel. There are two major categories of digital modulation. One category uses a constant amplitude carrier and the other carries the information in phase or frequency variations (FSK, PSK). The other category conveys the information in carrier amplitude variations and is known as amplitude shift keying (ASK) and discussing its various types like BPSK,QPSK,M-ary(16-QAM,64-QAM,256-QAM) and highlights the advantages and disadvantages of each one. 
Chapter Number five: Wireless Channel Problems 
Chapter five deal with the problems and impairments that degenerate the performance of the wireless channels. The chapter begins with the noise and interference effects on the channel then continues with the analysis of large scale fading and the mathematical and statistical models the describe this phenomena, after that the small scale fading is introduced in details as it is very detrimental to signal transmission and it is the main problem in the wireless channels. Then the parameters and classifications of the small scale fading channels are listed, then the chapter ended with details of the main characteristics of the channels and the mathematical and empirical models that deal with the multipath fading channels. 
Chapter Number six: Channel Coding 
This chapter gives short notes of selected channel coding topics which become relevant in subsequent chapters. Starting with a basic description of linear block and present comprehensive summary convolutional codes, BCH,and ending with the LDPC codes. The chapter gives the properties of each code and the advantages and disadvantages of these codes.
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
M | P a g e 
Chapter Number seven: Orthogonal Frequency Division Multiplexing 
This chapter illustrates orthogonal frequency-division multiplexing (OFDM), essentially identical to coded OFDM (COFDM) and discrete multi-tone modulation (DMT), is a frequency (FDM) scheme used as a digital multi- carrier modulation method. A large number of closely-spaced orthogonal sub-carriers are used to carry data. The data is divided into several parallel data streams or channels, one for each sub-carrier. Each sub-carrier is modulated with a conventional modulation scheme (such as quadrature amplitude modulation or phase-shift keying) at a low symbol rate, maintaining total data rates similar to conventional single-carrier modulation schemes in the same bandwidth. 
Chapter Number eight: Space Time Coding 
This chapter gives short notes a space–time code (STC) is a method employed to improve the reliability of data transmission in wireless communication systems using multiple transmit antennas. STCs rely on transmitting multiple, redundant copies of a data stream to the receiver in the hope that at least some of them may survive the physical path between transmission and reception in a good enough state to allow reliable decoding. 
Chapter Number nine: DVB-T2 Physical layer 
This chapter discusses the block diagram of DVB-T2 system in details and introduces the key features of the standard which improve its performance compared to previous DVB standards, The chapter will also include simulation results for the system.
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
1 | P a g e 
Figure (1.1) 
Figure (1.2) 
Chapter Number 1 Television History 
1.1 – Early History of Television 
In Ireland 1873 A young telegraph operator, Joseph May, discovered the photoelectric effect; selenium bars, exposed to sunlight, show a variation in resistance. Variations in light intensity can therefore be transformed into electrical signals. That means they can be transmitted as shown below in “Figure (1.1)”. 
In Boston (USA) 1875 George Carey proposed a system as shown in “Figure (1.2)” based on the exploration of every point in the image simultaneously: a large number of photoelectric cells are arranged on a panel, facing the image, and wired to a panel carrying the same number of bulbs. 
This system was impracticable if any reasonable quality criteria were to be respected. Even to match the quality of cinema films of that period, thousands of parallel wires would have been needed from one end of the circuit to the other.
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
2 | P a g e 
Figure (1.3) 
In France 1881, Constantine Senlecq published a sketch detailing a similar idea in an improved form: two 
rotating switches were proposed between the panels of cells and lamps, and as these turned at the same rate they 
connected each cell, in turn, with the corresponding lamp. With this system, all the points in the picture could be 
sent one after the other along a single wire. 
This is the basis of modern television: the picture is converted into a series of picture elements. Nonetheless, 
Senlecq's system, like that proposed by Carey, needed a large number of cells and lamps. 
In Germany 1884 Paul Nipkow applied for a patent covering another image scanning system as shown below in 
“Figure (1.3)”, it was to use a rotating disk with a series of holes arranged in a spiral, each spaced from the next by 
the width of the image; a beam of light shining through the holes would illuminate each line of the image. 
The light beam, whose intensity depended on the picture element, was converted into an electrical signal by the 
cell. At the receiving end, there was an identical disc turning at the same speed in front of a lamp whose brightness 
changed according to the received signal. 
After a complete rotation of the discs, the entire picture had been scanned. If the discs rotated sufficiently 
rapidly, in other words if the successive light stimuli followed quickly enough one after the other, the eye no longer 
perceived them as individual picture elements. Instead, the entire picture was seen as if it were a single unit. 
The idea was simple but it could not be put into practice with the materials available at the time. 
Other scientific developments were to offer an alternative. The electron, the tiny grain of negative electricity 
which revolutionised physical science at the end of the 19th century, was the key. The extreme narrowness of 
electron beams and their absence of inertia caught the imagination of many researchers and oriented their studies 
towards what in time became known as electronics. The mechanical approach nevertheless stood its ground, and the 
competition lasted until 1937. 
The cathode ray tube with a fluorescent scene was invented in 1897. Karl Ferdinand Braun, of the University of 
Strasbourg, had the idea of placing two electromagnets around the neck of the tube to make the electron beam 
move horizontally and vertically. On the fluorescent screen the movement of the electron beam had the effect of 
tracing visible lines on the screen. 
A Russian scientist, Boris Rosing, suggested this might be used as a receiver screen and conducted experiments in 
1907 in his laboratory in Saint Petersburg.
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
3 | P a g e 
Figure (1.4) 
As early as 1908 the Scotsman A. A. Campbell Swinton outlined a system using cathode ray tubes at both 
sending and receiving ends and represented it as shown in “Figure (1.4)”, This was the first purely electronic 
proposal. He published a description of it in 1911 including the following: 
 The image is thrown onto a photoelectric mosaic fixed to one of the tubes; 
 A beam of electrons then scans it and produces the electric signal. 
 At the receiving end, this electric signal controls the intensity of another beam of electrons which scans 
the fluorescent screen. 
The methods proposed by Nipkow and Campbell Swinton were at the time theoretical ideas only. The available 
cells were not sensitive enough and they reacted too slowly to changes in light intensity. The signals were very weak 
and amplifiers had not yet been invented. 
1.2 – Why it’s called Television? 
The names given to the first systems, at the end of the 19th century, highlighted the form of energy used for 
transmission; names such as "télectroscope" and "electrical telescope" were used. 
The German word "Fernsehen" was first used in 1890, by the physicist Eduard Liesegang. This became "fjer-syn" 
in Danish. 
The French word "Télévision" was used for the first time in 1900 by the Russian physicist Constantin Perskyi who 
delivered a speech on the subject during the great Paris exhibition. "Télévision" caught on, and it became 
"television". in English, "televisie" in Dutch, "televisione" in Italian, "television" in Spanish, etc. 
But science marched on. There was the potassium cell, which reacted much more rapidly than the selenium cell, 
then came the triode, manufactured in large quantities from about 1915, the development of which owed much to 
the new-born "wireless". 
There was also the neon lamp, whose light intensity could be varied rapidly, making it suitable for use in disc 
receivers. It was Nipkow's ideas which were the first to benefit from these inventions, and were the first to become 
practical realities. 
In 1925, an electrical engineer from Scotland, John Logie Baird, exhibited in Selfridge’s department store in 
London an apparatus with which he reproduced a simple image, in fact white letters on a black background, at a 
distance. It was not really television because the two discs which served to transmit the image and to reproduce it 
were mounted on the same shaft as shown in “Figure (1.5)”.
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
4 | P a g e 
Figure (1.5) 
However Baird did effectively demonstrate that the principle of successive scanning could be applied in practice, he did it again in 1926, in his laboratory, with the first transmission of a real scene the head of a person, the picture was scanned in 30 lines, with 5 full pictures every second. 
Similar machines were built in Germany. A smaller mechanical apparatus was presented at the Berlin Radio Show in 1928 by Denes von Mihaly. It was called the "Telehor",. Here too the picture was scanned with 30 lines, but at a picture rate of 10 frames per second. 
In France, sometime later, the "Semivisor" appeared. It also used 30-line scanning and was built by René Bartholemy.It was about this time that the first tests with the radio-electric transmission of television took place, using the medium-wave radio band. 
These transmissions attracted the attention of many amateur enthusiasts who built their own disc receivers. The public slowly became aware of the research that was under way. 
Manufacturers joined in the new adventure, organising systematic studies in their laboratories. New companies were born, such as "Fernseh" in Germany (1929). 
But what happened to Rosing's experiments? Had everyone forgotten them? 
In fact many researchers kept his work in mind but they had to wait for developments in the design of cathode- ray tubes before these could be put to any practical use. Around 1930, a number of researchers independently developed the principle of interlaced scanning, which involves exploring first all the odd-numbered lines, followed by the even-numbered lines; this technique avoids flicker. Industry developed techniques to achieve a very great vacuum in tubes. Receivers with cathode-ray tubes came onto the market in 1933. 
However, the use of cathode-ray tubes at the transmission source, where the picture was scanned, remained the stumbling-block for many years. Initially, the spot of light produced on the fluorescent screen was made to substitute for the light beam in the Nipkow system. In Germany, Manfred von Ardenne built the first "flying spot" cathode-ray tube, thereby enabling transparencies to be scanned. A complete transmission system was presented at the 1931 Berlin Radio Show. This scanning method was subsequently used for all television films.
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
5 | P a g e 
Figure (1.6) 
The process nonetheless posed enormous problems when applied to real scenes because the light beam had to operate in a darkened environment. Outdoor scenes, for example, were totally impossible. Another process, known as the "intermediate film" system, provided a roundabout solution to this problem for a number of years. Scenes were shot on film, and this was immediately developed and scanned by a disc or flying spot scanner. 
The solution to the problem of out-door shooting came from across the Atlantic. Following up an idea he had had in 1923, Vladimir Zworykin (one of Rosing's assistants who had immigrated to the United States) invented the "lconoscope" shown in “Figure (1.6)”. This was a globe-shaped cathode-ray tube and it contained the first photoelectric mosaic made from metal particles applied to both sides of a sheet of mica. 
This first camera tube was more compact than the disc, easier to use and more sensitive. The electron beam which "visits" the elements of the mosaic at a considerable speed, collects from each point all the photoelectric charge which has accumulated there since the last visit, whereas in the mechanical systems the photoelectric cell receives the light from each point only during the very short period while it is actually being scanned. 
Zworykin presented the first prototype iconoscope at a meeting of engineers in New York in 1929. The apparatus was built by RCA in 1933. It scanned the image in 120lines, at rate of 24 frames per second. 
Progress was then rapid: as early as 1934, 343-line definition had been achieved and interlacing was being used. 
In England, lsaac Schoenberg (another Russian emigrant and childhood friend of Zworykin) led developments in the EMI Company on a camera tube similar to the iconoscope. This was the Emitron and it had certain advantages over its rival. EMI, too, adopted interlacing. Also, as early as 1934, EMI. Schoenberg was aiming at a greater number of lines than RCA the target was 405 lines. 
The system of mechanical analysis, based on the Nipkow disk, nevertheless continued to hold favour with some. 
In 1929, Baird convinced the BBC that it ought to make television transmission outside normal radio programme hours using a 30-line system giving 12½ frames per second. He marketed his first disc receivers, known as "televisors". He steadily improved his equipment, increasing the scanning to 60, 90, 120 and even 180 lines. 
In France, René Bartholemy embarked on the development of a particular variant of the disc. During 1931, he gave two demonstrations, which brought him considerable renown, involving 30-line transmission and reception.
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
6 | P a g e 
Figure (1.7) 
Figure (1.8) 
Bartholemy's system, which had been tried by certain German engineers, had a mirror drum instead of a disc 
with holes. The mirrors, which served to illuminate the subject with light from a bright source, were inclined to an 
increasing degree with respect to the drum axis. They therefore scanned the subject in a series of parallel lines. 
Potassium cells collected the light reflected from the subject. 
Baird, too, built similar systems. However the mirror drum was bulky and was unsuitable for the high speeds that 
had to be used to achieve a large number of lines. It was therefore abandoned in 1933 and work on Nipkow disc 
systems was resumed. 
1.3 – The very first Broadcasts 
March 1935. A television service was started in Berlin using iconoscope camera shown below in “Figure (1.7)” 
(180 lines/frame, 25frames/second). Pictures were produced on film and then scanned using a rotating disk. 
Electronic cameras were developed in 1936, in time for the Berlin Olympic Games. 
November 1935. Television broadcasting began in a studio in Paris which is shown in “Figure (1.8)”, again using a 
mechanical system for picture analysis (180 lines/frame, 25 frames/second).
Digital Video Broadcasting 
2nd Generation Terrestrial Simulation 
2011 
7 | P a g e 
That same year, spurred on by the work of Schoenberg, the EMI Company in England developed a fully electronic television system with 405-line definition, 25frames/second, and interlace. 
The Marconi Company provided the necessary support regarding the development of transmitters. The British government authorised the use of this standard, along with that of Baird, for the television service launched by the BBC in London in November 1936 (the Baird system used mechanical scanning, 240 lines, and 25 frames per second and no interlace). The two systems were used in turn, during alternate weeks. 
The 240-line mechanical scanning system pushed the equipment to the limit and suffered from poor sensitivity, the balance thus swung in favour of the all-electronic 405-line system which was finally adopted in England in February 1937. 
The same year, France introduced a 455-line all-electronic system. Germany followed suit with 441 lines, and this standard was also adopted by Italy. The iconoscope was triumphant. It was sensitive enough to allow outdoor shooting. 
It was by means of a monster no less than 2.2 m long, the television canon, (in fact an iconoscope camera built by Telefunken) that the people of Berlin and Leipzig were able to see pictures from the Berlin Olympic Games. Viewing rooms, known as Fernsehstuben were built for the purpose. Equipment that was easier to manipulate was used by the BBC for the coronation of His Majesty King George VI in 1937 and, the following year, for the Epsom Derby. 
Public interest was aroused. From 1937 to 1939 receiver sales in London soared from 2,000 to 20,000. Research in the United States (Zworykin and the RCA Company) bore fruit at about the same time. The first public television service was inaugurated in New York in 1939 with a 340-line system operating at 30 frames per second. 
Two years later, the United States adopted a 525-line 60 frames/second standard. The first transmitters were installed in the capital cities (London, Paris, Berlin, Rome, New York) and only a small proportion of the population of each country was therefore able to benefit. Plans were made to cover other regions. 
The War stopped the expansion of television in Europe. However the intensive research into electronic systems during the War, and the practical experience it gave, led to enhancements of television technology. Work on radar screens, for example, benefited cathode-ray tube design; circuits able to operate at higher frequencies were developed. 
When the War was over, broadcasts resumed in the national standards fixed previously: 405 lines in England, 441 lines in Germany and Italy, 455 lines in France. 
Research showed the advantages of higher picture definition, and systems with more than 1000 lines were investigated. The 819-line standard emerged in France. 
It was not until 1952 that a single standard (625 lines, 50 frames/second) was proposed, and progressively adopted, for use throughout Europe. Modern television was born.
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011
DVB-T2 graduation project book 2011

More Related Content

Viewers also liked

Senior graduation project power point
Senior graduation project power pointSenior graduation project power point
Senior graduation project power pointSteveDavidson
 
Graduation Project Documentation.PDF
Graduation Project Documentation.PDFGraduation Project Documentation.PDF
Graduation Project Documentation.PDFMostafa Elhoushi
 
Graduation Project Report
Graduation  Project  ReportGraduation  Project  Report
Graduation Project Reporttechprojects
 
Sample graduation project presentation
Sample graduation project presentationSample graduation project presentation
Sample graduation project presentationburnsr
 
Making your senior project presentation
Making your senior project presentationMaking your senior project presentation
Making your senior project presentationDawn McCann
 
تقرير مشروع التخرج Graduation Project Report
تقرير مشروع التخرجGraduation Project Reportتقرير مشروع التخرجGraduation Project Report
تقرير مشروع التخرج Graduation Project Reportnotme_20n
 
Project Management / Manager Interview Questions
Project Management / Manager Interview QuestionsProject Management / Manager Interview Questions
Project Management / Manager Interview QuestionsYazan Ibrahim
 
Graduation Day PowerPoint Presentation
Graduation Day PowerPoint PresentationGraduation Day PowerPoint Presentation
Graduation Day PowerPoint PresentationToto Theramate
 
92 electrical interview questions and answers
92 electrical interview questions and answers92 electrical interview questions and answers
92 electrical interview questions and answersElectricalCareer66
 

Viewers also liked (9)

Senior graduation project power point
Senior graduation project power pointSenior graduation project power point
Senior graduation project power point
 
Graduation Project Documentation.PDF
Graduation Project Documentation.PDFGraduation Project Documentation.PDF
Graduation Project Documentation.PDF
 
Graduation Project Report
Graduation  Project  ReportGraduation  Project  Report
Graduation Project Report
 
Sample graduation project presentation
Sample graduation project presentationSample graduation project presentation
Sample graduation project presentation
 
Making your senior project presentation
Making your senior project presentationMaking your senior project presentation
Making your senior project presentation
 
تقرير مشروع التخرج Graduation Project Report
تقرير مشروع التخرجGraduation Project Reportتقرير مشروع التخرجGraduation Project Report
تقرير مشروع التخرج Graduation Project Report
 
Project Management / Manager Interview Questions
Project Management / Manager Interview QuestionsProject Management / Manager Interview Questions
Project Management / Manager Interview Questions
 
Graduation Day PowerPoint Presentation
Graduation Day PowerPoint PresentationGraduation Day PowerPoint Presentation
Graduation Day PowerPoint Presentation
 
92 electrical interview questions and answers
92 electrical interview questions and answers92 electrical interview questions and answers
92 electrical interview questions and answers
 

Similar to DVB-T2 graduation project book 2011

AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...
AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...
AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...ijmpict
 
AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...
AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...
AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...ijmpict
 
Television digital terrestre version inlges
Television digital terrestre version inlgesTelevision digital terrestre version inlges
Television digital terrestre version inlgesedsacun
 
IRJET- The Past, Present and Future of Broadcasting Engineering using Nigeria...
IRJET- The Past, Present and Future of Broadcasting Engineering using Nigeria...IRJET- The Past, Present and Future of Broadcasting Engineering using Nigeria...
IRJET- The Past, Present and Future of Broadcasting Engineering using Nigeria...IRJET Journal
 
Roadmap for the Transition from Analogue to Digital Terrestrial Television Br...
Roadmap for the Transition from Analogue to Digital Terrestrial Television Br...Roadmap for the Transition from Analogue to Digital Terrestrial Television Br...
Roadmap for the Transition from Analogue to Digital Terrestrial Television Br...Feriandi Mirza
 
CHANGING TECHINOLOGY New microsoft office power point presentation
CHANGING TECHINOLOGY New microsoft office power point presentationCHANGING TECHINOLOGY New microsoft office power point presentation
CHANGING TECHINOLOGY New microsoft office power point presentationIsrael Sikajula
 
EBU Digital-Radio-Toolkit
EBU Digital-Radio-ToolkitEBU Digital-Radio-Toolkit
EBU Digital-Radio-ToolkitDigris AG
 
TRA Position Paper on Telecenters
TRA Position Paper on TelecentersTRA Position Paper on Telecenters
TRA Position Paper on Telecenterstraoman
 
MOBILE TELEVISION: UNDERSTANDING THE TECHNOLOGY AND OPPORTUNITIES15ijitcs01
MOBILE TELEVISION: UNDERSTANDING THE TECHNOLOGY AND OPPORTUNITIES15ijitcs01MOBILE TELEVISION: UNDERSTANDING THE TECHNOLOGY AND OPPORTUNITIES15ijitcs01
MOBILE TELEVISION: UNDERSTANDING THE TECHNOLOGY AND OPPORTUNITIES15ijitcs01ijitcs
 
sccr_im_ge_09_presentation5.ppt
sccr_im_ge_09_presentation5.pptsccr_im_ge_09_presentation5.ppt
sccr_im_ge_09_presentation5.pptpenugasanupn
 
Digital radio-discussion-paper
Digital radio-discussion-paperDigital radio-discussion-paper
Digital radio-discussion-papergulangyu9521
 
T-learning for social inclusion
T-learning for social inclusionT-learning for social inclusion
T-learning for social inclusioneLearning Papers
 
DigitalUK_Switchoverfinal_report_Nov2012
DigitalUK_Switchoverfinal_report_Nov2012DigitalUK_Switchoverfinal_report_Nov2012
DigitalUK_Switchoverfinal_report_Nov2012Davyd Parry
 
A study on Over The Top Streaming services and analysis of Key Performance I...
A study on Over The Top Streaming services and analysis of Key  Performance I...A study on Over The Top Streaming services and analysis of Key  Performance I...
A study on Over The Top Streaming services and analysis of Key Performance I...Neranjan Viduranga
 
Seminar report on mobile tv
Seminar report on mobile tvSeminar report on mobile tv
Seminar report on mobile tvRajat Tripathi
 
DTTB_Case_Study_Australia_2015
DTTB_Case_Study_Australia_2015DTTB_Case_Study_Australia_2015
DTTB_Case_Study_Australia_2015Roger G Bunch
 

Similar to DVB-T2 graduation project book 2011 (20)

AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...
AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...
AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...
 
AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...
AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...
AN ANALYSIS OF FACTORS AFFECTING THE ADOPTION OF DIGITAL TERRESTRIAL TELEVISI...
 
Television digital terrestre version inlges
Television digital terrestre version inlgesTelevision digital terrestre version inlges
Television digital terrestre version inlges
 
IRJET- The Past, Present and Future of Broadcasting Engineering using Nigeria...
IRJET- The Past, Present and Future of Broadcasting Engineering using Nigeria...IRJET- The Past, Present and Future of Broadcasting Engineering using Nigeria...
IRJET- The Past, Present and Future of Broadcasting Engineering using Nigeria...
 
Roadmap for the Transition from Analogue to Digital Terrestrial Television Br...
Roadmap for the Transition from Analogue to Digital Terrestrial Television Br...Roadmap for the Transition from Analogue to Digital Terrestrial Television Br...
Roadmap for the Transition from Analogue to Digital Terrestrial Television Br...
 
CHANGING TECHINOLOGY New microsoft office power point presentation
CHANGING TECHINOLOGY New microsoft office power point presentationCHANGING TECHINOLOGY New microsoft office power point presentation
CHANGING TECHINOLOGY New microsoft office power point presentation
 
EBU Digital-Radio-Toolkit
EBU Digital-Radio-ToolkitEBU Digital-Radio-Toolkit
EBU Digital-Radio-Toolkit
 
TRA Position Paper on Telecenters
TRA Position Paper on TelecentersTRA Position Paper on Telecenters
TRA Position Paper on Telecenters
 
MOBILE TELEVISION: UNDERSTANDING THE TECHNOLOGY AND OPPORTUNITIES15ijitcs01
MOBILE TELEVISION: UNDERSTANDING THE TECHNOLOGY AND OPPORTUNITIES15ijitcs01MOBILE TELEVISION: UNDERSTANDING THE TECHNOLOGY AND OPPORTUNITIES15ijitcs01
MOBILE TELEVISION: UNDERSTANDING THE TECHNOLOGY AND OPPORTUNITIES15ijitcs01
 
Mobile phone
Mobile phoneMobile phone
Mobile phone
 
sccr_im_ge_09_presentation5.ppt
sccr_im_ge_09_presentation5.pptsccr_im_ge_09_presentation5.ppt
sccr_im_ge_09_presentation5.ppt
 
Digital radio-discussion-paper
Digital radio-discussion-paperDigital radio-discussion-paper
Digital radio-discussion-paper
 
T-learning for social inclusion
T-learning for social inclusionT-learning for social inclusion
T-learning for social inclusion
 
DigitalUK_Switchoverfinal_report_Nov2012
DigitalUK_Switchoverfinal_report_Nov2012DigitalUK_Switchoverfinal_report_Nov2012
DigitalUK_Switchoverfinal_report_Nov2012
 
A study on Over The Top Streaming services and analysis of Key Performance I...
A study on Over The Top Streaming services and analysis of Key  Performance I...A study on Over The Top Streaming services and analysis of Key  Performance I...
A study on Over The Top Streaming services and analysis of Key Performance I...
 
Digital Radio Report July 2015
Digital Radio Report July 2015Digital Radio Report July 2015
Digital Radio Report July 2015
 
Seminar report on mobile tv
Seminar report on mobile tvSeminar report on mobile tv
Seminar report on mobile tv
 
DTTB_Case_Study_Australia_2015
DTTB_Case_Study_Australia_2015DTTB_Case_Study_Australia_2015
DTTB_Case_Study_Australia_2015
 
DVB Seminar
DVB SeminarDVB Seminar
DVB Seminar
 
DVB Seminar
DVB SeminarDVB Seminar
DVB Seminar
 

Recently uploaded

Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm Systemirfanmechengr
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadaditya806802
 
The SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsThe SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsDILIPKUMARMONDAL6
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxVelmuruganTECE
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 

Recently uploaded (20)

Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm System
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasad
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
The SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teamsThe SRE Report 2024 - Great Findings for the teams
The SRE Report 2024 - Great Findings for the teams
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptx
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 

DVB-T2 graduation project book 2011

  • 1. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 I Graduation Team Members 1. Amr Kamal El-Din Gamal El-Din. 2. Eman Magdy Ibrahim. 3. Islam Haytham Ahmad. 4. Khaled Salah Mohamad. 5. Mohamad Hashem Abd-El-Rehem. 6. Omnia Ahmad Mohmoud Akl. 7. Sarah Mostafa Mohamad. Acknowledgments We wrote this book throughout our fourth year at the Department of Communications and Electronics Engineering in Alexandria University and it applies our communications theoretical studies and we spared no effort to make this graduation project appears in the best form, Certainly, it could not have been written without the support and patience of many people. Therefore, we are indebted to many people for their information, feedback, and assistance during the development of this book. First of all, we must thank Allah who always assists us, we owing to him with any success and progress we made in our life. We want to express our gratitude to our supervisor Doctor Karim G. Seddik for all the helpful advices, encouragement, and discussions. The opportunity to work under his supervision was a precious experience, he exerts all the effort and time to help us to learn, search, and do our best in this project. Also we want to thank Our Professors in the communication department, who made their best to give us their experience in the field of Communication Engineering, and deep thanks to teacher assistant / Karim Banwan who was our beacon through our project journey. Most of all, we thank our beloved families for their immeasurable support, encouragement, and patience while working on this project.
  • 2. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 II Preface Technological developments should not be regarded as exogenous determining factors but rather as the product of activities and relationships within society as a whole. Beside the technical factors involved, scientific, economic, market, political, and legal factors can determine the establishment of technologies in society. This book aims to provide an overview of these aspects with regard to DTV and to help explain how DTV, including conditional access, can be successfully embedded in society. Broadcasting is the distribution of audio and video content to a dispersed audience via radio, television, or other. Receiving parties may include the general public or a relatively large subset of thereof. The original term broadcast referred to the literal sowing of seeds on farms by scattering them over a wide field. It was first adopted by early radio engineers from the Midwestern United States to refer to the analogous dissemination of radio signals. Broadcasting forms a very large segment of the mass media. Broadcasting to a very narrow range of audience is called narrowcasting. The DVB-T standard is the most successful digital terrestrial television standards in the world. First published in 1995, it has been adopted by more than half of all countries in the world. Since the publication of the DVB-T standard, however, research in transmission technology has continued, and new options for modulating and error- protecting broadcast steams have been developed. Simultaneously, the demand for broadcasting frequency spectrum has increased as has the pressure to release broadcast spectrum for non-broadcast applications, making it is ever more necessary to maximize spectrum efficiency. In response, the DVB Project has developed the second- generation digital terrestrial television (DVB-T2) standard. The specification, first published by the DVB Project in June 2008, has been standardized by European Telecommunication Standardizations Institute (ETSI) since September 2009. Implementation and product development using this new standard has already begun. The possibility to increase the capacity in a digital terrestrial television (DTT) multiplex is one of the key benefits of the DVB-T2 standard. In comparison with the current digital terrestrial television standard, DVB-T, the second-generation standard, DVB-T2, provides a minimum increase in capacity of at least 30% in equivalent reception conditions using existing receiving antennas. Some preliminary testing, however, suggests that the increase in capacity obtained in practice may be closer to 50%. This can make possible the launch of new broadcast services that make intensive use of frequency capacity. However, the implementation of a new digital terrestrial television (DTT) standard will have a profound impact upon the broadcast industry. The cost of developing, distributing, and implementing new equipment will need to be borne by manufacturers, network operators, and viewers. Business issues related to financing the launch of services the DVB-T2 standard need to be explored. The demand for services using DVB-T2 will likely vary depending on the demands of the market as will the approach for launching such services. Broadcasters will also need to consider possible business cases and how current revenue streams can be maintained and/or augmented. Two excellent documents, the DVB-T2 specification (ETSI EN302755) and the Implementation Guidelines (DVB Bluebook A133), are available with the details of the technology. However, this handbook seeks to provide a wider understanding of the DVB-T2 standard to encompass issues beyond the technology. It addresses the key technical, business, and regulatory issues that must be taken into consideration by the broadcast industry when contemplating a launch of services using the DVBT2 standard.
  • 3. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 A | P a g e Table of Contents Chapter Number 1: Television History ------------------------------------------------------------------------------------ 1 1.1 – Early History of Television ------------------------------------------------------------------------------------------------------ 1 1.2 – Why it’s called Television? ------------------------------------------------------------------------------------------------------ 3 1.3 – The very first Broadcasts -------------------------------------------------------------------------------------------------------- 6 1.4 – Color Television Transmission ------------------------------------------------------------------------------------------------- 8 1.5 – Analog Television (ATV) ------------------------------------------------------------------------------------------------------- 10 1.5.1 –Scanning an Original Black/White Picture --------------------------------------------------------------------------------------------- 12 1.5.2 –Horizontal and Vertical Synchronization Pulses -------------------------------------------------------------------------------------- 13 1.5.3 –Adding Colors Information ----------------------------------------------------------------------------------------------------------------- 14 1.6 – Digital Television (DTV) -------------------------------------------------------------------------------------------------------- 16 1.6.1 –What is Digital Television? ----------------------------------------------------------------------------------------------------------------- 16 1.6.2 –Shannon’s Information Theorem --------------------------------------------------------------------------------------------------------- 17 1.6.3 –Digitizing a Video Signal --------------------------------------------------------------------------------------------------------------------- 17 1.6.3.1 – Why? -------------------------------------------------------------------------------------------------------------------------------------- 17 1.6.3.2 – How? -------------------------------------------------------------------------------------------------------------------------------------- 18 1.6.4 –Digital Video Signal --------------------------------------------------------------------------------------------------------------------------- 19 1.6.5 –Compressing Digital Signal ----------------------------------------------------------------------------------------------------------------- 20 1.6.5.1 – Compressing Still Images ------------------------------------------------------------------------------------------------------------ 20 1.6.5.2 – Compressing Non-Still Images (Movies) ----------------------------------------------------------------------------------------- 20 1.6.6 –Encapsulating into Transport Stream Packets ---------------------------------------------------------------------------------------- 20 1.6.7 –System Information -------------------------------------------------------------------------------------------------------------------------- 22 1.6.8 –Picture and Sound Quality ----------------------------------------------------------------------------------------------------------------- 22 1.6.9 –Advantages of Digital Transmission ----------------------------------------------------------------------------------------------------- 22 1.7 – High Definition Television (HDTV) ------------------------------------------------------------------------------------------ 23 1.7.1 –Historical view over HD development -------------------------------------------------------------------------------------------------- 23 1.7.2 –Interlaced and Progressive Scanning ---------------------------------------------------------------------------------------------------- 24 1.7.3 –HDTV Display Resolutions ------------------------------------------------------------------------------------------------------------------ 24 1.7.4 –Practical Aspects of Receiving HDTV ---------------------------------------------------------------------------------------------------- 24 1.8 – Stereoscopic Television (3DTV) ---------------------------------------------------------------------------------------------- 25 1.8.1 –Historical View -------------------------------------------------------------------------------------------------------------------------------- 25 1.8.2 –Used Technologies --------------------------------------------------------------------------------------------------------------------------- 25 1.8.2.1 – Anaglyphic 3D -------------------------------------------------------------------------------------------------------------------------- 26 1.8.2.2 – Polarization 3D ------------------------------------------------------------------------------------------------------------------------- 27 1.8.2.3 – Alternate Frame Sequencing 3D --------------------------------------------------------------------------------------------------- 28 1.8.2.4 – Alternate Frame Sequencing 3D --------------------------------------------------------------------------------------------------- 28 Chapter Number 2: Digital Video Broadcasting ---------------------------------------------------------------------- 29 2.1 – History ------------------------------------------------------------------------------------------------------------------------------ 29 2.2 – Digital Video Broadcasting Standards ------------------------------------------------------------------------------------- 30 2.2.1 –Digital Video Broadcasting – Satellite (DVB-S) ---------------------------------------------------------------------------------------- 30 2.2.2 –Digital Video Broadcasting – Cable (DVB-C) ------------------------------------------------------------------------------------------- 32
  • 4. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 B | P a g e 2.2.2.1 – DVB-C Transmitter -------------------------------------------------------------------------------------------------------------------- 32 2.2.2.2 – DVB-C Receiver ------------------------------------------------------------------------------------------------------------------------- 33 2.2.3 –Digital Video Broadcasting – Handheld (DVB-H) ------------------------------------------------------------------------------------- 34 2.2.4 –Digital Video Broadcasting – Satellite services to Handheld (DVB-SH) --------------------------------------------------------- 36 2.2.4.1 – DVB-H vs. DVB-SH --------------------------------------------------------------------------------------------------------------------- 37 2.2.5 –Digital Video Broadcasting – Terrestrial (DVB-T) ------------------------------------------------------------------------------------- 37 2.2.5.1 – DVB-T2 ------------------------------------------------------------------------------------------------------------------------------------ 39 2.2.5.2 – DVB-T2 vs. DVB-T ---------------------------------------------------------------------------------------------------------------------- 40 2.2.5.3 – DVB-T representation on world map --------------------------------------------------------------------------------------------- 40 Chapter Number 3: Source Coding --------------------------------------------------------------------------------------- 41 3.1 – Introduction ----------------------------------------------------------------------------------------------------------------------- 41 3.2 – Moving Pictures Experts Group (MPEG) Data Stream ----------------------------------------------------------------- 42 3.3 – Video Compression Technique ----------------------------------------------------------------------------------------------- 44 3.4 – The Packetized Elementary Stream (PES) --------------------------------------------------------------------------------- 44 3.5 – MPEG-2 Coding ------------------------------------------------------------------------------------------------------------------- 45 3.6 – MPEG-2 Transport Stream Packet ------------------------------------------------------------------------------------------ 47 3.7 – Information for the Receiver ------------------------------------------------------------------------------------------------- 49 3.7.1 –Synchronizing to the Transport Stream ------------------------------------------------------------------------------------------------ 49 3.7.2 –Reading out the Current Program Structure ------------------------------------------------------------------------------------------ 49 3.7.3 –Accessing a Program ------------------------------------------------------------------------------------------------------------------------- 51 3.7.4 –Accessing Scrambled Programs ----------------------------------------------------------------------------------------------------------- 51 3.7.5 –Program Synchronization (PCR, DTS, and PTS) --------------------------------------------------------------------------------------- 52 3.7.6 –Additional Information in the Transport Stream ------------------------------------------------------------------------------------- 52 3.7.7 –Non-Private and Private Sections and Tables ----------------------------------------------------------------------------------------- 52 3.8 – Scalability -------------------------------------------------------------------------------------------------------------------------- 53 3.9 – MPEG-2 Picture Types ---------------------------------------------------------------------------------------------------------- 53 3.10 – MPEG-2 Problems-------------------------------------------------------------------------------------------------------------- 54 3.10.1 –Problems in Coding at Low Bit-Rate --------------------------------------------------------------------------------------------------- 54 3.10.2 –Problems in Coding of Chrominance Components in Interlaced Video ------------------------------------------------------ 54 Chapter Number 4: Digital Modulation Techniques ----------------------------------------------------------------- 55 4.1 – Concept of Modulation -------------------------------------------------------------------------------------------------------- 55 4.1.1 – Importance of Modulation ---------------------------------------------------------------------------------------------------------------- 55 4.1.1.1 – Main Aim of Analog Modulation -------------------------------------------------------------------------------------------------- 55 4.1.1.2 – Main Aim of Digital Modulation --------------------------------------------------------------------------------------------------- 55 4.1.1.3 – Benefits of Signal Modulation ------------------------------------------------------------------------------------------------------ 55 4.1.2 – Digital vs. Analog ----------------------------------------------------------------------------------------------------------------------------- 56 4.1.3 – Modulation Techniques Performance -------------------------------------------------------------------------------------------------- 56 4.1.3.1 – Power Efficiency ----------------------------------------------------------------------------------------------------------------------- 57 4.1.3.2 – Bandwidth Efficiency ( )----------------------------------------------------------------------------------------------------------- 57 4.1.3.3 – Tradeoff between Power Efficiency and Bandwidth Efficiency ( ) ---------------------------------------------------- 57 4.1.3.4 – Power Spectral Density (PSD) ------------------------------------------------------------------------------------------------------ 58 4.1.3.5 – System Complexity -------------------------------------------------------------------------------------------------------------------- 58 4.1.4 – Digital Modulation Schemes -------------------------------------------------------------------------------------------------------------- 58 4.1.5 – Geometric Representation of Modulated Signals ----------------------------------------------------------------------------------- 59
  • 5. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 C | P a g e 4.1.5.1 – Basis Signal “ ” Conditions ---------------------------------------------------------------------------------------------------- 59 4.1.5.2 – Constellation Diagrams -------------------------------------------------------------------------------------------------------------- 59 4.1.5.3 – Probability of Error Calculation using Constellation Diagrams ------------------------------------------------------------ 60 4.1.6 – Types of Modulation Technique used in different Communication Systems ------------------------------------------------ 61 4.2 – Line Codes ------------------------------------------------------------------------------------------------------------------------- 62 4.2.1 –Non Return to Zero (NRZ) Line Coding -------------------------------------------------------------------------------------------------- 62 4.2.1.1 – Unipolar Non Return to Zero Line Coding --------------------------------------------------------------------------------------- 62 4.2.1.2 – Polar Non Return to Zero Line Coding ------------------------------------------------------------------------------------------- 63 4.2.1.3 – Non Return to Zero Space Line Coding ------------------------------------------------------------------------------------------ 63 4.2.1.4 – Non Return to Zero Inverted (Mark) Line Coding ----------------------------------------------------------------------------- 63 4.2.2 –Return to Zero (RZ) Line Coding ---------------------------------------------------------------------------------------------------------- 63 4.2.2.1 – Unipolar Return to Zero Line Coding --------------------------------------------------------------------------------------------- 64 4.2.2.2 – Polar Return to Zero Line Coding -------------------------------------------------------------------------------------------------- 64 4.2.2.3 – Bipolar Return to Zero Line Coding (AMI) --------------------------------------------------------------------------------------- 64 4.2.3 –Manchester Line Coding -------------------------------------------------------------------------------------------------------------------- 65 4.2.4 –Differential Line Coding --------------------------------------------------------------------------------------------------------------------- 65 4.3 – Amplitude Shift Keying (ASK) Modulation Technique ----------------------------------------------------------------- 66 4.3.1 –Binary Amplitude Shift Keying (BASK) --------------------------------------------------------------------------------------------------- 66 4.3.1.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 66 4.3.1.2 – Calculating Probability of Error ---------------------------------------------------------------------------------------------------- 67 4.3.2 –M’ary Amplitude Shift Keying (MASK) -------------------------------------------------------------------------------------------------- 68 4.3.2.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 68 4.3.2.2 – Calculating Probability of Error ---------------------------------------------------------------------------------------------------- 68 4.4 – Phase Shift Keying (PSK) Modulation Technique ----------------------------------------------------------------------- 69 4.4.1 –Binary Phase Shift Keying (BPSK) --------------------------------------------------------------------------------------------------------- 69 4.4.1.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 69 4.4.1.2 – BPSK Representation ----------------------------------------------------------------------------------------------------------------- 69 4.4.1.2.1 – Equations Representation ---------------------------------------------------------------------------------------------------- 69 4.4.1.2.2 – Time Domain Representation ------------------------------------------------------------------------------------------------ 70 4.4.1.2.3 – Spectrum and Bandwidth Representation-------------------------------------------------------------------------------- 70 4.4.1.2.4 – Constellation Representation ------------------------------------------------------------------------------------------------ 71 4.4.1.3 – BPSK Modulator ------------------------------------------------------------------------------------------------------------------------ 71 4.4.1.4 – BPSK De-Modulator ------------------------------------------------------------------------------------------------------------------- 71 4.4.1.5 – Power and Bandwidth Properties of BPSK -------------------------------------------------------------------------------------- 72 4.4.16 – Probability of Error for BPSK Modulation Scheme ---------------------------------------------------------------------------- 72 4.4.2 –Differential Phase Shift Keying (DPSK) -------------------------------------------------------------------------------------------------- 72 4.4.2.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 72 4.4.2.2 – Differential Encoding and Decoding Method ---------------------------------------------------------------------------------- 72 4.4.2.3 – DPSK Modulation ---------------------------------------------------------------------------------------------------------------------- 72 4.4.2.4 – DPSK De-Modulation ----------------------------------------------------------------------------------------------------------------- 73 4.4.2.4.1 – Suboptimum Receiver ---------------------------------------------------------------------------------------------------------- 73 4.4.2.4.2 – Optimum Receiver -------------------------------------------------------------------------------------------------------------- 73 4.4.2.5 – DPSK Advantages and Disadvantages -------------------------------------------------------------------------------------------- 74 4.4.2.6 – DPSK Power Spectral Density Representation --------------------------------------------------------------------------------- 74 4.4.2.7 – Probability of Error in DPSK System ---------------------------------------------------------------------------------------------- 74 4.4.3 –M’ary Phase Shift Keying (MPSK) --------------------------------------------------------------------------------------------------------- 75 4.4.3.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 75 4.4.3.2 – MPSK Representations --------------------------------------------------------------------------------------------------------------- 75 4.4.3.2.1 – Signal Equation Representation --------------------------------------------------------------------------------------------- 75 4.4.3.2.2 – Constellation Representation ------------------------------------------------------------------------------------------------ 76
  • 6. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 D | P a g e 4.4.3.3 – Probability of Error in MPSK Scheme --------------------------------------------------------------------------------------------- 76 4.4.3.4 –Power and Bandwidth Efficiency of MPSK --------------------------------------------------------------------------------------- 76 4.4.3.5 –MPSK Modulator ----------------------------------------------------------------------------------------------------------------------- 78 4.4.3.6 –MPSK De-Modulator ------------------------------------------------------------------------------------------------------------------- 78 4.4.4 –Special MPSK Techniques: “QPSK” ------------------------------------------------------------------------------------------------------- 79 4.4.4.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 79 4.4.4.2 – QPSK Representations---------------------------------------------------------------------------------------------------------------- 79 4.4.4.2.1 – Signal Equation Representation --------------------------------------------------------------------------------------------- 79 4.4.4.2.2 – Constellation Representation ------------------------------------------------------------------------------------------------ 80 4.4.4.3 – QPSK Probability of Error ------------------------------------------------------------------------------------------------------------ 80 4.4.4.4 – Bandwidth of QPSK ------------------------------------------------------------------------------------------------------------------- 80 4.4.4.5 – QPSK Modulator ----------------------------------------------------------------------------------------------------------------------- 81 4.4.4.6 – QPSK De-Modulator ------------------------------------------------------------------------------------------------------------------ 81 4.4.5 – Special MPSK Techniques: “OQPSK” ---------------------------------------------------------------------------------------------------- 82 4.4.6 – Special MPSK Techniques: “π/4-QPSK” ------------------------------------------------------------------------------------------------ 83 4.4.6.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 83 4.4.6.2 – “π/4” QPSK Constellation Representation -------------------------------------------------------------------------------------- 83 4.4.6.3 – “π/4” QPSK Phase Distribution ---------------------------------------------------------------------------------------------------- 83 4.4.6.4 – “π/4” QPSK Illustrating Example --------------------------------------------------------------------------------------------------- 84 4.5 – Frequency Shift Keying (FSK) Modulation Technique ----------------------------------------------------------------- 85 4.5.1 –Historical View -------------------------------------------------------------------------------------------------------------------------------- 85 4.5.2 –Binary Frequency Shift Keying (BFSK) --------------------------------------------------------------------------------------------------- 85 4.5.2.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 85 4.5.2.2 – BFSK Representations ---------------------------------------------------------------------------------------------------------------- 85 4.5.2.2.1 – Signal Representation ---------------------------------------------------------------------------------------------------------- 85 4.5.2.2.2 – Orthogonality Condition ------------------------------------------------------------------------------------------------------- 86 4.5.2.3 – BFSK Illustrating Example ------------------------------------------------------------------------------------------------------------ 86 4.5.2.4 – Power Spectral Density Evaluations ---------------------------------------------------------------------------------------------- 87 4.5.2.5 – BFSK Modulator ------------------------------------------------------------------------------------------------------------------------ 87 4.5.2.6 – BFSK De-Modulators ------------------------------------------------------------------------------------------------------------------ 88 4.5.2.6.1 – Coherent Detector -------------------------------------------------------------------------------------------------------------- 88 4.5.2.6.2 – Non-Coherent Detector ------------------------------------------------------------------------------------------------------- 88 4.5.2.7 – Probability of Error for BFSK -------------------------------------------------------------------------------------------------------- 89 4.5.2.7.1 –Coherent Detector --------------------------------------------------------------------------------------------------------------- 89 4.5.2.7.2 – Non-Coherent Detector ------------------------------------------------------------------------------------------------------- 89 4.5.3 –M’ary Frequency Shift Keying (MFSK) --------------------------------------------------------------------------------------------------- 90 4.5.3.1 – Overview --------------------------------------------------------------------------------------------------------------------------------- 90 4.5.3.2 – MFSK Representations --------------------------------------------------------------------------------------------------------------- 90 4.5.3.2.1 – Signal Representation ---------------------------------------------------------------------------------------------------------- 90 4.5.3.2.2 – Orthogonality Condition ------------------------------------------------------------------------------------------------------- 90 4.5.3.3 – Symbol and Bit Probability of Error in MFSK Systems ----------------------------------------------------------------------- 90 4.5.3.3.1 – Symbol Probability of Error --------------------------------------------------------------------------------------------------- 90 4.5.3.3.2 – Bit Probability of Error --------------------------------------------------------------------------------------------------------- 90 4.5.3.3.3 – Effect of Changing “M” on the Probability of Error -------------------------------------------------------------------- 91 4.5.4 –Other FSK Techniques ----------------------------------------------------------------------------------------------------------------------- 91 4.5.4.1 – Minimum Shift Keying (MSK) ------------------------------------------------------------------------------------------------------- 91 4.5.4.2 – Gaussian Minimum Shift Keying (GMSK) ---------------------------------------------------------------------------------------- 92 4.6 – Quadrature Amplitude Modulation (QAM) Modulation Technique ----------------------------------------------- 93 4.6.1 –Overview ---------------------------------------------------------------------------------------------------------------------------------------- 93 4.6.2 –QAM types-------------------------------------------------------------------------------------------------------------------------------------- 93 4.6.2.1 – Circular QAM---------------------------------------------------------------------------------------------------------------------------- 93
  • 7. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 E | P a g e 4.6.2.1.1 – 16-QAM as an Example on Circular QAM --------------------------------------------------------------------------------- 94 4.6.2.2 – Rectangular QAM ---------------------------------------------------------------------------------------------------------------------- 94 4.6.2.2.1 – 16-QAM as an Example on Rectangular QAM --------------------------------------------------------------------------- 95 4.6.3 –Calculating Probability of Error ----------------------------------------------------------------------------------------------------------- 95 4.6.4 –QAM Modulator ------------------------------------------------------------------------------------------------------------------------------ 96 4.6.5 –QAM De-Modulator -------------------------------------------------------------------------------------------------------------------------- 96 4.6.6 –QAM Bandwidth Efficiency ---------------------------------------------------------------------------------------------------------------- 96 4.7 –Coherent Detection -------------------------------------------------------------------------------------------------------------- 97 4.7.1 –Carrier Recovery and Symbol Synchronization --------------------------------------------------------------------------------------- 97 4.7.2 –Clock Recovery -------------------------------------------------------------------------------------------------------------------------------- 97 4.8 –Comparison between different Modulation Techniques -------------------------------------------------------------- 98 4.8.1 –Probability of Error --------------------------------------------------------------------------------------------------------------------------- 98 4.8.2 –Bit Error Rate Curves ------------------------------------------------------------------------------------------------------------------------ 99 4.8.2.1 – Phase Shift Keying BER curves --------------------------------------------------------------------------------------------------- 100 4.8.2.1.1 – Notes on Phase Shift Keying BER curves -------------------------------------------------------------------------------- 101 4.8.2.2 – Frequency Shift Keying BER curves --------------------------------------------------------------------------------------------- 101 4.8.2.2.1 – Notes on Frequency Shift Keying BER curves -------------------------------------------------------------------------- 102 4.8.2.3 – Quadrature Amplitude Modulation BER curves ----------------------------------------------------------------------------- 103 4.8.2.3.1 – Notes on Quadrature Amplitude Modulation BER curves ---------------------------------------------------------- 103 4.8.2.4 – Comparative Simulations ---------------------------------------------------------------------------------------------------------- 104 4.8.2.4.1 – At Fixed Modulation Order ------------------------------------------------------------------------------------------------- 104 4.8.2.4.2 – All Introduced Modulation Techniques --------------------------------------------------------------------------------- 105 4.8.3 –Overall Modulation Techniques Discussion ----------------------------------------------------------------------------------------- 106 4.8.4 –Modulation and Demodulation using Matlab -------------------------------------------------------------------------------------- 106 Chapter Number 5: Wireless Channel Problems -------------------------------------------------------------------- 108 5.1 – Introduction ---------------------------------------------------------------------------------------------------------------------- 108 5.1.1 –Analog and Digital Channel Models --------------------------------------------------------------------------------------------------- 108 5.1.2 –Noise in Wireless Channel ---------------------------------------------------------------------------------------------------------------- 109 5.1.3 –Basic Propagation Mechanisms --------------------------------------------------------------------------------------------------------- 109 5.1.3.1 – Reflection ------------------------------------------------------------------------------------------------------------------------------ 109 5.1.3.2 – Diffraction ----------------------------------------------------------------------------------------------------------------------------- 110 5.1.3.3 – Scattering ------------------------------------------------------------------------------------------------------------------------------ 112 5.2 – Path-loss in Wireless Communication Channels ----------------------------------------------------------------------- 113 5.2.1 –Free Space Model -------------------------------------------------------------------------------------------------------------------------- 114 5.2.2 – 2-Ray Model --------------------------------------------------------------------------------------------------------------------------------- 114 5.2.3 – General Ray Model ------------------------------------------------------------------------------------------------------------------------ 115 5.2.4 – Empirical Path Loss Models ------------------------------------------------------------------------------------------------------------- 115 5.2.4.1 – Okumura’s Model ------------------------------------------------------------------------------------------------------------------- 116 5.2.4.2 – Hata’s Model -------------------------------------------------------------------------------------------------------------------------- 117 5.2.4.2.1 – Hata Model for Suburban Areas ------------------------------------------------------------------------------------------- 117 5.2.4.2.2 – Hata Model for Urban Areas ----------------------------------------------------------------------------------------------- 117 5.2.4.2.4 – Hata Model for Open Areas ------------------------------------------------------------------------------------------------ 118 5.2.4.3 – Cost 231-Hata Model --------------------------------------------------------------------------------------------------------------- 118 5.2.4.4 – Walfisch-Bertoni Model------------------------------------------------------------------------------------------------------------ 119 5.2.4.5 – Cost 231-walfisch Ikegami Model ----------------------------------------------------------------------------------------------- 121 5.2.4.6 – Stanford University Interim (SUI) Model -------------------------------------------------------------------------------------- 123 5.2.4.7 – Comparison between Empirical Models --------------------------------------------------------------------------------------- 124 5.3 – Interference in Wireless Communication Channels ------------------------------------------------------------------- 126
  • 8. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 F | P a g e 5.3.1 –Main reasons of Interference ----------------------------------------------------------------------------------------------------------- 126 5.3.1.1 – Multiple signals in the Front Ends of a Communication System -------------------------------------------------------- 127 5.3.1.2 – Receiver Overload ------------------------------------------------------------------------------------------------------------------- 127 5.3.1.3 – Out Of Band Emission (OOBE) ---------------------------------------------------------------------------------------------------- 127 5.3.1.4 – Base-Station Intermodulation Products --------------------------------------------------------------------------------------- 127 5.3.1.5 – Skip -------------------------------------------------------------------------------------------------------------------------------------- 127 5.3.1.6 – Ducting --------------------------------------------------------------------------------------------------------------------------------- 127 5.3.1.7 – General RF Noises ------------------------------------------------------------------------------------------------------------------- 127 5.3.2 –Inter-Symbol Interference (ISI)---------------------------------------------------------------------------------------------------------- 128 5.3.2.1 – Causes of Inter-Symbol Interference ------------------------------------------------------------------------------------------- 128 5.3.2.2 – Countering Inter-Symbol Interference ----------------------------------------------------------------------------------------- 129 5.3.3 –Inter-Carrier Interference (ICI) ---------------------------------------------------------------------------------------------------------- 130 5.3.3.1 – Doppler Effect ------------------------------------------------------------------------------------------------------------------------ 130 5.3.3.2 – Synchronization Error -------------------------------------------------------------------------------------------------------------- 131 5.3.3.3 – Multi-Path Fading ------------------------------------------------------------------------------------------------------------------- 131 5.3.3.4 – Solutions for Inter-Carrier Interference --------------------------------------------------------------------------------------- 132 5.3.3.4.1 – CFO Estimation ----------------------------------------------------------------------------------------------------------------- 132 5.3.3.4.2 – Windowing Estimation ------------------------------------------------------------------------------------------------------- 132 5.3.3.4.3 – Inter-Carrier Interference Self-Cancellation ---------------------------------------------------------------------------- 132 5.4 – Large Scale Fading in Wireless Communication Channels ----------------------------------------------------------- 133 5.4.1 –Shadowing Model -------------------------------------------------------------------------------------------------------------------------- 133 5.4.2 –Combined Path Loss and Shadowing Model ---------------------------------------------------------------------------------------- 135 5.4.3 –Outage Probability under Path Loss and Shadowing Effects -------------------------------------------------------------------- 136 5.5 – Small Scale Fading in Wireless Communication Channels ----------------------------------------------------------- 136 5.5.1 –Introduction ---------------------------------------------------------------------------------------------------------------------------------- 136 5.5.2 –Flat Fading ------------------------------------------------------------------------------------------------------------------------------------ 137 5.5.3 –Fast Fading ----------------------------------------------------------------------------------------------------------------------------------- 139 5.5.4 –Slow Fading ---------------------------------------------------------------------------------------------------------------------------------- 139 5.5.5 –Rayleigh Fading ----------------------------------------------------------------------------------------------------------------------------- 140 5.5.6 –Ricean Fading -------------------------------------------------------------------------------------------------------------------------------- 142 5.5.7 –Nakagami-m Fading ------------------------------------------------------------------------------------------------------------------------ 143 Chapter Number 6: Channel Coding ----------------------------------------------------------------------------------- 146 6.1 – Introduction ---------------------------------------------------------------------------------------------------------------------- 146 6.1.1 –Difference between Channel Coding and Source Coding ------------------------------------------------------------------------ 147 6.1.2 –Minimum Distance Considerations ---------------------------------------------------------------------------------------------------- 147 6.1.3 –Modulo-2 Arithmetic Operations ------------------------------------------------------------------------------------------------------ 149 6.2 – Comparison between Typical Coded versus Un-coded Systems Performance -------------------------------- 150 6.2.1 –Error Performance versus Band-Width Performance ----------------------------------------------------------------------------- 150 6.2.2 –Power Performance versus Band-Width Performance --------------------------------------------------------------------------- 150 6.2.3 –Data Rate Performance versus Band-Width Performance ---------------------------------------------------------------------- 150 6.3 – Hard Decisions versus Soft Decisions ------------------------------------------------------------------------------------- 151 6.3.1 –Hard Decision Decoding ------------------------------------------------------------------------------------------------------------------ 152 6.3.2 –Soft Decision Decoding-------------------------------------------------------------------------------------------------------------------- 152 6.4 – Error Control Coding ----------------------------------------------------------------------------------------------------------- 152 6.4.1 –Linear Block Codes ------------------------------------------------------------------------------------------------------------------------- 152 6.4.1.1 – Design Equations -------------------------------------------------------------------------------------------------------------------- 153 6.4.1.2 – Properties of Linear Block Codes ------------------------------------------------------------------------------------------------ 155 6.4.2 –Cyclic Codes ---------------------------------------------------------------------------------------------------------------------------------- 155
  • 9. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 G | P a g e 6.4.2.1 – Introduction --------------------------------------------------------------------------------------------------------------------------- 155 6.4.2.2 – Generator Polynomial -------------------------------------------------------------------------------------------------------------- 156 6.4.2.3 – Parity-Check Polynomial ----------------------------------------------------------------------------------------------------------- 157 6.4.2.4 – Generator and Parity-Check Matrices representations ------------------------------------------------------------------- 158 6.4.2.5 – Case Study I: Cyclic Redundancy Check Codes (CRC) ----------------------------------------------------------------------- 159 6.4.2.5.1 – 16-Bits CRC- CCITT (USA Model) ------------------------------------------------------------------------------------------- 159 6.4.2.5.2 – 16-Bits CRC- ATM -------------------------------------------------------------------------------------------------------------- 160 6.4.2.6 – Case Study II: B. C. H. Codes ------------------------------------------------------------------------------------------------------ 160 6.4.2.6.1 – Introduction--------------------------------------------------------------------------------------------------------------------- 160 6.4.2.6.2 – Encoding Algorithm ----------------------------------------------------------------------------------------------------------- 161 6.4.2.6.3 – Decoding Algorithm ---------------------------------------------------------------------------------------------------------- 161 6.4.3 –Convolutional Codes ----------------------------------------------------------------------------------------------------------------------- 163 6.4.3.1 – Introduction --------------------------------------------------------------------------------------------------------------------------- 163 6.4.3.2 – Encoder Structure ------------------------------------------------------------------------------------------------------------------- 163 6.4.3.3 – Connection Representation ------------------------------------------------------------------------------------------------------- 164 6.4.3.4 – Convolutional Encoder Representation --------------------------------------------------------------------------------------- 165 6.4.3.4.1 – Polynomial Representation ------------------------------------------------------------------------------------------------- 165 6.4.3.4.2 – State Representation --------------------------------------------------------------------------------------------------------- 165 6.4.3.4.3 – Tree Diagram Representation ---------------------------------------------------------------------------------------------- 166 6.4.3.4.4 – Trellis Diagram Representation -------------------------------------------------------------------------------------------- 167 6.4.3.5 – Case Study: Low Parity Check Codes (LDPC) --------------------------------------------------------------------------------- 169 6.4.3.5.1 – Introduction--------------------------------------------------------------------------------------------------------------------- 169 6.4.3.5.1 – Matrix Representation of LDPC Codes ----------------------------------------------------------------------------------- 169 6.4.3.5.2 – Graphical Representation of LDPC Codes ------------------------------------------------------------------------------- 170 6.4.3.5.3 – Regular and Irregular LDPC Codes ---------------------------------------------------------------------------------------- 170 6.4.3.5.4 – Constructing LDPC Codes---------------------------------------------------------------------------------------------------- 170 6.4.3.5.5 – Hard Decoding of LDPC Codes --------------------------------------------------------------------------------------------- 170 6.4.3.5.6 – Soft-Decision Decoding ------------------------------------------------------------------------------------------------------ 172 6.4.3.5.7 – LDPC Performance ------------------------------------------------------------------------------------------------------------ 173 Chapter Number 7: Orthogonal Frequency Division Multiplexing --------------------------------------------- 174 7.1 – Introduction ---------------------------------------------------------------------------------------------------------------------- 174 7.2 – OFDM Historical Overview --------------------------------------------------------------------------------------------------- 175 7.3 – Important Definitions --------------------------------------------------------------------------------------------------------- 175 7.3.1 – Inter-Symbol Interference (ISI) --------------------------------------------------------------------------------------------------------- 175 7.3.2 – Inter-Carrier Interference (ICI) --------------------------------------------------------------------------------------------------------- 176 7.4 – OFDM as a Multicarrier Transmission Technique ---------------------------------------------------------------------- 177 7.5 – OFDM Concept ------------------------------------------------------------------------------------------------------------------ 179 7.5.1 –Illustrative Example ------------------------------------------------------------------------------------------------------------------------ 179 7.5.2 – Analysis --------------------------------------------------------------------------------------------------------------------------------------- 179 7.5.2.1 – Time Domain Analysis -------------------------------------------------------------------------------------------------------------- 180 7.5.2.2 – Frequency Domain Analysis ------------------------------------------------------------------------------------------------------ 180 7.5.2.3 – Conclusion from both Domains Analysis -------------------------------------------------------------------------------------- 181 7.6 – Orthogonality of OFDM ------------------------------------------------------------------------------------------------------- 181 7.7 – Comparing FDM to OFDM ---------------------------------------------------------------------------------------------------- 182 7.7.1 –Frequency Division Multiplexing (FDM) ---------------------------------------------------------------------------------------------- 182 7.7.2 – Orthogonal Frequency Division Multiplexing (OFDM) --------------------------------------------------------------------------- 183
  • 10. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 H | P a g e 7.8 – OFDM Implementation ------------------------------------------------------------------------------------------------------- 184 7.8.1 –Implementation using “FFT/IFFT” ------------------------------------------------------------------------------------------------------ 185 7.9 – OFDM Transmitter ------------------------------------------------------------------------------------------------------------- 185 7.10 – OFDM Receiver ---------------------------------------------------------------------------------------------------------------- 186 7.11 – Cyclic Prefix --------------------------------------------------------------------------------------------------------------------- 186 7.11.1 – Cyclic Prefix Representation in OFDM System ----------------------------------------------------------------------------------- 187 7.11.2 – Advantages of using Cyclic Prefix ---------------------------------------------------------------------------------------------------- 188 7.11.3 – Disadvantages of using Cyclic Prefix ------------------------------------------------------------------------------------------------ 188 7.12 – Coded Orthogonal Frequency Division Multiplexing (COFDM) --------------------------------------------------- 188 7.13 –Orthogonal Frequency Division Multiple Access (OFDMA) -------------------------------------------------------- 190 7.14 – Peak to Average Power Ratio (PAPR) ----------------------------------------------------------------------------------- 191 7.14.1 –Conceptual Meaning --------------------------------------------------------------------------------------------------------------------- 191 7.14.2 – The cause of PAPR ----------------------------------------------------------------------------------------------------------------------- 192 7.14.3 – PAPR Effect -------------------------------------------------------------------------------------------------------------------------------- 193 7.14.4 – PAPR Reduction Techniques ---------------------------------------------------------------------------------------------------------- 193 7.14.4.1 – Distorting Method ----------------------------------------------------------------------------------------------------------------- 193 7.14.4.2 – Non-Distorting Method ---------------------------------------------------------------------------------------------------------- 193 7.14.4.2.1 – Selective Mapping Method ----------------------------------------------------------------------------------------------- 193 Chapter Number 8: Space Time Coding ------------------------------------------------------------------------------- 194 8.1 – Space Time Coding Concept ------------------------------------------------------------------------------------------------- 194 8.2 – Diversity --------------------------------------------------------------------------------------------------------------------------- 194 8.2.1 –Diversity Classes ---------------------------------------------------------------------------------------------------------------------------- 194 8.2.1.1 – Time Diversity ------------------------------------------------------------------------------------------------------------------------ 194 8.2.1.2 – Frequency Diversity ----------------------------------------------------------------------------------------------------------------- 195 8.2.1.3 – Antenna Diversity-------------------------------------------------------------------------------------------------------------------- 196 8.2.1.3.1 – Multiple Input Single Output (MISO) ------------------------------------------------------------------------------------- 197 8.2.1.3.2 – Single Input Multiple Output (SIMO) ------------------------------------------------------------------------------------- 197 8.2.1.3.3 – Multiple Input Multiple Output (MIMO) -------------------------------------------------------------------------------- 198 8.2.1.3.4 – Multiple Input Multiple Output Multi Users (MIMO-Mu) ---------------------------------------------------------- 199 8.2.2 –Diversity Effect on Bit-Error-Rate ------------------------------------------------------------------------------------------------------ 199 8.2.3 –Diversity Condition ------------------------------------------------------------------------------------------------------------------------- 200 8.2.3.1 – Polarization Diversity --------------------------------------------------------------------------------------------------------------- 201 8.2.3.2 – Angle Diversity ----------------------------------------------------------------------------------------------------------------------- 201 8.3 – Spatial Multiplexing------------------------------------------------------------------------------------------------------------ 201 8.4 – MIMO Concept ------------------------------------------------------------------------------------------------------------------ 201 8.4.1 –Advantages of MIMO Systems ---------------------------------------------------------------------------------------------------------- 202 8.4.2 –MIMO General Model --------------------------------------------------------------------------------------------------------------------- 202 8.4.3 –MIMO General Capacity Equation ----------------------------------------------------------------------------------------------------- 203 8.4.4 –Factors Affecting MIMO System Capacity ------------------------------------------------------------------------------------------- 204 8.4.5 –How MIMO System works? -------------------------------------------------------------------------------------------------------------- 205 8.5 – Receiving Space Time Codes ------------------------------------------------------------------------------------------------- 205 8.5.1 – Maximum Likelihood Decoder --------------------------------------------------------------------------------------------------------- 205 8.5.2 – Zero Forcing Decoder --------------------------------------------------------------------------------------------------------------------- 206 8.5.3 – Minimum Mean Square Error (MMSE) Decoder ---------------------------------------------------------------------------------- 206
  • 11. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 I | P a g e 8.5.4 – Successive Cancellation Decoder ------------------------------------------------------------------------------------------------------ 206 8.5.4.1 – Order Successive Interference Cancellation Algorithm ------------------------------------------------------------------- 207 8.5.4.2 – Vertical-Ball Laboratories Layered Space-Time Algorithm --------------------------------------------------------------- 207 Chapter Number 9: Digital Video Broadcasting 2nd Generation Terrestrial Simulation ------------------ 208 9.1 – Introduction ---------------------------------------------------------------------------------------------------------------------- 208 9.1.1 –DVB-T2 Key Features ---------------------------------------------------------------------------------------------------------------------- 208 9.1.1.1 – Physical Layer Pipes (PLPs) -------------------------------------------------------------------------------------------------------- 208 9.1.1.1.1 – Input Mode “A” ---------------------------------------------------------------------------------------------------------------- 208 9.1.1.1.2 – Input Mode “B” ---------------------------------------------------------------------------------------------------------------- 208 9.1.1.2 – Additional Band-Widths (1.7 MHz, 10 MHz) --------------------------------------------------------------------------------- 209 9.1.1.3 – Extended Carrier Mode (8K, 16K, 32K)----------------------------------------------------------------------------------------- 209 9.1.1.4 – Alamouti-Based MISO (In Frequency direction) ----------------------------------------------------------------------------- 209 9.1.1.5 – Pre-ambles (P1 and P2) ------------------------------------------------------------------------------------------------------------ 209 9.1.1.6 – Pilot Patterns ------------------------------------------------------------------------------------------------------------------------- 210 9.1.1.7 – 256-QAM Modulation Technique ----------------------------------------------------------------------------------------------- 210 9.1.1.8 – Rotated Constellations ------------------------------------------------------------------------------------------------------------- 210 9.1.1.9 – 16K and 32K FFT Sizes and (1/128) guard-interval fraction -------------------------------------------------------------- 211 9.1.1.10 – LDPC and BCH error correcting codes ---------------------------------------------------------------------------------------- 211 9.1.1.11 – Interleavers (Bit, Cell, Time, and Frequency) ------------------------------------------------------------------------------- 211 9.1.1.12 – Peak-Average Power Reduction Techniques ------------------------------------------------------------------------------- 211 9.1.1.13 – Future Extension Frames (FEFs) ------------------------------------------------------------------------------------------------ 212 9.1.2 –System Architecture ----------------------------------------------------------------------------------------------------------------------- 212 9.1.2.1 – Mode Adaptation Module -------------------------------------------------------------------------------------------------------- 212 9.1.2.2 – Stream Adaptation Module ------------------------------------------------------------------------------------------------------- 213 9.1.2.3 – Bit Interleaved Coding and Modulation Module ---------------------------------------------------------------------------- 213 9.1.2.4 – Frame Mapper Module ------------------------------------------------------------------------------------------------------------ 213 9.1.2.5 – Modulator Module ------------------------------------------------------------------------------------------------------------------ 213 9.2 – Mode Adaptation Module --------------------------------------------------------------------------------------------------- 213 9.2.1 –Input Formats-------------------------------------------------------------------------------------------------------------------------------- 214 9.2.2 –Input Interface ------------------------------------------------------------------------------------------------------------------------------ 214 9.2.3 –Input Stream Synchronization ---------------------------------------------------------------------------------------------------------- 214 9.2.4 –Compensating Delay for Transport Stream ------------------------------------------------------------------------------------------ 215 9.2.5 –Null Packet Deletion ----------------------------------------------------------------------------------------------------------------------- 215 9.2.6 –CRC-Encoding -------------------------------------------------------------------------------------------------------------------------------- 216 9.2.7 –Base-Band Header Insertion ------------------------------------------------------------------------------------------------------------- 216 9.2.8 –Mode Adaptation sub-system Output Stream Formats -------------------------------------------------------------------------- 217 9.2.8.1 – Normal Mode, GDPS and TS ------------------------------------------------------------------------------------------------------ 217 9.2.8.2 – High Efficiency Mode, Transport Stream -------------------------------------------------------------------------------------- 218 9.2.8.3 – Normal Mode, GCS and GSE ------------------------------------------------------------------------------------------------------ 219 9.2.8.4 – High Efficiency Mode, GSE -------------------------------------------------------------------------------------------------------- 219 9.3 – Stream Adaptation Module -------------------------------------------------------------------------------------------------- 220 9.3.1 –Scheduler ------------------------------------------------------------------------------------------------------------------------------------- 220 9.3.2 –Padding ---------------------------------------------------------------------------------------------------------------------------------------- 220 9.3.3 –Using Padding Fields for in-band Signaling ------------------------------------------------------------------------------------------ 220 9.3.4 –Scrambler ------------------------------------------------------------------------------------------------------------------------------------- 221 9.4 – Bit Interleaving and Modulation Module -------------------------------------------------------------------------------- 222 9.4.1 –Forward Error Correction Encoding --------------------------------------------------------------------------------------------------- 222 9.4.1.1 – Outer Coding (B. C. H.) ------------------------------------------------------------------------------------------------------------- 223 9.4.1.2 – Inner Coding (LDPC) ----------------------------------------------------------------------------------------------------------------- 223
  • 12. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 J | P a g e 9.4.1.2.1 – Inner Coding for Normal FEC Frame -------------------------------------------------------------------------------------- 224 9.4.1.2.2 – Inner Coding for Short FEC Frame ---------------------------------------------------------------------------------------- 225 9.4.1.2.2 – Inner Coding Simulation Results ------------------------------------------------------------------------------------------ 225 9.4.2 –Bit Interleaver ------------------------------------------------------------------------------------------------------------------------------- 226 9.4.3 –Mapping Bits onto Constellations ------------------------------------------------------------------------------------------------------ 227 9.4.3.1 – Bits to Cells Word De-Multiplexer ---------------------------------------------------------------------------------------------- 227 9.4.3.3 – Cell Word Mapping into I/Q constellations ----------------------------------------------------------------------------------- 230 9.4.3.3.1 – Equation Representation ---------------------------------------------------------------------------------------------------- 230 9.4.3.3.2 – Constellation Representation ---------------------------------------------------------------------------------------------- 231 9.4.4 –Constellation Rotation and Cyclic Q-Delay ------------------------------------------------------------------------------------------ 234 9.5 – Frame Mapper Module ------------------------------------------------------------------------------------------------------- 235 9.5.1 –Cell Interleaver ------------------------------------------------------------------------------------------------------------------------------ 235 9.5.2 –Time Interleaver ---------------------------------------------------------------------------------------------------------------------------- 236 9.5.2.1 – Case I --------------------------------------------------------------------------------------------------------------------------------- 237 9.5.2.2 – Case II ----------------------------------------------------------------------------------------------------------------------------------- 237 9.5.2.2 – Case III ---------------------------------------------------------------------------------------------------------------------------------- 237 9.5.3 –Frame Builder -------------------------------------------------------------------------------------------------------------------------------- 238 9.5.3.1 – Frame Structure ---------------------------------------------------------------------------------------------------------------------- 239 9.5.3.2 – Super Frame -------------------------------------------------------------------------------------------------------------------------- 239 9.5.3.3 – T2-Frame ------------------------------------------------------------------------------------------------------------------------------- 240 9.5.3.4 – Duration of the T2-Frame --------------------------------------------------------------------------------------------------------- 240 9.5.3.5 – Capacity and Structure of T2-Frame -------------------------------------------------------------------------------------------- 240 9.5.3.6 – Signaling of the T2-Frame structure and PLPs ------------------------------------------------------------------------------- 241 9.5.3.7 – Overview over T2-Frame Mapping --------------------------------------------------------------------------------------------- 242 9.5.3.8 – Auxiliary Stream Insertion --------------------------------------------------------------------------------------------------------- 242 9.5.3.9 – Future Extension Frames ---------------------------------------------------------------------------------------------------------- 243 9.5.4 –Frequency Interleaver --------------------------------------------------------------------------------------------------------------------- 243 9.6 – Modulator Module ------------------------------------------------------------------------------------------------------------- 244 9.6.1 –Alamouti Space Time Coding ------------------------------------------------------------------------------------------------------------ 244 9.6.1.1 – Alamouti Encoding ------------------------------------------------------------------------------------------------------------------ 245 9.6.1.2 – Alamouti Modified Encoding ----------------------------------------------------------------------------------------------------- 246 9.6.1.3 – Alamouti Modified Decoding using Zeros Forcing Decoder -------------------------------------------------------------- 247 9.6.1.4 – Alamouti Performance ------------------------------------------------------------------------------------------------------------- 247 9.6.2 –Pilot Insertion -------------------------------------------------------------------------------------------------------------------------------- 248 9.6.2.1 – Definition of Reference Plane ---------------------------------------------------------------------------------------------------- 249 9.6.2.1.1 – Symbol Level -------------------------------------------------------------------------------------------------------------------- 249 9.6.2.1.2 – Frame Level --------------------------------------------------------------------------------------------------------------------- 249 9.6.2.2 – Scattered Pilots ---------------------------------------------------------------------------------------------------------------------- 249 9.6.2.2.1 – Locations ------------------------------------------------------------------------------------------------------------------------- 250 9.6.2.2.2 – Modulation ---------------------------------------------------------------------------------------------------------------------- 250 9.6.2.3 – Continual Pilots ---------------------------------------------------------------------------------------------------------------------- 250 9.6.2.3.1 – Locations ------------------------------------------------------------------------------------------------------------------------- 251 9.6.2.2.2 – Modulation ---------------------------------------------------------------------------------------------------------------------- 251 9.6.2.4 – Edge Pilots ----------------------------------------------------------------------------------------------------------------------------- 251 9.6.2.5 – P2 Pilots -------------------------------------------------------------------------------------------------------------------------------- 251 9.6.2.5.1 – Locations ------------------------------------------------------------------------------------------------------------------------- 251 9.6.2.5.2 – Modulation ---------------------------------------------------------------------------------------------------------------------- 251 9.6.2.6 – P2 Pilots -------------------------------------------------------------------------------------------------------------------------------- 252 9.6.2.6.1 – Locations ------------------------------------------------------------------------------------------------------------------------- 252 9.6.2.5.2 – Modulation ---------------------------------------------------------------------------------------------------------------------- 252 9.6.2.7 – Modifications on Pilots for MISO Operation --------------------------------------------------------------------------------- 252
  • 13. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 K | P a g e 9.6.3 –Channel Estimation ------------------------------------------------------------------------------------------------------------------------ 253 9.6.3.1 – Least Square Estimator------------------------------------------------------------------------------------------------------------- 254 9.6.3.2 – Interpolation -------------------------------------------------------------------------------------------------------------------------- 254 9.6.3.2.1 – Temporal Interpolation ------------------------------------------------------------------------------------------------------ 254 9.6.3.2.1 – Frequency Interpolation ----------------------------------------------------------------------------------------------------- 255 9.6.4 –OFDM implementation using IFFT ----------------------------------------------------------------------------------------------------- 255 9.6.5 –Peak-to-Average Power Reduction ---------------------------------------------------------------------------------------------------- 255 9.6.5.1 – PAPR De-Mapping ------------------------------------------------------------------------------------------------------------------- 257 9.6.5 –Guard Interval Insertion ------------------------------------------------------------------------------------------------------------------ 257 9.7 – Synchronization using Control Signals ------------------------------------------------------------------------------------ 257 9.7.1 –P1-Symbols ----------------------------------------------------------------------------------------------------------------------------------- 257 9.7.1.1 – P1-Symbol Over-view --------------------------------------------------------------------------------------------------------------- 258 9.7.1.2 – P1-Symbol Description ------------------------------------------------------------------------------------------------------------- 258 9.7.1.3 – P1-Symbol Generation ------------------------------------------------------------------------------------------------------------- 259 9.7.1.4 – Carrier Distribution in P1-Symbol ----------------------------------------------------------------------------------------------- 259 9.7.1.5 – Modulation of the Active Carriers in P1-Symbol ---------------------------------------------------------------------------- 259 9.7.1.6 – P1-Symbol Decoding ---------------------------------------------------------------------------------------------------------------- 261 9.7.2 –P2-Symbols ----------------------------------------------------------------------------------------------------------------------------------- 261 9.7.2.1 – L1-Signaling Data -------------------------------------------------------------------------------------------------------------------- 261 9.7.2.2 – Repetition of L1-Post dynamic data -------------------------------------------------------------------------------------------- 262 9.7.2.3 – L1-Post Extension Field------------------------------------------------------------------------------------------------------------- 263 9.7.2.4 – CRC for the L1-Post Signaling ----------------------------------------------------------------------------------------------------- 263 9.7.2.5 – Error Correction Coding and Modulation of L1-Pre Signaling ----------------------------------------------------------- 263 9.7.2.6 – Error Correction Coding and Modulation of L1-Post Signaling ---------------------------------------------------------- 263
  • 14. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 L | P a g e Book Structure Chapter Number one: Television History This chapter illustrates the history of television that records the work of numerous engineers and inventors in several countries over many decades. The fundamental principles of television were initially explored using electromechanical methods to scan, transmit and reproduce an image. As electronic camera and display tubes were perfected, electromechanical television gave way to all-electronic systems in nearly all applications. Chapter Number two: Digital Video Broadcasting This chapter discusses Digital Video Broadcasting (DVB) which is a suite of internationally accepted open standards for digital television. DVB standards are maintained by the DVB Project, an international industry consortium with more than 270 members, and they are published by a Joint Technical Committee (JTC) of European Telecommunications Standards Institute (ETSI), European Committee for Electro-technical Standardization (CENELEC) and European Broadcasting Union (EBU). The interaction of the DVB sub-standards is described in the DVB Cookbook. Many aspects of DVB are patented, including elements of MPEG video coding and audio coding. Chapter Number three: Source Coding This chapter devoted to source coding specially MPEG-2 which is a standard for "the generic coding of moving pictures and associated audio information". It describes a combination of lossy compression and lossy audio data compression methods which permit storage and transmission of movies using currently available storage media and transmission bandwidth. Chapter Number four: Digital Modulation Techniques This chapter illustrates Digital modulation schemes which transform digital signals into waveforms that are compatible with the nature of the communications channel. There are two major categories of digital modulation. One category uses a constant amplitude carrier and the other carries the information in phase or frequency variations (FSK, PSK). The other category conveys the information in carrier amplitude variations and is known as amplitude shift keying (ASK) and discussing its various types like BPSK,QPSK,M-ary(16-QAM,64-QAM,256-QAM) and highlights the advantages and disadvantages of each one. Chapter Number five: Wireless Channel Problems Chapter five deal with the problems and impairments that degenerate the performance of the wireless channels. The chapter begins with the noise and interference effects on the channel then continues with the analysis of large scale fading and the mathematical and statistical models the describe this phenomena, after that the small scale fading is introduced in details as it is very detrimental to signal transmission and it is the main problem in the wireless channels. Then the parameters and classifications of the small scale fading channels are listed, then the chapter ended with details of the main characteristics of the channels and the mathematical and empirical models that deal with the multipath fading channels. Chapter Number six: Channel Coding This chapter gives short notes of selected channel coding topics which become relevant in subsequent chapters. Starting with a basic description of linear block and present comprehensive summary convolutional codes, BCH,and ending with the LDPC codes. The chapter gives the properties of each code and the advantages and disadvantages of these codes.
  • 15. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 M | P a g e Chapter Number seven: Orthogonal Frequency Division Multiplexing This chapter illustrates orthogonal frequency-division multiplexing (OFDM), essentially identical to coded OFDM (COFDM) and discrete multi-tone modulation (DMT), is a frequency (FDM) scheme used as a digital multi- carrier modulation method. A large number of closely-spaced orthogonal sub-carriers are used to carry data. The data is divided into several parallel data streams or channels, one for each sub-carrier. Each sub-carrier is modulated with a conventional modulation scheme (such as quadrature amplitude modulation or phase-shift keying) at a low symbol rate, maintaining total data rates similar to conventional single-carrier modulation schemes in the same bandwidth. Chapter Number eight: Space Time Coding This chapter gives short notes a space–time code (STC) is a method employed to improve the reliability of data transmission in wireless communication systems using multiple transmit antennas. STCs rely on transmitting multiple, redundant copies of a data stream to the receiver in the hope that at least some of them may survive the physical path between transmission and reception in a good enough state to allow reliable decoding. Chapter Number nine: DVB-T2 Physical layer This chapter discusses the block diagram of DVB-T2 system in details and introduces the key features of the standard which improve its performance compared to previous DVB standards, The chapter will also include simulation results for the system.
  • 16. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 1 | P a g e Figure (1.1) Figure (1.2) Chapter Number 1 Television History 1.1 – Early History of Television In Ireland 1873 A young telegraph operator, Joseph May, discovered the photoelectric effect; selenium bars, exposed to sunlight, show a variation in resistance. Variations in light intensity can therefore be transformed into electrical signals. That means they can be transmitted as shown below in “Figure (1.1)”. In Boston (USA) 1875 George Carey proposed a system as shown in “Figure (1.2)” based on the exploration of every point in the image simultaneously: a large number of photoelectric cells are arranged on a panel, facing the image, and wired to a panel carrying the same number of bulbs. This system was impracticable if any reasonable quality criteria were to be respected. Even to match the quality of cinema films of that period, thousands of parallel wires would have been needed from one end of the circuit to the other.
  • 17. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 2 | P a g e Figure (1.3) In France 1881, Constantine Senlecq published a sketch detailing a similar idea in an improved form: two rotating switches were proposed between the panels of cells and lamps, and as these turned at the same rate they connected each cell, in turn, with the corresponding lamp. With this system, all the points in the picture could be sent one after the other along a single wire. This is the basis of modern television: the picture is converted into a series of picture elements. Nonetheless, Senlecq's system, like that proposed by Carey, needed a large number of cells and lamps. In Germany 1884 Paul Nipkow applied for a patent covering another image scanning system as shown below in “Figure (1.3)”, it was to use a rotating disk with a series of holes arranged in a spiral, each spaced from the next by the width of the image; a beam of light shining through the holes would illuminate each line of the image. The light beam, whose intensity depended on the picture element, was converted into an electrical signal by the cell. At the receiving end, there was an identical disc turning at the same speed in front of a lamp whose brightness changed according to the received signal. After a complete rotation of the discs, the entire picture had been scanned. If the discs rotated sufficiently rapidly, in other words if the successive light stimuli followed quickly enough one after the other, the eye no longer perceived them as individual picture elements. Instead, the entire picture was seen as if it were a single unit. The idea was simple but it could not be put into practice with the materials available at the time. Other scientific developments were to offer an alternative. The electron, the tiny grain of negative electricity which revolutionised physical science at the end of the 19th century, was the key. The extreme narrowness of electron beams and their absence of inertia caught the imagination of many researchers and oriented their studies towards what in time became known as electronics. The mechanical approach nevertheless stood its ground, and the competition lasted until 1937. The cathode ray tube with a fluorescent scene was invented in 1897. Karl Ferdinand Braun, of the University of Strasbourg, had the idea of placing two electromagnets around the neck of the tube to make the electron beam move horizontally and vertically. On the fluorescent screen the movement of the electron beam had the effect of tracing visible lines on the screen. A Russian scientist, Boris Rosing, suggested this might be used as a receiver screen and conducted experiments in 1907 in his laboratory in Saint Petersburg.
  • 18. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 3 | P a g e Figure (1.4) As early as 1908 the Scotsman A. A. Campbell Swinton outlined a system using cathode ray tubes at both sending and receiving ends and represented it as shown in “Figure (1.4)”, This was the first purely electronic proposal. He published a description of it in 1911 including the following:  The image is thrown onto a photoelectric mosaic fixed to one of the tubes;  A beam of electrons then scans it and produces the electric signal.  At the receiving end, this electric signal controls the intensity of another beam of electrons which scans the fluorescent screen. The methods proposed by Nipkow and Campbell Swinton were at the time theoretical ideas only. The available cells were not sensitive enough and they reacted too slowly to changes in light intensity. The signals were very weak and amplifiers had not yet been invented. 1.2 – Why it’s called Television? The names given to the first systems, at the end of the 19th century, highlighted the form of energy used for transmission; names such as "télectroscope" and "electrical telescope" were used. The German word "Fernsehen" was first used in 1890, by the physicist Eduard Liesegang. This became "fjer-syn" in Danish. The French word "Télévision" was used for the first time in 1900 by the Russian physicist Constantin Perskyi who delivered a speech on the subject during the great Paris exhibition. "Télévision" caught on, and it became "television". in English, "televisie" in Dutch, "televisione" in Italian, "television" in Spanish, etc. But science marched on. There was the potassium cell, which reacted much more rapidly than the selenium cell, then came the triode, manufactured in large quantities from about 1915, the development of which owed much to the new-born "wireless". There was also the neon lamp, whose light intensity could be varied rapidly, making it suitable for use in disc receivers. It was Nipkow's ideas which were the first to benefit from these inventions, and were the first to become practical realities. In 1925, an electrical engineer from Scotland, John Logie Baird, exhibited in Selfridge’s department store in London an apparatus with which he reproduced a simple image, in fact white letters on a black background, at a distance. It was not really television because the two discs which served to transmit the image and to reproduce it were mounted on the same shaft as shown in “Figure (1.5)”.
  • 19. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 4 | P a g e Figure (1.5) However Baird did effectively demonstrate that the principle of successive scanning could be applied in practice, he did it again in 1926, in his laboratory, with the first transmission of a real scene the head of a person, the picture was scanned in 30 lines, with 5 full pictures every second. Similar machines were built in Germany. A smaller mechanical apparatus was presented at the Berlin Radio Show in 1928 by Denes von Mihaly. It was called the "Telehor",. Here too the picture was scanned with 30 lines, but at a picture rate of 10 frames per second. In France, sometime later, the "Semivisor" appeared. It also used 30-line scanning and was built by René Bartholemy.It was about this time that the first tests with the radio-electric transmission of television took place, using the medium-wave radio band. These transmissions attracted the attention of many amateur enthusiasts who built their own disc receivers. The public slowly became aware of the research that was under way. Manufacturers joined in the new adventure, organising systematic studies in their laboratories. New companies were born, such as "Fernseh" in Germany (1929). But what happened to Rosing's experiments? Had everyone forgotten them? In fact many researchers kept his work in mind but they had to wait for developments in the design of cathode- ray tubes before these could be put to any practical use. Around 1930, a number of researchers independently developed the principle of interlaced scanning, which involves exploring first all the odd-numbered lines, followed by the even-numbered lines; this technique avoids flicker. Industry developed techniques to achieve a very great vacuum in tubes. Receivers with cathode-ray tubes came onto the market in 1933. However, the use of cathode-ray tubes at the transmission source, where the picture was scanned, remained the stumbling-block for many years. Initially, the spot of light produced on the fluorescent screen was made to substitute for the light beam in the Nipkow system. In Germany, Manfred von Ardenne built the first "flying spot" cathode-ray tube, thereby enabling transparencies to be scanned. A complete transmission system was presented at the 1931 Berlin Radio Show. This scanning method was subsequently used for all television films.
  • 20. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 5 | P a g e Figure (1.6) The process nonetheless posed enormous problems when applied to real scenes because the light beam had to operate in a darkened environment. Outdoor scenes, for example, were totally impossible. Another process, known as the "intermediate film" system, provided a roundabout solution to this problem for a number of years. Scenes were shot on film, and this was immediately developed and scanned by a disc or flying spot scanner. The solution to the problem of out-door shooting came from across the Atlantic. Following up an idea he had had in 1923, Vladimir Zworykin (one of Rosing's assistants who had immigrated to the United States) invented the "lconoscope" shown in “Figure (1.6)”. This was a globe-shaped cathode-ray tube and it contained the first photoelectric mosaic made from metal particles applied to both sides of a sheet of mica. This first camera tube was more compact than the disc, easier to use and more sensitive. The electron beam which "visits" the elements of the mosaic at a considerable speed, collects from each point all the photoelectric charge which has accumulated there since the last visit, whereas in the mechanical systems the photoelectric cell receives the light from each point only during the very short period while it is actually being scanned. Zworykin presented the first prototype iconoscope at a meeting of engineers in New York in 1929. The apparatus was built by RCA in 1933. It scanned the image in 120lines, at rate of 24 frames per second. Progress was then rapid: as early as 1934, 343-line definition had been achieved and interlacing was being used. In England, lsaac Schoenberg (another Russian emigrant and childhood friend of Zworykin) led developments in the EMI Company on a camera tube similar to the iconoscope. This was the Emitron and it had certain advantages over its rival. EMI, too, adopted interlacing. Also, as early as 1934, EMI. Schoenberg was aiming at a greater number of lines than RCA the target was 405 lines. The system of mechanical analysis, based on the Nipkow disk, nevertheless continued to hold favour with some. In 1929, Baird convinced the BBC that it ought to make television transmission outside normal radio programme hours using a 30-line system giving 12½ frames per second. He marketed his first disc receivers, known as "televisors". He steadily improved his equipment, increasing the scanning to 60, 90, 120 and even 180 lines. In France, René Bartholemy embarked on the development of a particular variant of the disc. During 1931, he gave two demonstrations, which brought him considerable renown, involving 30-line transmission and reception.
  • 21. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 6 | P a g e Figure (1.7) Figure (1.8) Bartholemy's system, which had been tried by certain German engineers, had a mirror drum instead of a disc with holes. The mirrors, which served to illuminate the subject with light from a bright source, were inclined to an increasing degree with respect to the drum axis. They therefore scanned the subject in a series of parallel lines. Potassium cells collected the light reflected from the subject. Baird, too, built similar systems. However the mirror drum was bulky and was unsuitable for the high speeds that had to be used to achieve a large number of lines. It was therefore abandoned in 1933 and work on Nipkow disc systems was resumed. 1.3 – The very first Broadcasts March 1935. A television service was started in Berlin using iconoscope camera shown below in “Figure (1.7)” (180 lines/frame, 25frames/second). Pictures were produced on film and then scanned using a rotating disk. Electronic cameras were developed in 1936, in time for the Berlin Olympic Games. November 1935. Television broadcasting began in a studio in Paris which is shown in “Figure (1.8)”, again using a mechanical system for picture analysis (180 lines/frame, 25 frames/second).
  • 22. Digital Video Broadcasting 2nd Generation Terrestrial Simulation 2011 7 | P a g e That same year, spurred on by the work of Schoenberg, the EMI Company in England developed a fully electronic television system with 405-line definition, 25frames/second, and interlace. The Marconi Company provided the necessary support regarding the development of transmitters. The British government authorised the use of this standard, along with that of Baird, for the television service launched by the BBC in London in November 1936 (the Baird system used mechanical scanning, 240 lines, and 25 frames per second and no interlace). The two systems were used in turn, during alternate weeks. The 240-line mechanical scanning system pushed the equipment to the limit and suffered from poor sensitivity, the balance thus swung in favour of the all-electronic 405-line system which was finally adopted in England in February 1937. The same year, France introduced a 455-line all-electronic system. Germany followed suit with 441 lines, and this standard was also adopted by Italy. The iconoscope was triumphant. It was sensitive enough to allow outdoor shooting. It was by means of a monster no less than 2.2 m long, the television canon, (in fact an iconoscope camera built by Telefunken) that the people of Berlin and Leipzig were able to see pictures from the Berlin Olympic Games. Viewing rooms, known as Fernsehstuben were built for the purpose. Equipment that was easier to manipulate was used by the BBC for the coronation of His Majesty King George VI in 1937 and, the following year, for the Epsom Derby. Public interest was aroused. From 1937 to 1939 receiver sales in London soared from 2,000 to 20,000. Research in the United States (Zworykin and the RCA Company) bore fruit at about the same time. The first public television service was inaugurated in New York in 1939 with a 340-line system operating at 30 frames per second. Two years later, the United States adopted a 525-line 60 frames/second standard. The first transmitters were installed in the capital cities (London, Paris, Berlin, Rome, New York) and only a small proportion of the population of each country was therefore able to benefit. Plans were made to cover other regions. The War stopped the expansion of television in Europe. However the intensive research into electronic systems during the War, and the practical experience it gave, led to enhancements of television technology. Work on radar screens, for example, benefited cathode-ray tube design; circuits able to operate at higher frequencies were developed. When the War was over, broadcasts resumed in the national standards fixed previously: 405 lines in England, 441 lines in Germany and Italy, 455 lines in France. Research showed the advantages of higher picture definition, and systems with more than 1000 lines were investigated. The 819-line standard emerged in France. It was not until 1952 that a single standard (625 lines, 50 frames/second) was proposed, and progressively adopted, for use throughout Europe. Modern television was born.