SlideShare a Scribd company logo
1 of 26
Download to read offline
Google Research
小泉 悠馬
深層学習を利用した音声強調
日本音響学会第 22 回サマーセミナー
「音響学の基礎と最近のトピックス」
Proprietary + Confidential
自己紹介
❏ 名前:小泉 悠馬
❏ 略歴:
❏ 2014年:法政大院 情報科学研究科卒(修士)
❏ 2017年:電通大院 情報理工学研究科卒(博士 工学)
❏ 2014年〜2020年:NTTメディアインテリジェンス研究所 研究員
❏ 2020年〜:Google Research, Research Scientist
❏ 研究分野:音声強調・音声認識・音環境認識(電気音響&音声A)
❏ 音響学会でのお仕事:評議員、学生・若手フォーラム代表
Proprietary + Confidential
Google Speech Group in Tokyo
Michiel Bacchiani Richard Sproat Llion Jones
Yotaro Kubo Shigeki Karita Tobenna Igwe Yuma Koizumi
Proprietary + Confidential
なんと言っているでしょう?
Proprietary + Confidential
ではこれなら?
Proprietary + Confidential
ではこれなら?
It was nearly night when
Rudolph arrived, and what...
Proprietary + Confidential
音声強調とは
Speech
Noise 1
Noise 2
OK Google
Observation Oh [GAAAAA]
Kay [PiyoPiyo]
Uhle..
Proprietary + Confidential
音声強調とは
OK Google
Observation
音声強調
Speech
Noise
OK Google
Oh [GAAAAA]
Kay [PiyoPiyo]
Uhle..
Speech
Noise 1
Noise 2
Proprietary + Confidential
マスクベースの音声強調
Proprietary + Confidential
マスクベースの音声強調
Proprietary + Confidential
マスクベースの音声強調
Proprietary + Confidential
マスクベースの音声強調
Proprietary + Confidential
Encoder Decoder
マスク推定
マイクで
収録した音
強調した音
e.g. STFT e.g. 逆STFT
ここがDNN
DNNは何をするのか?
❏ マスクの推定にDNNを使う
Proprietary + Confidential
Encoder Decoder
マスク推定
1次元畳み込み 1次元逆畳み込み
最近の ”時間領域” 音声強調
マイクで
収録した音
強調した音
❏ STFT(短時間フーリエ変換)の代わりに1次元CNNを使って、音声強調処
理全体を学習してしまう(いわゆる end-to-end)
Proprietary + Confidential
音声
雑音
模擬した入力音
音声
雑音
Speech
Noise
+
音声の
誤差
雑音の
誤差
学習データ
どうやって学習するの?
音声強調DNN
Proprietary + Confidential
音声
雑音
模擬した入力音
音声
雑音
Speech
Noise
+
音声の
誤差
雑音の
誤差
学習データ
どうやって学習するの?
音声強調DNN
誤差逆伝播
誤差逆伝播
Proprietary + Confidential
私もやってみたい!
❏ たくさんのオープンソースなツールキットがあります
❏ Asteroid
❏ 単一チャネルマスクベース音声強調/分離を基本としたツールキット
❏ 設計がシンプルなので非常に触りやすい
❏ データセットのダウンロードも簡単
❏ ESPnet
❏ 音声認識/合成にフォーカスしたツールキット
❏ 音声強調/分離の単体学習だけでなく、音声認識との同時学習もできる
❏ マルチチャネルの残響除去/音声強調にも対応(全部盛り...!!)
❏ SpeechBrain
❏ 最近公開された新しいツールキット
❏ 私は触ったことはないですが、スクラッチ学習のチュートリアルもあってとっつ
きやすそう
Proprietary + Confidential
ちょっとだけ、手前味噌な研究紹介
Encoder Decoder
TdcnBlocks
マイクで
収録した音
強調した音
Y. Koizumi, et al., "DF-Conformer: Integrated architecture of Conv-TasNet and Conformer using linear complexity self-attention for speech enhancement," WASPAA 2021.
多段の dilated conv だけでは時間構造をうまく解析できない
Conv-TasNet
Proprietary + Confidential
ちょっとだけ、手前味噌な研究紹介
Encoder Decoder
Conformer
Block
マイクで
収録した音
強調した音
Y. Koizumi, et al., "DF-Conformer: Integrated architecture of Conv-TasNet and Conformer using linear complexity self-attention for speech enhancement," WASPAA 2021.
Conv-TasNet Conformer
一般的なAttention は O(N2
) の計算量が必要で
分析窓長が2.5ms の時間領域音声強調では使えない
Proprietary + Confidential
ちょっとだけ、手前味噌な研究紹介
Encoder Decoder
DF-Conformer
Block
マイクで
収録した音
強調した音
NEW
Y. Koizumi, et al., "DF-Conformer: Integrated architecture of Conv-TasNet and Conformer using linear complexity self-attention for speech enhancement," WASPAA 2021.
O(N) の Attention に変更
Dilated conv に変更 (Conv-TasNet のいいとこどり)
Proprietary + Confidential
ちょっとだけ、手前味噌な研究紹介
入力音 出力音
プレプリント:arxiv.org/abs/2106.15813
デモサイト:google.github.io/df-conformer/waspaa2021
Y. Koizumi, et al., "DF-Conformer: Integrated architecture of Conv-TasNet and Conformer using linear complexity self-attention for speech enhancement," WASPAA 2021.
Proprietary + Confidential
ちょっとだけ、手前味噌な研究紹介
Proprietary + Confidential
今後、どんな風に進化していくだろう?
❏ 正直、教師ありのオフライン音声強調の性能はサチってきました
❏ SNR改善量が 14.0dB から 15.0dB になって、聞いて違いがわかる?
❏ それは実環境でも同じように動くの?使い易いの?
❏ 他タスクのフロントエンドとしての評価は十分でないようです
❏ アドホックな学習方法を利用して、ようやく単一チャネル音声強調と音声認識
の同時学習が動くようになってきたところです
❏ オンライン化、モデルの小型化、教師なし学習など、次の研究課題はたくさん
あります
Proprietary + Confidential
おわり
Proprietary + Confidential
ちなみに:音源分離?音声強調?
Sound1
Sound2
Sound3
OK Google
Observation
音源分離
Sound1
Sound2
Sound3
OK Google
Oh [GAAAAA]
Kay [PiyoPiyo]
Uhle..
❏ 音源分離: 混ざったものを、それぞれ個別な音へ分離する
❏ 音声強調: 混ざったものを、欲しい音声とそれ以外へ分離する
Proprietary + Confidential
ちなみに:マイクの個数?
❏ マイクは1つ(single-channel enhancement)
❏ 音の音色を手がかりにした分離
❏ 非線形なフィルタリング(後述)
❏ マイクは複数(multi-channel enhancement)
❏ 加えて、音の空間的な特性を手がかりにできる
❏ 線形なフィルタリング(多分、他の先生が解説してくれます)
❏ 今日は、シングルチャネルの音声強調に絞って解説します

More Related Content

What's hot

【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 
Interspeech2022 参加報告
Interspeech2022 参加報告Interspeech2022 参加報告
Interspeech2022 参加報告Yuki Saito
 
音情報処理における特徴表現
音情報処理における特徴表現音情報処理における特徴表現
音情報処理における特徴表現NU_I_TODALAB
 
音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組み音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組みAtsushi_Ando
 
大学3年生の僕に伝えたいことをつらつらと
大学3年生の僕に伝えたいことをつらつらと大学3年生の僕に伝えたいことをつらつらと
大学3年生の僕に伝えたいことをつらつらとToshinori Sato
 
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion ModelsDeep Learning JP
 
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...Deep Learning JP
 
Neural text-to-speech and voice conversion
Neural text-to-speech and voice conversionNeural text-to-speech and voice conversion
Neural text-to-speech and voice conversionYuki Saito
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!TransformerArithmer Inc.
 
研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイするTakayuki Itoh
 
音声合成のコーパスをつくろう
音声合成のコーパスをつくろう音声合成のコーパスをつくろう
音声合成のコーパスをつくろうShinnosuke Takamichi
 
Transformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてTransformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてSho Takase
 
ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向Yuma Koizumi
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習cvpaper. challenge
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門joisino
 
Moment matching networkを用いた音声パラメータのランダム生成の検討
Moment matching networkを用いた音声パラメータのランダム生成の検討Moment matching networkを用いた音声パラメータのランダム生成の検討
Moment matching networkを用いた音声パラメータのランダム生成の検討Shinnosuke Takamichi
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習Eiji Uchibe
 
短時間発話を用いた話者照合のための音声加工の効果に関する検討
短時間発話を用いた話者照合のための音声加工の効果に関する検討短時間発話を用いた話者照合のための音声加工の効果に関する検討
短時間発話を用いた話者照合のための音声加工の効果に関する検討Shinnosuke Takamichi
 
統計的音声合成変換と近年の発展
統計的音声合成変換と近年の発展統計的音声合成変換と近年の発展
統計的音声合成変換と近年の発展Shinnosuke Takamichi
 
SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用SSII
 

What's hot (20)

【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
Interspeech2022 参加報告
Interspeech2022 参加報告Interspeech2022 参加報告
Interspeech2022 参加報告
 
音情報処理における特徴表現
音情報処理における特徴表現音情報処理における特徴表現
音情報処理における特徴表現
 
音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組み音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組み
 
大学3年生の僕に伝えたいことをつらつらと
大学3年生の僕に伝えたいことをつらつらと大学3年生の僕に伝えたいことをつらつらと
大学3年生の僕に伝えたいことをつらつらと
 
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
 
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...
[DL輪読会]Discriminative Learning for Monaural Speech Separation Using Deep Embe...
 
Neural text-to-speech and voice conversion
Neural text-to-speech and voice conversionNeural text-to-speech and voice conversion
Neural text-to-speech and voice conversion
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 
研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイする
 
音声合成のコーパスをつくろう
音声合成のコーパスをつくろう音声合成のコーパスをつくろう
音声合成のコーパスをつくろう
 
Transformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてTransformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法について
 
ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向ICASSP 2019での音響信号処理分野の世界動向
ICASSP 2019での音響信号処理分野の世界動向
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
Moment matching networkを用いた音声パラメータのランダム生成の検討
Moment matching networkを用いた音声パラメータのランダム生成の検討Moment matching networkを用いた音声パラメータのランダム生成の検討
Moment matching networkを用いた音声パラメータのランダム生成の検討
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
 
短時間発話を用いた話者照合のための音声加工の効果に関する検討
短時間発話を用いた話者照合のための音声加工の効果に関する検討短時間発話を用いた話者照合のための音声加工の効果に関する検討
短時間発話を用いた話者照合のための音声加工の効果に関する検討
 
統計的音声合成変換と近年の発展
統計的音声合成変換と近年の発展統計的音声合成変換と近年の発展
統計的音声合成変換と近年の発展
 
SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用SSII2022 [OS3-02] Federated Learningの基礎と応用
SSII2022 [OS3-02] Federated Learningの基礎と応用
 

Similar to 深層学習を利用した音声強調

2014LETシンポジウム WritingMaetriXについて
2014LETシンポジウム WritingMaetriXについて2014LETシンポジウム WritingMaetriXについて
2014LETシンポジウム WritingMaetriXについてWritingMaetriX
 
NECTJ JHL Annual Conference Namiai Internatinal Camp
NECTJ JHL Annual Conference Namiai Internatinal CampNECTJ JHL Annual Conference Namiai Internatinal Camp
NECTJ JHL Annual Conference Namiai Internatinal CampNECTJ
 
音声の声質を変換する技術とその応用
音声の声質を変換する技術とその応用音声の声質を変換する技術とその応用
音声の声質を変換する技術とその応用NU_I_TODALAB
 
ITコミュニティに関する自由研究
ITコミュニティに関する自由研究ITコミュニティに関する自由研究
ITコミュニティに関する自由研究NISHIHARA Shota
 
地方豪族論in札幌
地方豪族論in札幌地方豪族論in札幌
地方豪族論in札幌Masahiko Shoji
 
嘉悦大学 「ICT×社会起業=イノベーション!」
嘉悦大学 「ICT×社会起業=イノベーション!」嘉悦大学 「ICT×社会起業=イノベーション!」
嘉悦大学 「ICT×社会起業=イノベーション!」Ayako Togaeri
 
学会・研究会の情報保障におけるソーシャルネットワークの役割
学会・研究会の情報保障におけるソーシャルネットワークの役割学会・研究会の情報保障におけるソーシャルネットワークの役割
学会・研究会の情報保障におけるソーシャルネットワークの役割Takuya Nishimoto
 
DeNAにおける先端AI技術活用のチャレンジ
DeNAにおける先端AI技術活用のチャレンジDeNAにおける先端AI技術活用のチャレンジ
DeNAにおける先端AI技術活用のチャレンジYusuke Uchida
 
研究・企業・生き方について 情報科学若手の会2011
研究・企業・生き方について 情報科学若手の会2011研究・企業・生き方について 情報科学若手の会2011
研究・企業・生き方について 情報科学若手の会2011Preferred Networks
 
Scipy Japan 2019の紹介
Scipy Japan 2019の紹介Scipy Japan 2019の紹介
Scipy Japan 2019の紹介Takeshi Akutsu
 
特別チュートリアル「パターン認識とメディア理解のフロンティア」 ディスカッションペーパー
特別チュートリアル「パターン認識とメディア理解のフロンティア」 ディスカッションペーパー特別チュートリアル「パターン認識とメディア理解のフロンティア」 ディスカッションペーパー
特別チュートリアル「パターン認識とメディア理解のフロンティア」 ディスカッションペーパーOsaka University
 
家族を育むスタイル・ランゲージ - 日々の世界のつくりかた - (ORF2017)
家族を育むスタイル・ランゲージ  - 日々の世界のつくりかた - (ORF2017)家族を育むスタイル・ランゲージ  - 日々の世界のつくりかた - (ORF2017)
家族を育むスタイル・ランゲージ - 日々の世界のつくりかた - (ORF2017)Takashi Iba
 
【FIT2016チュートリアル】ここから始める情報処理 ~音声編~ by 東工大・篠崎先生
【FIT2016チュートリアル】ここから始める情報処理 ~音声編~ by 東工大・篠崎先生【FIT2016チュートリアル】ここから始める情報処理 ~音声編~ by 東工大・篠崎先生
【FIT2016チュートリアル】ここから始める情報処理 ~音声編~ by 東工大・篠崎先生Toshihiko Yamasaki
 
体験/メディアのIAデザインに関する
体験/メディアのIAデザインに関する体験/メディアのIAデザインに関する
体験/メディアのIAデザインに関するToru Takahashi
 
専門演習_河野ゼミ説明会20191120
専門演習_河野ゼミ説明会20191120専門演習_河野ゼミ説明会20191120
専門演習_河野ゼミ説明会20191120義広 河野
 

Similar to 深層学習を利用した音声強調 (20)

2014LETシンポジウム WritingMaetriXについて
2014LETシンポジウム WritingMaetriXについて2014LETシンポジウム WritingMaetriXについて
2014LETシンポジウム WritingMaetriXについて
 
NECTJ JHL Annual Conference Namiai Internatinal Camp
NECTJ JHL Annual Conference Namiai Internatinal CampNECTJ JHL Annual Conference Namiai Internatinal Camp
NECTJ JHL Annual Conference Namiai Internatinal Camp
 
mlabforum2012_okanohara
mlabforum2012_okanoharamlabforum2012_okanohara
mlabforum2012_okanohara
 
音声の声質を変換する技術とその応用
音声の声質を変換する技術とその応用音声の声質を変換する技術とその応用
音声の声質を変換する技術とその応用
 
ITコミュニティに関する自由研究
ITコミュニティに関する自由研究ITコミュニティに関する自由研究
ITコミュニティに関する自由研究
 
地方豪族論in札幌
地方豪族論in札幌地方豪族論in札幌
地方豪族論in札幌
 
嘉悦大学 「ICT×社会起業=イノベーション!」
嘉悦大学 「ICT×社会起業=イノベーション!」嘉悦大学 「ICT×社会起業=イノベーション!」
嘉悦大学 「ICT×社会起業=イノベーション!」
 
20200220 od policy da
20200220 od policy da20200220 od policy da
20200220 od policy da
 
Sakai 20120414
Sakai 20120414Sakai 20120414
Sakai 20120414
 
学会・研究会の情報保障におけるソーシャルネットワークの役割
学会・研究会の情報保障におけるソーシャルネットワークの役割学会・研究会の情報保障におけるソーシャルネットワークの役割
学会・研究会の情報保障におけるソーシャルネットワークの役割
 
Microsoft Imagine Cupと深層学習を用いた音源分離技術について_言語音声ナイト
Microsoft Imagine Cupと深層学習を用いた音源分離技術について_言語音声ナイトMicrosoft Imagine Cupと深層学習を用いた音源分離技術について_言語音声ナイト
Microsoft Imagine Cupと深層学習を用いた音源分離技術について_言語音声ナイト
 
Nagaya 20110723
Nagaya 20110723Nagaya 20110723
Nagaya 20110723
 
DeNAにおける先端AI技術活用のチャレンジ
DeNAにおける先端AI技術活用のチャレンジDeNAにおける先端AI技術活用のチャレンジ
DeNAにおける先端AI技術活用のチャレンジ
 
研究・企業・生き方について 情報科学若手の会2011
研究・企業・生き方について 情報科学若手の会2011研究・企業・生き方について 情報科学若手の会2011
研究・企業・生き方について 情報科学若手の会2011
 
Scipy Japan 2019の紹介
Scipy Japan 2019の紹介Scipy Japan 2019の紹介
Scipy Japan 2019の紹介
 
特別チュートリアル「パターン認識とメディア理解のフロンティア」 ディスカッションペーパー
特別チュートリアル「パターン認識とメディア理解のフロンティア」 ディスカッションペーパー特別チュートリアル「パターン認識とメディア理解のフロンティア」 ディスカッションペーパー
特別チュートリアル「パターン認識とメディア理解のフロンティア」 ディスカッションペーパー
 
家族を育むスタイル・ランゲージ - 日々の世界のつくりかた - (ORF2017)
家族を育むスタイル・ランゲージ  - 日々の世界のつくりかた - (ORF2017)家族を育むスタイル・ランゲージ  - 日々の世界のつくりかた - (ORF2017)
家族を育むスタイル・ランゲージ - 日々の世界のつくりかた - (ORF2017)
 
【FIT2016チュートリアル】ここから始める情報処理 ~音声編~ by 東工大・篠崎先生
【FIT2016チュートリアル】ここから始める情報処理 ~音声編~ by 東工大・篠崎先生【FIT2016チュートリアル】ここから始める情報処理 ~音声編~ by 東工大・篠崎先生
【FIT2016チュートリアル】ここから始める情報処理 ~音声編~ by 東工大・篠崎先生
 
体験/メディアのIAデザインに関する
体験/メディアのIAデザインに関する体験/メディアのIAデザインに関する
体験/メディアのIAデザインに関する
 
専門演習_河野ゼミ説明会20191120
専門演習_河野ゼミ説明会20191120専門演習_河野ゼミ説明会20191120
専門演習_河野ゼミ説明会20191120
 

More from Yuma Koizumi

A Brief Introduction of Anomalous Sound Detection: Recent Studies and Future...
A Brief Introduction of Anomalous Sound Detection:  Recent Studies and Future...A Brief Introduction of Anomalous Sound Detection:  Recent Studies and Future...
A Brief Introduction of Anomalous Sound Detection: Recent Studies and Future...Yuma Koizumi
 
キーワード推定を内包したオーディオキャプション法
キーワード推定を内包したオーディオキャプション法キーワード推定を内包したオーディオキャプション法
キーワード推定を内包したオーディオキャプション法Yuma Koizumi
 
音響システム特論 第11回 実環境における音響信号処理と機械学習
音響システム特論 第11回 実環境における音響信号処理と機械学習音響システム特論 第11回 実環境における音響信号処理と機械学習
音響システム特論 第11回 実環境における音響信号処理と機械学習Yuma Koizumi
 
音響信号に対する異常音検知技術と応用
音響信号に対する異常音検知技術と応用音響信号に対する異常音検知技術と応用
音響信号に対する異常音検知技術と応用Yuma Koizumi
 
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...Yuma Koizumi
 
Black-box Optimization of DNN-based Source Enhancement for Increasing Objecti...
Black-box Optimization of DNN-based Source Enhancement for Increasing Objecti...Black-box Optimization of DNN-based Source Enhancement for Increasing Objecti...
Black-box Optimization of DNN-based Source Enhancement for Increasing Objecti...Yuma Koizumi
 
統計的手法に基づく異常音検知の理論と応用
統計的手法に基づく異常音検知の理論と応用統計的手法に基づく異常音検知の理論と応用
統計的手法に基づく異常音検知の理論と応用Yuma Koizumi
 

More from Yuma Koizumi (7)

A Brief Introduction of Anomalous Sound Detection: Recent Studies and Future...
A Brief Introduction of Anomalous Sound Detection:  Recent Studies and Future...A Brief Introduction of Anomalous Sound Detection:  Recent Studies and Future...
A Brief Introduction of Anomalous Sound Detection: Recent Studies and Future...
 
キーワード推定を内包したオーディオキャプション法
キーワード推定を内包したオーディオキャプション法キーワード推定を内包したオーディオキャプション法
キーワード推定を内包したオーディオキャプション法
 
音響システム特論 第11回 実環境における音響信号処理と機械学習
音響システム特論 第11回 実環境における音響信号処理と機械学習音響システム特論 第11回 実環境における音響信号処理と機械学習
音響システム特論 第11回 実環境における音響信号処理と機械学習
 
音響信号に対する異常音検知技術と応用
音響信号に対する異常音検知技術と応用音響信号に対する異常音検知技術と応用
音響信号に対する異常音検知技術と応用
 
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
 
Black-box Optimization of DNN-based Source Enhancement for Increasing Objecti...
Black-box Optimization of DNN-based Source Enhancement for Increasing Objecti...Black-box Optimization of DNN-based Source Enhancement for Increasing Objecti...
Black-box Optimization of DNN-based Source Enhancement for Increasing Objecti...
 
統計的手法に基づく異常音検知の理論と応用
統計的手法に基づく異常音検知の理論と応用統計的手法に基づく異常音検知の理論と応用
統計的手法に基づく異常音検知の理論と応用
 

深層学習を利用した音声強調