SlideShare a Scribd company logo

20181206 Jazug DataScience TeamBuilding and DevOps

2016/12/6のJAZUGで登壇した内容です。

1 of 25
Download to read offline
Data Science
チームビルディングと
DevOps
Yukako Shimizu
Lead for Data Scientist Team
日系SI企業米国支社のデータサイエンスチーム
よく使う領域:
R / Python / AWS / Azure
最近は専らパワーポイントエンジニア・・・
2
3
目的
AI, デジタルマーケティング等を進めるときにデ
ータサイエンスが必要不可欠。
▸ Engineerとは違うバックグラウンドの
Data Scientistと、どうコワークしていくか?
▸ Engineerとして考えなければいけないことは何か?
Agenda
1. チームを作る
2. 環境をつくる
(おまけ) USのエンジニア
4
1.
チームをつくる
(企画~PoC)
5
一般的なシナリオ
6
HumanResource
Time
企画 PoC 本格導入 運用

Recommended

データ分析基盤について
データ分析基盤についてデータ分析基盤について
データ分析基盤についてYuta Inamura
 
ATLにおけるBigDataへの取り組み
ATLにおけるBigDataへの取り組みATLにおけるBigDataへの取り組み
ATLにおけるBigDataへの取り組みRecruit Technologies
 
Machine Learning Casual Talks #4 ビッグデータチームを発足するにあたって気をつけておきたいn個のこと
Machine Learning Casual Talks #4 ビッグデータチームを発足するにあたって気をつけておきたいn個のことMachine Learning Casual Talks #4 ビッグデータチームを発足するにあたって気をつけておきたいn個のこと
Machine Learning Casual Talks #4 ビッグデータチームを発足するにあたって気をつけておきたいn個のことNaoto Tamiya
 
データ分析基盤を支えるエンジニアリング
データ分析基盤を支えるエンジニアリングデータ分析基盤を支えるエンジニアリング
データ分析基盤を支えるエンジニアリングRecruit Lifestyle Co., Ltd.
 
Googleにおける機械学習の活用とクラウドサービス
Googleにおける機械学習の活用とクラウドサービスGoogleにおける機械学習の活用とクラウドサービス
Googleにおける機械学習の活用とクラウドサービスGoogle Cloud Platform - Japan
 
セグメント?クラスタリング? ユーザーを分類し、サービスの改善に活かすポイント
セグメント?クラスタリング? ユーザーを分類し、サービスの改善に活かすポイントセグメント?クラスタリング? ユーザーを分類し、サービスの改善に活かすポイント
セグメント?クラスタリング? ユーザーを分類し、サービスの改善に活かすポイントNaoto Tamiya
 
リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方Recruit Lifestyle Co., Ltd.
 

More Related Content

What's hot

一人三役!一気通貫でデータ活用するエンジニアリング
一人三役!一気通貫でデータ活用するエンジニアリング一人三役!一気通貫でデータ活用するエンジニアリング
一人三役!一気通貫でデータ活用するエンジニアリングRecruit Lifestyle Co., Ltd.
 
データ分析を支える技術 データ分析基盤再入門
データ分析を支える技術 データ分析基盤再入門データ分析を支える技術 データ分析基盤再入門
データ分析を支える技術 データ分析基盤再入門Satoru Ishikawa
 
データプロダクトを支えるビッグデータ基盤
データプロダクトを支えるビッグデータ基盤データプロダクトを支えるビッグデータ基盤
データプロダクトを支えるビッグデータ基盤Google Cloud Platform - Japan
 
Alteryxの紹介とデモ
Alteryxの紹介とデモAlteryxの紹介とデモ
Alteryxの紹介とデモYosuke Katsuki
 
大規模案件でデータサイエンスチームを活躍させる取り組み
大規模案件でデータサイエンスチームを活躍させる取り組み大規模案件でデータサイエンスチームを活躍させる取り組み
大規模案件でデータサイエンスチームを活躍させる取り組みRecruit Lifestyle Co., Ltd.
 
オープンデータとマイクロソフト技術による地理空間情報の活用
オープンデータとマイクロソフト技術による地理空間情報の活用オープンデータとマイクロソフト技術による地理空間情報の活用
オープンデータとマイクロソフト技術による地理空間情報の活用Masaki Takeda
 
Tableau Desktop データ準備の新機能: ユニオン、ピボット、データインタープリタ、など
Tableau Desktop データ準備の新機能: ユニオン、ピボット、データインタープリタ、などTableau Desktop データ準備の新機能: ユニオン、ピボット、データインタープリタ、など
Tableau Desktop データ準備の新機能: ユニオン、ピボット、データインタープリタ、などRyusuke Ashiya
 
aslead Searchのご紹介
aslead Searchのご紹介aslead Searchのご紹介
aslead Searchのご紹介aslead
 
データ分析基盤構築のポイントと関連クラスメソッドサービスの紹介
データ分析基盤構築のポイントと関連クラスメソッドサービスの紹介データ分析基盤構築のポイントと関連クラスメソッドサービスの紹介
データ分析基盤構築のポイントと関連クラスメソッドサービスの紹介Yosuke Katsuki
 
2019 11 30_analytics_competition_lt
2019 11 30_analytics_competition_lt2019 11 30_analytics_competition_lt
2019 11 30_analytics_competition_ltyuyaosujo
 
【Dll171201】深層学習利活用の紹介 掲載用
【Dll171201】深層学習利活用の紹介 掲載用【Dll171201】深層学習利活用の紹介 掲載用
【Dll171201】深層学習利活用の紹介 掲載用Hirono Jumpei
 
AI/ML開発・運用ワークフロー検討案(日本ソフトウェア科学会 機械学習工学研究会 本番適用のためのインフラと運用WG主催 討論会)
AI/ML開発・運用ワークフロー検討案(日本ソフトウェア科学会 機械学習工学研究会 本番適用のためのインフラと運用WG主催 討論会)AI/ML開発・運用ワークフロー検討案(日本ソフトウェア科学会 機械学習工学研究会 本番適用のためのインフラと運用WG主催 討論会)
AI/ML開発・運用ワークフロー検討案(日本ソフトウェア科学会 機械学習工学研究会 本番適用のためのインフラと運用WG主催 討論会)NTT DATA Technology & Innovation
 
データ分析を支える技術 DWH再入門
データ分析を支える技術 DWH再入門データ分析を支える技術 DWH再入門
データ分析を支える技術 DWH再入門Satoru Ishikawa
 
Py conjp2017ジョブフェア
Py conjp2017ジョブフェアPy conjp2017ジョブフェア
Py conjp2017ジョブフェア創史 花村
 
初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか
初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか
初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのかTechon Organization
 
データプランナーによるデータ系施策について
データプランナーによるデータ系施策についてデータプランナーによるデータ系施策について
データプランナーによるデータ系施策についてRecruit Lifestyle Co., Ltd.
 
【KSKアナリティクス】会社案内・事例紹介
【KSKアナリティクス】会社案内・事例紹介【KSKアナリティクス】会社案内・事例紹介
【KSKアナリティクス】会社案内・事例紹介KSK Analytics Inc.
 
データサイエンティストが力を発揮できるアジャイルデータ活用基盤
データサイエンティストが力を発揮できるアジャイルデータ活用基盤データサイエンティストが力を発揮できるアジャイルデータ活用基盤
データサイエンティストが力を発揮できるアジャイルデータ活用基盤Recruit Lifestyle Co., Ltd.
 
深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例	深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例 Hirono Jumpei
 

What's hot (20)

一人三役!一気通貫でデータ活用するエンジニアリング
一人三役!一気通貫でデータ活用するエンジニアリング一人三役!一気通貫でデータ活用するエンジニアリング
一人三役!一気通貫でデータ活用するエンジニアリング
 
データ分析を支える技術 データ分析基盤再入門
データ分析を支える技術 データ分析基盤再入門データ分析を支える技術 データ分析基盤再入門
データ分析を支える技術 データ分析基盤再入門
 
データプロダクトを支えるビッグデータ基盤
データプロダクトを支えるビッグデータ基盤データプロダクトを支えるビッグデータ基盤
データプロダクトを支えるビッグデータ基盤
 
Alteryxの紹介とデモ
Alteryxの紹介とデモAlteryxの紹介とデモ
Alteryxの紹介とデモ
 
大規模案件でデータサイエンスチームを活躍させる取り組み
大規模案件でデータサイエンスチームを活躍させる取り組み大規模案件でデータサイエンスチームを活躍させる取り組み
大規模案件でデータサイエンスチームを活躍させる取り組み
 
オープンデータとマイクロソフト技術による地理空間情報の活用
オープンデータとマイクロソフト技術による地理空間情報の活用オープンデータとマイクロソフト技術による地理空間情報の活用
オープンデータとマイクロソフト技術による地理空間情報の活用
 
Tableau Desktop データ準備の新機能: ユニオン、ピボット、データインタープリタ、など
Tableau Desktop データ準備の新機能: ユニオン、ピボット、データインタープリタ、などTableau Desktop データ準備の新機能: ユニオン、ピボット、データインタープリタ、など
Tableau Desktop データ準備の新機能: ユニオン、ピボット、データインタープリタ、など
 
aslead Searchのご紹介
aslead Searchのご紹介aslead Searchのご紹介
aslead Searchのご紹介
 
データ分析基盤構築のポイントと関連クラスメソッドサービスの紹介
データ分析基盤構築のポイントと関連クラスメソッドサービスの紹介データ分析基盤構築のポイントと関連クラスメソッドサービスの紹介
データ分析基盤構築のポイントと関連クラスメソッドサービスの紹介
 
2019 11 30_analytics_competition_lt
2019 11 30_analytics_competition_lt2019 11 30_analytics_competition_lt
2019 11 30_analytics_competition_lt
 
【Dll171201】深層学習利活用の紹介 掲載用
【Dll171201】深層学習利活用の紹介 掲載用【Dll171201】深層学習利活用の紹介 掲載用
【Dll171201】深層学習利活用の紹介 掲載用
 
AI/ML開発・運用ワークフロー検討案(日本ソフトウェア科学会 機械学習工学研究会 本番適用のためのインフラと運用WG主催 討論会)
AI/ML開発・運用ワークフロー検討案(日本ソフトウェア科学会 機械学習工学研究会 本番適用のためのインフラと運用WG主催 討論会)AI/ML開発・運用ワークフロー検討案(日本ソフトウェア科学会 機械学習工学研究会 本番適用のためのインフラと運用WG主催 討論会)
AI/ML開発・運用ワークフロー検討案(日本ソフトウェア科学会 機械学習工学研究会 本番適用のためのインフラと運用WG主催 討論会)
 
データ分析を支える技術 DWH再入門
データ分析を支える技術 DWH再入門データ分析を支える技術 DWH再入門
データ分析を支える技術 DWH再入門
 
Py conjp2017ジョブフェア
Py conjp2017ジョブフェアPy conjp2017ジョブフェア
Py conjp2017ジョブフェア
 
初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか
初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか
初めてのデータ分析基盤構築をまかされた、その時何を考えておくと良いのか
 
データプランナーによるデータ系施策について
データプランナーによるデータ系施策についてデータプランナーによるデータ系施策について
データプランナーによるデータ系施策について
 
【KSKアナリティクス】会社案内・事例紹介
【KSKアナリティクス】会社案内・事例紹介【KSKアナリティクス】会社案内・事例紹介
【KSKアナリティクス】会社案内・事例紹介
 
RLS Meetup#7 会社紹介
RLS Meetup#7 会社紹介RLS Meetup#7 会社紹介
RLS Meetup#7 会社紹介
 
データサイエンティストが力を発揮できるアジャイルデータ活用基盤
データサイエンティストが力を発揮できるアジャイルデータ活用基盤データサイエンティストが力を発揮できるアジャイルデータ活用基盤
データサイエンティストが力を発揮できるアジャイルデータ活用基盤
 
深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例	深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例
 

Similar to 20181206 Jazug DataScience TeamBuilding and DevOps

Open Cloud Innovation2016 day1(これからのデータ分析者とエンジニアに必要なdatascienceexperienceツールと...
Open Cloud Innovation2016 day1(これからのデータ分析者とエンジニアに必要なdatascienceexperienceツールと...Open Cloud Innovation2016 day1(これからのデータ分析者とエンジニアに必要なdatascienceexperienceツールと...
Open Cloud Innovation2016 day1(これからのデータ分析者とエンジニアに必要なdatascienceexperienceツールと...Atsushi Tsuchiya
 
ビックデータ処理技術の全体像とリクルートでの使い分け
ビックデータ処理技術の全体像とリクルートでの使い分けビックデータ処理技術の全体像とリクルートでの使い分け
ビックデータ処理技術の全体像とリクルートでの使い分けTetsutaro Watanabe
 
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューションDell TechCenter Japan
 
[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data PlatformNaoki (Neo) SATO
 
データを集めて貯めて分析する… 最先端のテクノロジーが詰まったIBMクラウドのご紹介
データを集めて貯めて分析する…  最先端のテクノロジーが詰まったIBMクラウドのご紹介データを集めて貯めて分析する…  最先端のテクノロジーが詰まったIBMクラウドのご紹介
データを集めて貯めて分析する… 最先端のテクノロジーが詰まったIBMクラウドのご紹介IBM Analytics Japan
 
Qiita x Microsoft - 機械学習セミナー Microsoft AI Platform
Qiita x Microsoft - 機械学習セミナー Microsoft AI PlatformQiita x Microsoft - 機械学習セミナー Microsoft AI Platform
Qiita x Microsoft - 機械学習セミナー Microsoft AI PlatformDaiyu Hatakeyama
 
ゲーム事業×データ分析 ドリコムにおける組織と仕事の組み立て方
ゲーム事業×データ分析 ドリコムにおける組織と仕事の組み立て方ゲーム事業×データ分析 ドリコムにおける組織と仕事の組み立て方
ゲーム事業×データ分析 ドリコムにおける組織と仕事の組み立て方Hisahiko Shiraishi
 
データ分析基盤におけるOpsのためのDev with event driven + serverless
データ分析基盤におけるOpsのためのDev with event driven + serverlessデータ分析基盤におけるOpsのためのDev with event driven + serverless
データ分析基盤におけるOpsのためのDev with event driven + serverlessShoji Shirotori
 
自由と統制のバランス_分析基盤のアプローチ
自由と統制のバランス_分析基盤のアプローチ自由と統制のバランス_分析基盤のアプローチ
自由と統制のバランス_分析基盤のアプローチRyoji Hasegawa
 
ビッグデータ活用支援フォーラム
ビッグデータ活用支援フォーラムビッグデータ活用支援フォーラム
ビッグデータ活用支援フォーラムRecruit Technologies
 
データをどこに溜めよう?ローカル?クラウド?どのデータベース?
データをどこに溜めよう?ローカル?クラウド?どのデータベース?データをどこに溜めよう?ローカル?クラウド?どのデータベース?
データをどこに溜めよう?ローカル?クラウド?どのデータベース?- Core Concept Technologies
 
ビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年versionビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年versionTetsutaro Watanabe
 
[Gree] DataEngConf NYC’18 セッションサマリー #1
[Gree] DataEngConf NYC’18 セッションサマリー #1[Gree] DataEngConf NYC’18 セッションサマリー #1
[Gree] DataEngConf NYC’18 セッションサマリー #1Takashi Suzuki
 
DataEngConf NYC’18 セッションサマリー #1
DataEngConf NYC’18 セッションサマリー #1DataEngConf NYC’18 セッションサマリー #1
DataEngConf NYC’18 セッションサマリー #1gree_tech
 
スタートアップで培ったアーキテクチャ設計ノウハウ
スタートアップで培ったアーキテクチャ設計ノウハウスタートアップで培ったアーキテクチャ設計ノウハウ
スタートアップで培ったアーキテクチャ設計ノウハウMasakazu Matsushita
 
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~Daiyu Hatakeyama
 
MLOps Course Slides_JP(配布用).pdf
MLOps Course Slides_JP(配布用).pdfMLOps Course Slides_JP(配布用).pdf
MLOps Course Slides_JP(配布用).pdfYuya Yamamoto
 
基本から学ぶ ビッグデータ / データ分析 / 機械学習 サービス群
基本から学ぶ ビッグデータ / データ分析 / 機械学習 サービス群基本から学ぶ ビッグデータ / データ分析 / 機械学習 サービス群
基本から学ぶ ビッグデータ / データ分析 / 機械学習 サービス群Google Cloud Platform - Japan
 
佐賀大学 - データ分析と向き合う
佐賀大学 - データ分析と向き合う佐賀大学 - データ分析と向き合う
佐賀大学 - データ分析と向き合うDaiyu Hatakeyama
 

Similar to 20181206 Jazug DataScience TeamBuilding and DevOps (20)

Open Cloud Innovation2016 day1(これからのデータ分析者とエンジニアに必要なdatascienceexperienceツールと...
Open Cloud Innovation2016 day1(これからのデータ分析者とエンジニアに必要なdatascienceexperienceツールと...Open Cloud Innovation2016 day1(これからのデータ分析者とエンジニアに必要なdatascienceexperienceツールと...
Open Cloud Innovation2016 day1(これからのデータ分析者とエンジニアに必要なdatascienceexperienceツールと...
 
Strata conference 2012
Strata conference 2012Strata conference 2012
Strata conference 2012
 
ビックデータ処理技術の全体像とリクルートでの使い分け
ビックデータ処理技術の全体像とリクルートでの使い分けビックデータ処理技術の全体像とリクルートでの使い分け
ビックデータ処理技術の全体像とリクルートでの使い分け
 
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
【講演資料】ビッグデータ時代の経営を支えるビジネスアナリティクスソリューション
 
[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform
 
データを集めて貯めて分析する… 最先端のテクノロジーが詰まったIBMクラウドのご紹介
データを集めて貯めて分析する…  最先端のテクノロジーが詰まったIBMクラウドのご紹介データを集めて貯めて分析する…  最先端のテクノロジーが詰まったIBMクラウドのご紹介
データを集めて貯めて分析する… 最先端のテクノロジーが詰まったIBMクラウドのご紹介
 
Qiita x Microsoft - 機械学習セミナー Microsoft AI Platform
Qiita x Microsoft - 機械学習セミナー Microsoft AI PlatformQiita x Microsoft - 機械学習セミナー Microsoft AI Platform
Qiita x Microsoft - 機械学習セミナー Microsoft AI Platform
 
ゲーム事業×データ分析 ドリコムにおける組織と仕事の組み立て方
ゲーム事業×データ分析 ドリコムにおける組織と仕事の組み立て方ゲーム事業×データ分析 ドリコムにおける組織と仕事の組み立て方
ゲーム事業×データ分析 ドリコムにおける組織と仕事の組み立て方
 
データ分析基盤におけるOpsのためのDev with event driven + serverless
データ分析基盤におけるOpsのためのDev with event driven + serverlessデータ分析基盤におけるOpsのためのDev with event driven + serverless
データ分析基盤におけるOpsのためのDev with event driven + serverless
 
自由と統制のバランス_分析基盤のアプローチ
自由と統制のバランス_分析基盤のアプローチ自由と統制のバランス_分析基盤のアプローチ
自由と統制のバランス_分析基盤のアプローチ
 
ビッグデータ活用支援フォーラム
ビッグデータ活用支援フォーラムビッグデータ活用支援フォーラム
ビッグデータ活用支援フォーラム
 
データをどこに溜めよう?ローカル?クラウド?どのデータベース?
データをどこに溜めよう?ローカル?クラウド?どのデータベース?データをどこに溜めよう?ローカル?クラウド?どのデータベース?
データをどこに溜めよう?ローカル?クラウド?どのデータベース?
 
ビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年versionビッグデータ処理データベースの全体像と使い分け
2018年version
ビッグデータ処理データベースの全体像と使い分け
2018年version
 
[Gree] DataEngConf NYC’18 セッションサマリー #1
[Gree] DataEngConf NYC’18 セッションサマリー #1[Gree] DataEngConf NYC’18 セッションサマリー #1
[Gree] DataEngConf NYC’18 セッションサマリー #1
 
DataEngConf NYC’18 セッションサマリー #1
DataEngConf NYC’18 セッションサマリー #1DataEngConf NYC’18 セッションサマリー #1
DataEngConf NYC’18 セッションサマリー #1
 
スタートアップで培ったアーキテクチャ設計ノウハウ
スタートアップで培ったアーキテクチャ設計ノウハウスタートアップで培ったアーキテクチャ設計ノウハウ
スタートアップで培ったアーキテクチャ設計ノウハウ
 
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
 
MLOps Course Slides_JP(配布用).pdf
MLOps Course Slides_JP(配布用).pdfMLOps Course Slides_JP(配布用).pdf
MLOps Course Slides_JP(配布用).pdf
 
基本から学ぶ ビッグデータ / データ分析 / 機械学習 サービス群
基本から学ぶ ビッグデータ / データ分析 / 機械学習 サービス群基本から学ぶ ビッグデータ / データ分析 / 機械学習 サービス群
基本から学ぶ ビッグデータ / データ分析 / 機械学習 サービス群
 
佐賀大学 - データ分析と向き合う
佐賀大学 - データ分析と向き合う佐賀大学 - データ分析と向き合う
佐賀大学 - データ分析と向き合う
 

Recently uploaded

オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)Kanta Sasaki
 
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)NTT DATA Technology & Innovation
 
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんtoshinori622
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdfAyachika Kitazaki
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHubK Kinzal
 
00001_test_automation_portfolio_20240227
00001_test_automation_portfolio_2024022700001_test_automation_portfolio_20240227
00001_test_automation_portfolio_20240227ssuserf8ea02
 
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfMatsushita Laboratory
 
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。iPride Co., Ltd.
 

Recently uploaded (8)

オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
 
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
COPY FROMで異常データをスキップできるようになった話(第45回 PostgreSQLアンカンファレンス@オンライン 発表資料)
 
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
 
00001_test_automation_portfolio_20240227
00001_test_automation_portfolio_2024022700001_test_automation_portfolio_20240227
00001_test_automation_portfolio_20240227
 
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
 
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
 

20181206 Jazug DataScience TeamBuilding and DevOps