Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Robots and humans


Published on

Artificial Intelligence can increase human productivity many-fold and transform society for the better. This concept deck imagines the future of work in an age of cognitive computing.

Published in: Business
  • Login to see the comments

Robots and humans

  1. 1. The  Robots  Are  Coming,  Let’s  Reimagine  the  Humans  
  2. 2. The  end  of  work?  
  3. 3. Automa<on  means  less  work…   …  but  not   less  jobs   50%  increase  in  total  number  of   employed  people     Wage  rise  2.23%  faster  than   infla<on  
  4. 4. Automa<on  =  higher  produc<vity…   …flaMening  out  around  the  end  of  ‘00s  
  5. 5. Source:  Wells  Fargo   The  big  slowdown:  Not  enough  automa<on?  
  6. 6. Source:  Boston  Consul<ng  Group   Manufacturing  costs  are  on  the  rise…  
  7. 7. The  Solow  Paradox   You  can  see  the   computer  age   everywhere  but  in   the  produc<vity   sta<s<cs.  
  8. 8. We  need  more  automa<on!  
  9. 9. The  4th  Industrial  Revolu<on:     Automa<ng  the  intellect  
  10. 10. Ar<ficial  Intelligence:  key  disrup<on  areas   Natural  language  conversa<ons   Machine  Learning  
  11. 11. The  automa<on  of  cogni<on   Source:  The  Future  of  Employment,  by  C.   Frey  and  M.  Osborne       47%  of  jobs   will  be  lost  to   cogni<ve   machines  in   the  next  10   years?  
  12. 12. Jobs  versus  ac<vi<es   Source:  McKinsey  Interim  report  on   automa<on  of  jobs,  Nov.  2015   45%     of  job  ac<vi<es    can     be  automated   +AI  =   58%     of  job  ac<vi<es    can     be  automated   60%     of  jobs  can  have       30%     of  their     ac<vi<es  automated   Hello  Jane,   you  look  great   today!  How   can  I  help   you?  
  13. 13. A  new  cyberne<c  rela<onship   Second-­‐order  cyberne<cs  in  the  era  of   machine  intelligence     Humans  and  machines  working  together:  machines   managing  complexity,  humans  providing  crea<vity   From  knowing  what  you  do  not  know  and  searching  for  it     …to  …     …not  knowing  what  you  do  not  know  and  having  “someone”  to  help  you  discover  it    
  14. 14. Possible  impacts  of  4th  Industrial  Revolu<on   •  Government  role  enhanced  through  Universal  Income   •  Collabora<ve  Economy  creates  universal  currency   •  Full-­‐<me  employees  become  Free  Agents  (“CEO  of  Me”)     •  Corpora<ons  evolve  into  Value  People  Networks     •  Zero  Latency  Enterprise  evolves  into  the  Responsive   Organisa<on  
  15. 15. The  collabora<ve  economy   Collabora<ve  virtual  communi<es  crea<ng  value   through  exchange  and  sharing  of  products  and   services  
  16. 16. Cyber-­‐physical    Systems  &  Industry  4.0   From  hierarchies  to  networks   CPS-­‐based  automa/on   Field  level   Control  (PLC)  Level   Process  Control  Level   Plant  management   Level   ERP  Level   Automa/on  hierarchy  
  17. 17. Zero  Latency  Enterprise   Company   Organisa<on   Enterprise  Systems   Enterprise  Applica<ons   Enterprise  App  Integra<on   Data  Store                                                           In  a  real  (me,  zero  latency  enterprise,  informa(on  is  delivered  to  the  right  place  at  the  right   (me  for  maximum  business  value.*   *Defini<on  of  ZLE  by  Gartner  
  18. 18. The  Responsive  Organisa<on   An  agile,  client-­‐facing,  innova(ve  organiza(on  that  con(nuously  learns  and  op(mizes  talent   and  technologies  in  order  to  deliver  superior  products  and  services.   Machine   Intelligence   Applica<ons   People   Networks   Business  Systems   Learning  &  Conversa<ons   Business  Applica<ons   Business  App  Integra<on   Virtual  Data  Store  
  19. 19. People  Networks:  reinven<ng  business   organisa<on   •  Self-­‐organised  ad  hoc  teams   •  Build-­‐in  discovery  from  design  to  customer  service   •  Scaling  Agile   •  Cross-­‐market  &  Cross-­‐exper<se   •  Collabora<on  plaqorms   •  AI  enabled  UI/UX   •  Predic<ve  analy<cs  
  20. 20. Getng  there:  “lead  the  work”  model   Leaders  transforming  work  in  their  organisa<on   Source:  “Lead  the  Work”  by  R.  Jesuthasan,  J.  Bourdeau,  D.  Creelman   Assignment   Organisa<on   Rewards   •  Self-­‐contained   •  Unlinked   •  Exclusive   •  Stable   •  Deconstructed  Tasks   •  Dispersed   •  Project-­‐bound   •  Constructed  Jobs   •  Anchored   •  Employment-­‐Bound   •  Long-­‐Term   •  Collec<ve  and   consistent   •  Tradi<onal   •  Permeable   •  Interlinked   •  Collabora<ve   •  Flexible   •  Short-­‐term   •  Individualised  and   Differen<ated   •  Imagina<ve   AI  enabled  
  21. 21. Getng  there:  Scaling  Agile  organisa<on   Apply  agile  prac<ce  across  the  organisa<on   hMp://  hMp://   INNOVATE DELIVER VALIDATE UNDERSTAND
  22. 22. Getng  there:  digital  engagement   Apply  Next  Genera<on   Integrated  Digital   Engagement  Model  (IDEM)     for    the  digital   transforma<on    of  work   Behavioural   Modelling   Human-­‐ machine   conversa<ons   AI  Interface   Data   Worker   experience   Human-­‐machine   collabora<on  
  23. 23. Getng  there:  machine  intelligence  for  EX   Build  the  machine  intelligence  layer  of  the  responsive  organisa<on  
  24. 24. Thank  you   George  Zarkadakis,  PhD,  CEng   @zarkadakis