Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Machine Learning con Anaconda, Jupyter y Python

752 views

Published on

Machine Learning con Anaconda, Jupyter y Python

Published in: Data & Analytics
  • Be the first to comment

  • Be the first to like this

Machine Learning con Anaconda, Jupyter y Python

  1. 1. “Preprocesamiento de datos con Jupyter Notebooks, Anaconda y Python 3” Machine Learning
  2. 2. www.stratebi.com 1 Preprocesamiento de datos – Importar Librerías
  3. 3. www.stratebi.com 2 Preprocesamiento de datos – Importar conjunto de datos Country Age Salary Purchase d France 44 72000 No Spain 27 48000 Yes Germany 30 54000 No Spain 38 61000 No Germany 40 Yes France 35 58000 Yes Spain 52000 No France 48 79000 Yes Germany 50 83000 No France 37 67000 Yes
  4. 4. www.stratebi.com 3 Preprocesamiento de datos – Imputar valores nulos Country Age Salary Purchase d France 44,0 72.000,00 No Spain 27,0 48.000,00 Yes Germany 30,0 54.000,00 No Spain 38,0 61.000,00 No Germany 40,0 63.777,78 Yes France 35,0 58.000,00 Yes Spain 38,8 52.000,00 No France 48,0 79.000,00 Yes Germany 50,0 83.000,00 No France 37,0 67.000,00 Yes
  5. 5. www.stratebi.com 1 Preprocesamiento de datos – Codificar Variables Categóricas Countr y Age Salary Purchased 0 44, 0 72.000,0 0 No 2 27, 0 48.000,0 0 Yes 1 30, 0 54.000,0 0 No 2 38, 0 61.000,0 0 No 1 40, 0 63.777,7 8 Yes 0 35, 0 58.000,0 0 Yes Country_ 0 Country_ 1 Country_ 2 Age Salary Purchased 1 0 0 44,0 72.000,0 0 No 0 0 1 27,0 48.000,0 0 Yes 0 1 0 30,0 54.000,0 0 No 0 0 1 38,0 61.000,0 0 No 0 1 0 40,0 63.777,7 8 Yes 1 0 0 35,0 58.000,0 0 Yes
  6. 6. www.stratebi.com 1 Preprocesamiento de datos – Creación de conjuntos de Entrenamiento y Test Country_ 0 Country _1 Country _2 Age Salary Purchased 1 0 0 44,0 72.000,0 0 0 0 0 1 27,0 48.000,0 0 1 0 1 0 30,0 54.000,0 0 0 0 0 1 38,0 61.000,0 0 0 0 1 0 40,0 63.777,7 8 1 1 0 0 35,0 58.000,0 0 1 52.000,0 X_tra in Y_trai n X_tes t Y_test Country _0 Country _1 Country _2 Age Salary Purchas ed 0 1 0 40,0 63.777, 78 1 1 0 0 37,0 67.000, 00 1 0 0 1 27,0 48.000, 00 1 0 0 1 38,8 52.000, 00 0 1 0 0 48,0 79.000, 00 1 0 0 1 38,0 61.000, 00 0 72.000, Creación de los conjuntos Ordenar
  7. 7. www.stratebi.com 1 Preprocesamiento de datos – Escalado de columnas Country_0 Country_1 Country_2 Age Salary Purchased -1 2,64575131 - 0,7745966 7 0,26306757 0,123814 79 1 1 - 0,37796447 - 0,7745966 7 -0,25350148 0,461756 32 1 -1 - 0,37796447 1,2909944 5 -1,97539832 - 1,530933 41 1 -1 - 0,37796447 1,2909944 5 0,05261351 - 1,111419 78 0 - X_tra in Y_trai n X_tes t Y_test Escalado de Columnas • Country_0 • Country_1 • Country_2 • Age • Salary Media 0 Varianza 1
  8. 8. Datos de contacto 8
  9. 9. Facebook.com/stratebiopenbi @stratebi plus.google.com/stratebi Datos de contacto: Madrid: Avda. del Brasil, 17, 16ºAB Barcelona: C/ Valencia, 63 Alicante: C/Italia 23, 4º Derecha 91 788 34 10 www.stratebi.com info@stratebi.com

×