Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Metric Embeddings and Expanders

Based on Chapter 13 of a survey "Expander graphs and their applications" by Hoory, Linial and Wigderson.

  • Login to see the comments

Metric Embeddings and Expanders

  1. 1. Metric Embeddings and Expanders Grigory Yaroslavtsev (based on Chapter 13 of a survey “Expander graphs and their applications” by Hoory, Linial and Wigderson) Pennsylvania State University December 8, 2011Grigory Yaroslavtsev (PSU) December 8, 2011 1 / 11
  2. 2. Metric embeddings A finite metric space is a pair (X , d), where X is a set of n points and d : X × X → R+ is a distance function (three axioms). Let f : X → Rn be an embedding of (X , d) into (Rn , 2 ) n 2 (d 2 (x, y ) = ||x − y || = i=1 (xi − yi ) ). expansion(f ) = max ||f (x1 ) − f (x2 )||/d(x1 , x2 ) x1 ,x2 ∈X contraction(f ) = max d(x1 , x2 )/||f (x1 ) − f (x2 )|| x1 ,x2 ∈X distortion(f ) = expansion(f ) · contraction(f ) Example, that requires distortion (shortest-path metric for unit-length edges): Grigory Yaroslavtsev (PSU) December 8, 2011 2 / 11
  3. 3. Background on 2 -embeddings If (X , d) is 2 -embeddable ⇒ it is p -embeddable for 1 ≤ p ≤ ∞. Let c2 (X , d) denote the least possible distortion of an embedding of (X , d) into (Rn , 2 ) (dimension n is sufficient). For any n-point metric space c2 (X , d) = O(log n) [Bourgain’85]. We will see how to compute such an embedding later (via SDP), together with a Ω(log n) lower bound for expanders (via dual SDP).Theorem (Johnson-Lindenstrauss ’84) log nAny n-point 2 -metric can be embedded into an O 2 -dimensionalEuclidean space with distortion 1 + . The bound on dimension was shown to be optimal by Jayram and Woodruff (SODA’11), previous Ω( 2 log n ) was by Alon ’03. log 1/ Such dimension reduction is impossible for 1 (Brinkman, Charikar ’03, Lee, Naor ’04, . . . ?). Grigory Yaroslavtsev (PSU) December 8, 2011 3 / 11
  4. 4. Computing minimal distortionTheorem (Linial, London, Rabinovich ’95)Given a metric space (X , d), the minimal 2 -distortion c2 (X , d) can becomputed in polynomial time.Proof. Scale f : X → Rn , so that contraction(f ) = 1, so distortion(f ) ≤ γ iff: d(xi , xj )2 ≤ ||f (xi ) − f (xj )||2 ≤ γ 2 d(xi , xj )2 ∀i, j A symmetric matrix Z ∈ Rn×n is positive semidefinite (PSD), if (all four are equivalent): 1 v T Zv ≥ 0 for all v ∈ Rn . 2 All eigenvalues λi ≥ 0. 3 Z = WW T for some matrix W . n 4 Z= λi wi wiT for λi ≥ 0 and orthonormal vectors wi ∈ Rn . i=1 Grigory Yaroslavtsev (PSU) December 8, 2011 4 / 11
  5. 5. Computing minimal distortion (continued)Proof. Any embedding f : X → Rn can be represented as a matrix U ∈ Rn×n , where row ui = f (xi ). Let Z = UU T , so we need to find a PSD Z , such that: d(xi , xj )2 ≤ zii + zjj − 2zij ≤ γ 2 d(xi , xj )2 , ∀i, j, since ||ui − uj ||2 = zii + zjj − 2zij . Linear optimization problem with an additional constraint that a matrix of variables is PSD ⇒ solvable by ellipsoid in polynomial time. Grigory Yaroslavtsev (PSU) December 8, 2011 5 / 11
  6. 6. Characterization of PSD matricesLemmaA matrix Z is PSD if and only if ij qij zij ≥ 0 for all PSD matrices Q.Proof. ⇐: For v ∈ Rn let Qij = vi · vj . Then Q is PSD and v T Zv = ij (vi · vj )zij = ij qij zij ≥ 0. ⇒: Let Q = k λk wk wk for λi ≥ 0, or equivalently Q = k Ak , T where Ak = λk wk wk . T kz = λ T Because ij Aij ij k ij wki wkj zij = λk wk Zwk ≥ 0, we have k k ij qij zij = ij k Aij zij = k ij Aij zij ≥ 0. Grigory Yaroslavtsev (PSU) December 8, 2011 6 / 11
  7. 7. Lower bound on distortionTheorem (Linial-London-Rabinovich ’95)The least distortion of any finite metric space (X , d) in the Euclideanspace is given by: 2 pij >0 pij d(xi , xj ) c2 (X , d) ≥ max 2 . P∈PSD,P·1=0 − pij <0 pij d(xi , xj )Proof.Primal SDP: qij zij ≥ 0 ∀Q ∈ PSD ij zii + zjj − 2zij ≥ d(xi , xj )2 ∀i, j 2 2 γ d(xi , xj ) ≥ zii + zjj − 2zij ∀i, j Grigory Yaroslavtsev (PSU) December 8, 2011 7 / 11
  8. 8. Lower bound on distortion via a dual SDP solution qij zij ≥ 0 ∀Q ∈ PSD (1) ij zii + zjj − 2zij ≥ d(xi , xj )2 ∀i, j (2) γ 2 d(xi , xj )2 ≥ zii + zjj − 2zij ∀i, j (3) Take Q ∈ PSD, such that j qij = 0. If qij > 0, add corresponding inequality (2) multiplied by qij /2. If qij < 0, add corresponding inequality (3) multiplied by −qij /2. 2 2 qij <0 (zii + zjj − 2zij )qij /2 − γ qij <0 d(xi , xj ) qij /2 ≥ 2 qij >0 d(xi , xj ) qij /2 − qij <0 (zii + zjj − 2zij )qij /2 Because ij qij zij ≥ 0 and i qij = 0, we get a contradiction, if γ 2 qij <0 d(xi , xj )2 qij + qij >0 d(xi , xj )2 qij > 0. Grigory Yaroslavtsev (PSU) December 8, 2011 8 / 11
  9. 9. Example: Hypercube with Hamming metric Let’s denote r -dimensional hypercube with Hamming metric as Qr . √ Identity embedding gives distortion r . 2 pij >0 pij d(xi , xj ) c2 (Qr ) ≥ max 2 . P∈PSD,P·1=0 − pij <0 pij d(xi , xj ) r ×2r Define P ∈ R2 , such that P1 = 0 as:  −1  if d(i, j) = 1   r − 1 if i = j P(x, y ) = 1  if d(i, j) = r   0 otherwise P ∈ PSD: eigenvectors χI (J) = (−1)|I ∩J| for I , J ⊆ {1, . . . , n}. Because pij >0 pij d(xi , xj )2 = 2r · r 2 and √ − pij <0 pij d(xi , xj )2 = 2r · r , we have c2 (Qr ) ≥ r . Grigory Yaroslavtsev (PSU) December 8, 2011 9 / 11
  10. 10. Embedding expanders into 2 √ For the hypercube we’ve got a Ω( log n) lower bound. Now we will get a Ω(log n) lower bound for expanders. Take k-regular expander G with n vertices and λ2 ≤ k − for > 0. √ Embedding vertex i to ei / 2: expansion = 1, contraction = O(log n).Theorem (Linial-London-Rabinovich ’95)For G as above c2 (G ) = Ω(log n), constant depends only on k and . If H = (V , E ) is the graph on the same vertex set, where two vertices are adjacent if their distance in G is at least logk (n) , then H has a perfect matching (by Dirac’s theorem has Hamiltonian cycle). Grigory Yaroslavtsev (PSU) December 8, 2011 10 / 11
  11. 11. Proof of the lower bound for embdedding expanders Let B be the adjacency matrix of a perfect matching in H and P = kI − AG + 2 (B − I ), so P1 = 0. x T (kI − AG )x ≥ (k − λ2 )||x||2 ≥ ||x||2 x T (B − I )x = (2xi xj − xi2 − xj2 ) ≥ −2 (xi2 + xj2 ) = −2||x||2 . (i,j)∈B (i,j)∈B P is PSD, because x T Px = x T (kI − AG )x + x T 2 (B − I )x ≥ 0. − d(i, j)2 pij = kn pij <0 d(i, j)2 pij ≥ · n logk n 2 , 2 pij >0 because distances of edges in B are at least logk n . Thus, c2 (G ) = Ω(log n). Grigory Yaroslavtsev (PSU) December 8, 2011 11 / 11

×