Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Future of open science in collaboration with society


Published on

Poster presented at JpGU-AGU Joint Meeting 2017

Published in: Science
  • Be the first to comment

  • Be the first to like this

Future of open science in collaboration with society

  1. 1. Results A summary of the talks from each group was presented in the wrap-up session. One of the group talks revealed the necessity to conventionalize open science in each domain of research. Another group talk shed light on two functions of citizen science––co-development of data infrastructure and the actions for social transformation. Another group pointed out the importance of capacity building of bridging agents who facilitate the bidirectional interaction of knowledge systems between researchers and other societal actors (Fig. 3). Method The workshop was held at Kyoto for two days in January 2017, with attendance of 37 participants representing natural and social scientists, governmental officials, local municipality officials, industry managers and employees, pro bonos, and librarians (Fig. 1). The unconference style program saw participants raising questions while listening to input seminars and sorting them to create topics for group talks (Table 1, Fig. 2). Two group talk sessions were conducted. In each session, participants joined the group of their choice, and held a dialogue on the topic with a facilitator and other attendees. Future of open science in collaboration with society: Report on a multi-stakeholder workshop in Japan dummy Yasuhisa Kondo1,2, Kazuhiro Hayashi2, Ui Ikeuchi3,2, Miki Kuribayashi2, Sachiko Yano2, Asanobu Kitamoto4 1 Research Institute for Humanity and Nature, 2 National Institute of Science and Technology Policy, 3 Graduate School of Library, Information and Media Studies, Tsukuba University, 4 National Institute of Informatics 社会との協働が切り拓くオープンサイエンスの未来 ⽇本におけるマルチステークホルダー・ワークショップ の報告 近藤康久1,2、林 和弘2、池内有為3,2、栗林美紀2、⽮野幸⼦2、 北本朝展4 1総合地球環境学研究所、2⽂部科学省科学技術・学術政策研究所、 3筑波⼤学⼤学院図書館情報メディア研究科、4国⽴情報学研究所 地球環境問題や少⼦⾼齢化などの社会課題の解決をめざす 研究には、異分野の研究者や政府・⾃治体、企業、NPO、地 域住⺠など社会の多様なステークホルダーが知識経験を持ち 寄り、⽴場を超えた対話と熟議を通して研究計画の共同⽴案 (co-design)、知識の共同⽣産(co-production)、成果の共同展 開(co-dissemination)を⾏い、課題解決に向けた意思決定を リ ー ド す る (co-leadership) と い う 超 学 際 ア プ ロ ー チ (transdisciplinary approach) が 重 要 で あ る (Mauser et al. 2013)。近年、ITやソーシャルデザインなどの技術知を持つプ ロボノ(専⾨技能ボランティア)がオープンデータを活⽤して、 社会課題の解決に積極的に関与するようになった。今後、研 究者とプロボノが、社会の多様なステークホルダーと協働す ることにより、研究データのオープン化と市⺠科学(シチズン サイエンス)が結びつき、課題解決が促進されるとともに、社 会との協働をより強く意識したオープンサイエンスの実現が 期待される。しかし、その具体的⽅法や問題点についてはま だ事例の蓄積が少ない。 そこで、2017年1⽉に京都で、⼈⽂・社会科学と⾃然科学系 の研究者、政府関係者、地⽅⾏政職員、企業職員、プロボノ (⾼度技能ボランティア)、図書館員など37名の参加者(Fig. 1) によるマルチステークホルダー・ワークショップを開催し、 グループ対話のテーマ(Table 1)を当⽇決めるアンカンファレ ンス⽅式(Fig. 2)により、社会との協働を念頭に置いた際の オープンサイエンス政策の課題を多⾓的に検討した。その結 果、オープンサイエンスの取り組みは、各研究分野の慣習と して積み上げていく必要があること、市⺠科学にはデータ基 盤の共同構築と社会転換のためのアクションという2つの役割 があること、研究者コミュニティーと社会の知識体系を双⽅ 向的に連環する橋渡し⼈材(Fig. 3)を魅⼒的な職業として確⽴ する必要があることなどが気づきとして得られた。 Motivation Research projects must necessarily focus on resolving social issues such as global environmental problem, the falling birthrate, or the aging population. A transdisciplinary approach is needed in which researchers take on co-leadership roles in decision making to address issues through their involvement in the co-design of the research agenda, co- production of knowledge, and co-dissemination of the results, based on equal dialogue and deliberation (Mauser et al. 2013 Curr Opin Env Sust). It has been noted that pro bonos, or skilled volunteers providing technical knowledge such as on ICT technologies and social design, have been actively involved in projects driven by social issues. Therefore, it is anticipated that researchers and pro bonos––experts, in other words––will increasingly strengthen ties with diverse societal stakeholders for providing quick innovative solutions to social issues by allowing citizen scientists access to open research data. These actions may contribute towards promoting the movement of open science by focusing on collaboration with society. However, few reports focus on the practical methods and problems in promoting open science in this direction. Bearing this in mind, we held a multi-stakeholder workshop to get an overview of the current issues in open science from the multiple viewpoints. Table 1: Timeslots and topics of the group talks Room 1 Room 2 Room 3 Room 4 Room 5 Slot 1 Rules and policies regarding open research data Merits and demerits of allowing civic members access to open research data How to involve experts in open research data Incentives for open research data Slug and citizen science Slot 2 Merits and demerits of open research data for researchers Science communications How to engage societal actors with open research data Unfair use of open research data How to create bridging agents as a profession MGI27-P11 Fairly visualize knowledge Have an equal dialogue Set a common overall goal Socio-economic status & power Socio-economic status & power Local stakeholders Actors who need solution Bridging agents Actors who facilitate mutual understanding of local agents and external collaborators Solution Value & thought Knowledge & technology Value & thought Spin-off projects Knowledge & technology Co-production of knowledge through collaborative research External collaborators Actors who wish to assist solution Academia, 21 Govern ment, 8 Participants (n=37) Private Sector, 4 Male, 27 Female, 10 Fig. 1: Composition of participants Sorting Group talk Wrap-up Fig. 2: Process of the unconference Acknowledgements: This research was financially supported by the Collaborative Workshop Programme of the National Institute of Informatics and the Research Institute for Humanity and Nature Core Project Feasibility Study 14200075 “Visualizing and filling gaps of knowledge information between actors in the research to solve social issues” (PI: Yasuhisa Kondo). We would like to thank all participants of the workshop for their constructive inputs. Fig. 3: Model for bridging knowledge and information between actors by agents