Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Design 3 2011 - Design Lecture Structures

9,864 views

Published on

Lecture on Structural Systems for architectural students.

Published in: Design

Design 3 2011 - Design Lecture Structures

  1. 1. Architectural Design Lectures Structures By: Dr. Yasser Mahgoub
  2. 3. Natural Structures
  3. 4. Natural Structures
  4. 5. Introduction
  5. 6. LOADS
  6. 7. LOADS
  7. 8. LOADS
  8. 9. LOADS
  9. 10. LOADS
  10. 11. LOADS
  11. 12. LOADS
  12. 13. Forces Acting in Structures <ul><li>Forces induced by gravity </li></ul><ul><ul><li>Dead Loads (permanent): self-weight of structure and attachments </li></ul></ul><ul><ul><li>Live Loads (transient): moving loads (e.g. occupants, vehicles) </li></ul></ul><ul><li>Forces induced by wind </li></ul><ul><li>Forces induced by earthquakes </li></ul><ul><li>Forces induced by rain/snow </li></ul><ul><li>Fluid pressures </li></ul><ul><li>Others </li></ul>
  13. 14. Forces Acting in Structures Vertical: Gravity Lateral: Wind, Earthquake
  14. 15. Global Stability Sliding Overturning
  15. 16. Forces in Structural Elements 100 lb Tension 100 lb Compression
  16. 17. Forces in Structural Elements Torsion 100 lb Bending
  17. 18. Structural Systems Arch
  18. 19. Structural Systems Truss C T C C T Forces in Truss Members
  19. 20. Structural Systems Frame
  20. 21. Structural Systems Flat Plate
  21. 22. Structural Systems Folded Plate
  22. 23. Structural Systems Shells
  23. 24. Structural Systems Shells
  24. 25. Basic Structural Elements Slabs
  25. 26. Basic Structural Elements Columns
  26. 27. Basic Structural Elements Columns
  27. 29. Basic Structural Elements Beams
  28. 30. Basic Structural Elements Beams
  29. 31. Basic Structural Elements Beams
  30. 32. Basic Structural Elements Beams
  31. 33. Basic Structural Elements Beams
  32. 34. Basic Structural Elements Beams
  33. 36. Basic Structural Elements Vierendeel Beams Vierendeel Trusses Beam
  34. 37. <ul><li>The basic structural elements can be reduced to those which are: </li></ul><ul><li>Linear </li></ul><ul><ul><li>Columns </li></ul></ul><ul><ul><li>Beams </li></ul></ul>Structural Elements
  35. 39. <ul><li>The basic structural elements can be reduced to those which are: </li></ul><ul><li>Surface </li></ul><ul><ul><li>Walls </li></ul></ul><ul><ul><li>Slabs </li></ul></ul>Structural Elements
  36. 40. <ul><li>The basic structural elements can be reduced to those which are: </li></ul><ul><li>Spatial </li></ul><ul><ul><li>Facade Envelope </li></ul></ul><ul><ul><li>Core </li></ul></ul><ul><ul><li>Building as System </li></ul></ul>Structural Elements
  37. 41. Structural Expression
  38. 42. Structural Expression
  39. 43. Structural Expression
  40. 44. Structural Expression
  41. 45. Structural Expression
  42. 46. Structural Expression
  43. 47. Structural Expression
  44. 48. Structural Expression
  45. 49. Structural Expression
  46. 50. Structural Expression
  47. 51. Structural Expression
  48. 52. Structural Expression
  49. 53. Structural Expression
  50. 54. Structural Expression
  51. 56. General Structure and Lateral Forces Division Revision
  52. 57. General Structure and Lateral Forces Division Revision
  53. 58. General Structure and Lateral Forces Division Revision
  54. 59. General Structure and Lateral Forces Division Revision
  55. 60. STRUCTURAL REQUIREMENTS <ul><li>DURABILITY </li></ul><ul><li>The durability of the structure depends entirely in the physical/chemical conditions </li></ul><ul><li>of the structural material, and our willingness to continue using the building ( at the </li></ul><ul><li>end of the lifecycle of a building, it may be demolished) </li></ul><ul><li>STABILITY AND EQUILLIBRIUM </li></ul><ul><li>When the structure is stable and in equilibrium it resists any load without suffering </li></ul><ul><li>a major change of shape or collapsing. </li></ul><ul><li>STRENGTH AND RIGIDITY </li></ul><ul><li>Strength and rigidity are reached by the adequate specification of geometry, size, </li></ul><ul><li>and the material of the structural elements. In example, for resisting the same </li></ul><ul><li>structural load , a steel structural element needs a smaller cross section than a </li></ul><ul><li>reinforced concrete element, and this is due to the difference between the </li></ul><ul><li>strength of the kind of materials. </li></ul>
  56. 61. STRUCTURE TYPES ROOFS SUPPORTED WITH VERTICAL ELEMENTS SUBJECTS OF COMPRESSION: POST AND BEAM STRUCTURES: - LOAD BEARING WALLS - SKELETON FRAME ROOFS SUPPORTED WITH VERTICAL ELEMENTS SUBJECTS OF TENSION: MASTED STRUCTURES - ARCHES, VAULTED HALLS, AND DOMES - PORTAL FRAMES - TRUSSES - SPACE FRAMES - FOLDED ROOFS - SHELLS - MEMBRANES AND TENTS ROOF STRUCTURES
  57. 62. Types of Structures
  58. 63. Types of Structures
  59. 64. Types of Structures
  60. 69. STRUCTURE TYPES: MATERIALIZATION OF A CUBE
  61. 70. POST AND BEAM STRUCTURES <ul><ul><ul><li>Most architectural structures are of the post-and-beam type. </li></ul></ul></ul><ul><ul><ul><li>Post and beam buildings carry the weight of their structural components </li></ul></ul></ul><ul><ul><ul><li>(and the weight of objects and people in them) by bearing on one another. </li></ul></ul></ul><ul><ul><ul><li>The weight of the roof and beams is carried by the posts down to the foundation </li></ul></ul></ul><ul><ul><ul><li>and then into the ground. Horizontal beams are subject to bending loads, </li></ul></ul></ul><ul><ul><ul><li>therefore the structural materials should be able of resisting both tension and </li></ul></ul></ul><ul><ul><ul><li>compression. </li></ul></ul></ul><ul><ul><ul><li>We can further subdivide the post and beam structures into: </li></ul></ul></ul>
  62. 71. POST AND BEAM STRUCTURES: LOAD BEARING WALLS
  63. 72. POST AND BEAM STRUCTURES: LOAD BEARING WALLS
  64. 73. POST AND BEAM STRUCTURES: LOAD BEARING WALLS
  65. 74. POST AND BEAM STRUCTURES: SKELETON FRAME
  66. 75. ARCHES, VAULTED HALLS, AND DOMES
  67. 76. ARCHES AND VAULTED ROOFS
  68. 77. DOMES
  69. 78. PORTAL FRAMES
  70. 79. PORTAL FRAMES
  71. 80. TRUSSES
  72. 81. TRUSSES
  73. 82. SPACE FRAMES
  74. 83. SPACE FRAMES
  75. 84. SPACE FRAMES
  76. 85. FOLDED ROOFS
  77. 86. FOLDED ROOFS
  78. 87. Examples of Structures
  79. 88. SHELLS
  80. 89. SHELLS
  81. 90. SHELLS
  82. 91. TENSILE STRUCTURES
  83. 92. TENSILE STRUCTURES
  84. 93. TENSILE STRUCTURES
  85. 94. TENSILE STRUCTURES
  86. 96. DETERMINATION OF THE STRUCTURAL FORM
  87. 97. DESIGN STRATEGIES
  88. 98. GENERIC TYPE OF STRUCTURE
  89. 99. STRUCTURAL MATERIAL
  90. 100. Materials <ul><li>Stone and Masonry </li></ul><ul><li>Metals </li></ul><ul><ul><li>Cast Iron </li></ul></ul><ul><ul><li>Steel </li></ul></ul><ul><ul><li>Aluminum </li></ul></ul><ul><li>Concrete </li></ul><ul><li>Wood </li></ul><ul><li>Fiber-Reinforced Plastics </li></ul>
  91. 101. Materials <ul><li>Steel </li></ul><ul><ul><li>Maximum stress: 40,000 – 120,000 lb/in 2 </li></ul></ul><ul><ul><li>Maximum strain: 0.2 – 0.4 </li></ul></ul><ul><ul><li>Modulus of elasticity: 29,000,000 lb/in 2 </li></ul></ul><ul><li>Concrete </li></ul><ul><ul><li>Maximum stress: 4,000 – 12,000 lb/in 2 </li></ul></ul><ul><ul><li>Maximum strain: 0.004 </li></ul></ul><ul><ul><li>Modulus of elasticity: 3,600,000 – 6,200,000 lb/in 2 </li></ul></ul><ul><li>Wood </li></ul><ul><ul><li>Values depend on wood grade. Below are some samples </li></ul></ul><ul><ul><li>Tension stress: 1300 lb/in 2 </li></ul></ul><ul><ul><li>Compression stress: 1500 lb/in 2 </li></ul></ul><ul><ul><li>Modulus of elasticity: 1,600,000 lb/in 2 </li></ul></ul>
  92. 102. Concrete Components <ul><li>Sand (Fine Aggregate) </li></ul><ul><li>Gravel (Coarse Aggregate) </li></ul><ul><li>Cement (Binder) </li></ul><ul><li>Water </li></ul><ul><li>Air </li></ul>
  93. 103. Examples of Typical Structures
  94. 104. Examples of Typical Structures
  95. 108. Thank you Dr. Yasser Mahgoub http://ymahgou.fortunecity.com/

×