Radicals are radical

624 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
624
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Radicals are radical

  1. 1. Radicals are Radical!
  2. 2. Do Now <ul><li>√ 169 5. 5√28-2√45 </li></ul><ul><li>14√75 6. 3 √45+7√36 </li></ul><ul><li>3√160 </li></ul><ul><li>5√3 + 2√75 </li></ul>
  3. 3. Rational Square Roots <ul><li>Square Root- If a ²= b, then a is the square root of b. </li></ul><ul><li>Example - 5² = 25, √25 = 5. 5 is the square root of 25. </li></ul><ul><li>Example - 9² = 81. √81 = 9. 9 is the square root of 81. </li></ul>
  4. 4. Simplifying Irrational Square Roots <ul><li>Irrational square roots are numbers that cannot be expressed as fractions. While solving irrational square roots, look for perfect square within the number. (4,9,16…) </li></ul><ul><li>Example: √50 = √25x2 = 5√2 </li></ul><ul><li>Example: √24 = √6x4 = 2√6 </li></ul>
  5. 5. Adding Radicals <ul><li>To simplify the sums of square-root radicals </li></ul><ul><li>1.) Express each radical in simplest form. </li></ul><ul><li>2.) Use the Distributive property to add the radicals with like radicands. </li></ul><ul><li>Example.) 4 √7 + 5√7 = (4+5)√7 = 9√7 </li></ul><ul><li>Example.) √24 +√6 = √6x4 + √6 = 2√6 + √6 = 3√6 </li></ul>
  6. 6. Subtracting Radicals <ul><li>To simplify the differences of square-root radicals: </li></ul><ul><li>1.) Express each radical in simplest form. </li></ul><ul><li>2.) Use the distributive property to subtract radicals with like radicands. </li></ul><ul><li>Example.) 8√3 - 5√3 = (8-5)√3 = 3√3 </li></ul><ul><li>Example.)√27 - √3 = √9x3 - √3 = 3√3 - √3= </li></ul><ul><li>2√3 </li></ul>
  7. 7. Assessment If you are up for the challenge, click here for our quiz

×