The kidney


Published on

This was done as a Student presentation on the kidney.
Here following topics are covered.

Macroscopic structure of the urinary system

Microscopic anatomy of the urinary system

Functions of the nephron

Renal blood supply

Kidneys and blood pressure regulation

Structure of ureters and urinary bladder to perform its function

Renal failure

Published in: Health & Medicine
No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

The kidney

  1. 1. Kidney<br />Excretion & Reproduction Module<br />Student presentation<br />2007/08 Batch<br />Faculty of Medicine<br />University of Peradeniya<br />All what you have to know about the kidney<br />
  2. 2. Sub topics….<br />1.2.Macroscopic structure of the urinary system<br />3.4.5.Microscopic anatomy of the urinary system<br />6.7.8.Functions of the nephron<br />9.10.11.Renal blood supply<br />12,13,14.Kidneys and blood pressure regulation<br />15,16,17.Structure of ureters and urinary bladder to perform its function <br />18,19,20.Renal failure <br />
  4. 4. URINARY SYSTEM<br />Urinary system consists of <br />Two kidneys<br />Two ureters<br />Bladder<br />Urethra<br />
  5. 5. KIDNEYS<br />Size – 3 x 6 x 12 cm <br />Weight – 130 g<br />Shape – Bean shaped<br />Location – Lie on the posterior abdominal wall, retroperitoneally.<br /> T12 – L3 vertebral level<br /> Right is slightly below than the left.<br />
  6. 6. RELATIONS <br />RIGHT KIDNEY<br />Superiorly - Right adrenal gland<br />Anteriorly - Right lobe of the liver, Second part of the duodenum, Hepatic flexure of the colon<br />Posteriorly – Posterior abdominal wall muscles. (Psoas major, Quadratus lumborum, Transversus abdominis)<br />
  7. 7. RELATIONS<br />LEFT KIDNEY<br />Superiorly – Left adrenal gland<br />Anteriorly – Spleen, Stomach, Pancreas, Jejunum, Splenic flexure of the colon.<br />Posteriorly – Diaphragm, Posterior abdominal wall muscles. (Psoas major, Quadratus lumborum, Transversus abdominis)<br />
  8. 8. External Features<br />Each kidney is enclosed by (from inside to outside respectively),<br />Renal capsule – fibrous connective tissue<br />Perirenal fat<br />Renal fascia - fibroelastic connective tissue<br />
  9. 9. External Features<br />Hilum of the kidney,<br />Concave medial border of the kidney<br />Structures enter / leave through the hilum (from anterior to posterior),<br />Renal vein<br />Renal artery<br />Ureter<br /> and Renal nerves and Lymphatics.<br />
  10. 10. Internal features<br />Cortex <br /><ul><li>A reddish, brown, layer of tissue immediately below the capsule and outside the pyramids.</li></ul>Medulla <br /><ul><li>The innermost layer consisting of pale conical shape striations - Renal pyramids
  11. 11. In between renal pyramids – Renal columns.</li></li></ul><li>Internal features<br />Pyramids<br />Papillae<br />Minor calyces<br />Major calyces<br />Renal pelvis<br />
  12. 12. URETER<br />25 – 30 cm long and 3 mm in diameter<br />Continuous with renal pelvis<br />In abdominal cavity, lies on psoas major muscle<br />Enters the pelvic cavity anterior to the sacroiliac joint<br />Passes obliquely through the posterior wall of the bladder and penetrates it<br />
  13. 13. Narrowest parts of the ureter<br />At the junction between the pelvis and abdominal part of the ureter<br />At the pelvic brim<br />At the ureteric orifice of the bladder<br />
  14. 14. BLADDER<br />Empty bladder lies entirely in the pelvic cavity<br />It has a shape of a flattened 3 sided pyramid.<br />
  15. 15. Areas & surfaces<br />Apex – sharp, pointed forward to the top of pubic symphysis.<br />Base – triangular posterior surface facing backward in front of rectum or vagina.<br />Trigone – lowest area of the base lies between 2 ureteral orifices and internal urethral orifice.<br />Neck – urethral opening.<br />Two inferolateral surfaces and superior surface.<br />
  16. 16. URETHRA<br />It lies in the perineum.<br />In males, it consists of 3 parts:<br />Prostatic urethra.<br />Membranous urethra.<br />Penile urethra.<br /><ul><li>But in female urethra, there are no such divisions and it is shorter than the male urethra.</li></li></ul><li>Male & Female urethra<br />
  17. 17. MICROSCOPIC ANATOMY OF THE URINARY SYSTEM<br />Group 3,4,5<br />
  18. 18. CONTENT<br /><ul><li>Kidney</li></ul> 1, histology<br /> 2, nephron<br /> 3, collecting duct<br /> 4, vasculature<br /> 5, juxtaglomerular apparatus<br /><ul><li>Ureter
  19. 19. Urinary bladder
  20. 20. Urethra</li></li></ul><li>THE URINARY SYSTEM-COMPRISES<br />TWO KIDNEYS<br />TWO URETERS<br />URINARY BLADDER<br />URETHRA<br />
  21. 21.
  23. 23.
  24. 24. Kidney is made up of 10-18 lobes<br />Lobes are made up of medullary pyramids.<br />Bases of pyramids are enveloped by cortex.<br />Cortex contain renal corpuscles , proximal & distal parts of tubules.<br />Apices of renal pyramids are known as renal papilla.<br />Renal papilla open to the renal pelvis via a branch of a renal pelvis called a calyx.<br />Renal sinus-fatty supporting tissue between medullary pyramids<br />
  25. 25. PELVICALYCEAL SYSTEM<br />Whole urinary collecting system within the kidney<br />
  26. 26. NEPHRON<br />
  27. 27. NEPHRON<br />Renal corpuscle<br />Renal tubules<br />
  29. 29.
  30. 30. BOWMAN’S CAPSULE<br /> Single layer of flattened cells resting on a basement membrane.<br />GLOMERULUS<br /> Globular network of anastomosing capillaries.<br /> Glomerular capillaries are invested by visceral layer of Bowman’s capsule. These cells are called Podocytes. They have finger like projections .<br />
  31. 31. GLOMERULAR FILTRATION BARRIOR<br />Glomerular endothelium<br />Basement bembrane<br />Podocytes<br />
  32. 32.
  33. 33. RENAL TUBULES<br />Extend from Bowmen’s capsule to collecting duct.<br />PCT<br />Loop of Henle<br />DCT<br />
  34. 34.
  35. 35. PROXIMAL CONVOLUTED TUBE<br />Longest , most convoluted tube.<br />Found in renal cortex.<br />Simple cuboidal epithelium.<br />Brush border fills the lumen in a section.<br />Cytoplasm pink stained due to mitochondria.<br />Less cells in a section than DCT<br />
  36. 36. LOOP OF HENLE<br /><ul><li>Descending limb</li></ul> (thin limb, concentrating limb)<br /> Simple squamous epithelium.<br /><ul><li>Hairpin loop</li></ul>Simple squamous epithelium<br /><ul><li>Ascending limb</li></ul>Thin ascending limb- simple squamous epithelium.<br /> Thick ascending limb- simple cuboidal epithelium<br />
  37. 37.
  38. 38. Loop of Henle is closely associated with parallel capillary loops-vasa recta, peritubular capillaries<br />
  39. 39.
  40. 40.
  41. 41.
  42. 42. DCT<br />SHRTER<br />Less convoluted<br />Found in cortex<br />No brush border<br />Large lumen comparing to PCT<br />Small cells. More cells in a section<br />
  43. 43.
  44. 44. COLLECTING TUBULES<br />Terminal part of DCT.<br />Several get together & form a Collecting duct<br />
  45. 45.
  46. 46. COLLECTING DUCT<br />Descend through the cortex in parallel bundles called medullary rays.<br />Lined by columnar epithelium.<br />Pale stained.<br />No brush border<br />Consist of 2 cell types<br /> intercalated cells(I cells)<br /> principal cells<br />
  47. 47.
  48. 48. principal cells<br /> pale cytoplasm. Short microvillus<br /> actively reabsorb Na+ ,K+ ,H2O<br />Intercalated cells<br /> dark cytoplasm due to concentrated mitochondria ribosome & vesicles.<br /> secrete H+ & reabsorb HCO-3 .maintain acid base homeostasis<br />
  49. 49.
  50. 50.
  51. 51. RENAL VASCULATURE<br />
  53. 53. Juxtaglomerular cells<br /> smooth muscle cells of afferent arteriole<br /> sensitive to blood pressure in afferent arteriole <br /> Release enzyme renin<br />Macula densa<br /> modified DCT epithelium<br /> sensitive to [Na+] within DCT<br /> low [Na+] stimulate release of renin from juxtaglomerular cells<br />
  54. 54. Lasis cells<br /> extra glomerular mesengial cells<br /> release erythropoitin<br />
  55. 55.
  56. 56. URETER<br />Transitional epithelium (urothelium)<br />Muscular tube<br /> inner longitudinal muscle layer<br /> outer circular muscle layer<br />Impermeable to urine.<br />Prevent water leaking toward concentrated urine. <br />
  57. 57.
  58. 58.
  59. 59. URINARY BLADDER<br />Transitional epithelium<br />Wall has 3 muscle layers (Detrusor muscles)<br />
  60. 60.
  61. 61. URETHRA<br />In male 3 parts<br />Prostatic urethra<br /> urothelium<br />Membranous urethra<br /> stratified squamous epithelium<br />Spongy urethra (penile urethra)<br />stratified epithelium or pseudostratified columnar epithelium<br />
  62. 62.
  63. 63.
  64. 64. Acknowledgments <br />Wheater’s functional histology (fifth edition)<br /><br /><br /><br />
  65. 65. Functions of different parts of the nephron<br />Groups 6,7,8<br />
  66. 66. The functional unit of the kidneyNEPHRON<br />(Site of urine formation)<br />
  67. 67. Parts of the nephron<br />Distal Convoluted tubule<br />Bowman’s capsule<br />Collecting tubules<br />Proximal Convoluted tubule<br />Glomerulus<br />Thick ascending limb of Loop of Henle<br />Collecting duct<br />Thin descending limb of Loop of Henle<br />Thin ascending limb of Loop of Henle<br />Hairpin bend of Loop of Henle<br />To bladder<br />
  68. 68. Renal processes<br />Tubular Reabsorption<br />Glomerular Filtration <br />Tubular Secretion<br />Excretion<br />
  69. 69. Bowman’s capsule<br />Glomerular Filtration<br />The capsular epithelium(podocytes) surrounding the outer surface of the capillary basement membrane forms a part of the glomerular filtration membrane.<br />
  70. 70. <ul><li>Small molecules such as water, glucose, and ionic salts except for plasma proteins are able to pass through the slits and form an ultra filtrate.
  71. 71. Podocytes are also involved in regulation of glomerular filtration rate (GFR).
  72. 72. When podocytes contract, they cause closure of filtration slits. </li></ul>Decreases the GFR(by reducing the surface area available for filtration) <br />
  73. 73. Proximal Convoluted Tubule(PCT)<br />Proximal Tubular Reabsorption<br /><ul><li>Fluid in the filtrate entering the proximal convoluted tubule is reabsorbed into the peritubular capillaries.
  74. 74. This is driven by sodium transport from the lumen into the blood by the Na+/K+ATPasein the basolateral membrane of the epithelial cells.</li></li></ul><li>
  75. 75.
  76. 76. Tubular Secretion of Organic acids and bases<br />Metabolic products such as Bile salts, Oxalate,Urate and Catecholamines are rapidly removed from the body by the PCT.<br />In addition, the PCT secretes harmful drugs or toxins.<br />Eg: Penicillin, Salicylates<br />
  77. 77. Cortex<br />H20<br />300 mOsm/L<br />20% of water is reabsorbed<br />H20<br />Medulla<br />1200 mOsm/L<br />Loop of Henle-Descending limb<br />
  78. 78. Na+, K+, Cl-, <br />Ca+2, HCO3-, Mg+2<br />Thick<br />Thin<br />Loop of Henle-Ascending limb<br />
  79. 79. Ca+2, Mg+2<br />(Paracellular pathway)<br />Na+<br />K+<br />2Cl-<br />3Na+<br />2K+<br />Na+<br />H+<br />Basolateral membrane<br />Tubular Lumen<br />
  80. 80. Early Distal Convoluted Tubule(DCT)<br />Impermeable to water and urea<br />K+<br />NaCl (5%)<br />Dilutes the tubular fluid<br />
  81. 81. Late Distal Tubule<br />Two types of cells<br />Principal cells<br />Secretes K+ and Reabsorbs Na+<br />Na<br />3Na<br />2K<br />K<br />Lumen<br />
  82. 82. 2. Intercalated Cells<br /><ul><li>H+ Secretion and HCO3-Reabsorption (H+ facilitates HCO3-reabsorption)
  83. 83. The H+/ATPase pump can secrete H+ against a very high conc. gradient.</li></ul>CA<br />HCO3- + H+ H2CO3<br />H2O + CO2<br />CA=Carbonic Anhydrase<br />
  84. 84. Action of Vasopressin(ADH)<br />H2O<br />
  85. 85. <ul><li>Permeability of late distal tubular cells to water depends on the ADH.
  86. 86. ADH stimulates the binding of Aquaporin-2 channels to the luminal membrane.</li></li></ul><li>Collecting tubule(CT)<br /><ul><li>Impermeable to urea.
  87. 87. Reabsorb s Na+ from the lumen & secrete K+ ions.
  88. 88. The permeability of the CT& collecting duct for water is controlled by the level of ADH.</li></li></ul><li>Principal cells of CT<br />Reabsorbs Na+ions and water<br />Secrete K+ ions.<br />Intercalated cells of CT<br />Secrete hydrogen ions by an active H+ /ATPase mechanism.<br />Depending on the Na+/K+ ATPase pump activity.<br />
  89. 89. High level of ADH<br />(Ant diuretic hormone-Vasopressin)<br />Increases water reabsorption<br />Concentrates the solutes in urine<br />
  90. 90. Summary<br />
  91. 91. RENAL BLOOD SUPPLY-ANATOMY-<br />Group 9,10,11<br />
  92. 92.
  93. 93.
  94. 94. RENAL ARTERIES<br />The aorta gives 2 branches at the L2 vertebral level, which supply kidneys.<br />Left renal artery<br />Right renal artery<br />
  95. 95.
  96. 96. SEGMENTAL BLOOD SUPPLY<br />According to blood supply, each kidney is divided into 5 vascular segments.<br />Each segment is supplied by one segmental artery.<br />Segmental arteries do not anastomose with each other.<br />Obstruction of a segmental artery leads to necrosis of that particular segment.<br />
  97. 97. Segmental artery<br />Lobar artery<br />Interlobar artery<br />Arcuate artery<br />Interlobular artery<br />Afferent glomerular arteriole<br />DISTRIBUTION OF INTRARENAL ARTERIES<br />
  98. 98. Interlobar arteries<br />Arcuate artery<br />Interlobular arteries<br />BLOOD SUPPLY TO THE NEPHRONS<br />
  99. 99. Afferent glomerular artery<br />Glomerular capillary network<br />Efferent glomerular arteriole<br />GLOMERULAR CAPILLARIES<br />Glomerulus is a special capillary network between 2 arterioles.<br />
  100. 100. VASA RECTA & PERITUBULAR CAPILLARIES<br />There are two types of nephrones.<br />Cortical nephrones.<br />Juxtamedullary nephrones.<br />In cortical nephrones efferent arteriole gives rise to peritubular capillaries.<br />In juxtamedullary nephrones it gives rise peritubular capillaries and vasa recta. <br />
  101. 101. Peritubular capillaries<br /><ul><li>Arise from efferent arteriole
  102. 102. Surround PCT & DCT in the cortex.</li></ul>Vasa recta<br /><ul><li>Arise from efferent arteriole.
  103. 103. Wide parallel capillary loops which are associated with limbs of loops of Henle of juxtamedullary nephrones.</li></li></ul><li>Efferent arteriole continues as descending vasa recta. <br />Descending vasa recta give rise to capillaries around loops of Henle.<br />Venous ends of capillaries converge to form ascending vasa recta.<br />
  104. 104. There are 3 types of capillary networks in kidney.<br />Glomerular capillary plexus<br />Peritubular capillary plexus<br />Vasa recta<br />
  105. 105. VENOUS DRAINAGE OF NEPHRONS<br />Interlobular veins<br />Arcuate veins<br />Interlobar veins<br />Intrarenal vein<br />Renal vein<br /> INFERIOR VENA CAVA<br />Peritubular capillaries drain into inter lobular veins.<br />Ascending vasa recta can be drained into interlobular or arcuate veins.<br />
  106. 106. Interlobular veins<br />Arcuate veins<br />Interlobar veins<br />Intrarenal vein<br />Renal vein<br /> INFERIOR VENA CAVA<br />VENOUS DRAINAGE OF KIDNEYS<br />
  107. 107. RENAL VEINS<br />
  108. 108. SUMMARY.<br />
  109. 109. Kidneys And Blood Pressure Regulation<br />Groups - 12, 13, & 14<br />
  110. 110. How the body regulates the blood pressure ?<br />Two major parameters of Blood Pressure control<br />1. Total peripheral resistance<br /> 2. Cardiac output<br />Arterial Blood Pressure<br /> = Cardiac Output X Total Peripheral Resistance <br />
  111. 111. Mechanisms of controlling Blood Pressure<br />Rapid Control<br /> Baroreceptor<br /> CNS ischemic mechanism<br /> Chemoreceptors<br /> Combine to cause venoconstriction, increasing venous return, increase heart rate and contractility, arteriolar constriction<br />Intermediate Control<br /> (during this time nervous mechanisms usually fatigue and become less important) <br />Long-Term Control<br />(Renal-body fluid pressure control mechanism -hours to days)<br /> RAAS interaction with aldosterone – Regulating ECF volume<br />
  112. 112.
  113. 113. Renin Angiotensin Aldosterone System (RAAS)<br />
  114. 114. How RAAS affect blood pressure regulation ?<br />Increase in Blood volume<br />Increase in venous return<br />Increase in cardiac output<br />BP = CO X TPR<br />Increase in blood pressure<br />
  115. 115. Vasoconstriction<br /> Resistence = 1<br /> (radius)4<br />Increase Total Peripheral Resistance<br /> BP = CO X TPR<br />Increase blood pressure<br />
  116. 116. How the Renin is formed ?<br />Juxtaglomerular Apparatus<br />
  117. 117. Stimulations for Renin release<br />1. Low renal blood flow <br /> Stimulate intrarenal baroreceptors<br />2. Increased sympathetic activity <br />3. Low concentration of Na+ and Cl- in macula densa<br />
  118. 118. Formation of Angiotensin 11<br />
  119. 119. Action of Angiotensin 11<br />
  120. 120.
  121. 121. Action of Aldosterone<br />
  122. 122. ADH (Vasopressin) and Blood Volume<br />H2O<br />H2O<br />H2O<br />Hypothalamus<br />Ang II<br />receptors<br />SON<br />PVN<br />Maxillary<br />Body<br />Osmo<br />receptors<br />Increased <br />osmolarity<br />Optic<br />chiasma<br />Posterior<br />Pituitary<br />ADH<br />Anterior<br />Pituitary<br />Vagal<br />afferents<br />Atrial<br />volume<br />receptors<br />Volume<br />Retention<br />TPR<br />
  123. 123. Action of ADH<br />
  124. 124. Arterial Volume receptors and Hypothalamic osmoreceptors<br />Increase pressure due to Decrease osmotic pressure<br />Increase in blood volume<br />Distension of the atrial walls Hypothalamus<br />Stimulation of receptors Decrease ADH secretion<br />Dilatation of renal arterioles Decrease water reabsorption<br /> from the kidney<br />More filtration of fluid <br />in the kidneys <br /> Bring the Volume and BP back to normal<br />
  125. 125. Action of ANP (AtrialNatriuretic Peptide)<br />
  126. 126. Structure of ureters and urinary bladder to perform its function <br />Groups-15,16,17<br />
  127. 127. Ureters….. <br />A .begin as a continuation of the renal pelvis<br /> B .run retroperitoneally<br />C .just medial to tips of transverse processes of lumbar vertebrae towards the urinary bladder<br />D. join the urinary bladder trigone at its posterolateral corners (behind the urinary bladder) <br />
  128. 128. Ureters can pass urine from pelvicalyceal system to urinary bladder because it is a hollow tube <br />macroscopicstructure and its function<br />Ureter<br />25cm long<br />, A Hollow muscular tube<br />Function!!!<br />
  129. 129. There is a very narrow and acute angle at the point where the ureters connect with the bladder<br />Function!!!<br />The acute angle between the ureter and bladder prevents back flow of urine to ureters from the bladder.<br />
  130. 130. Umbrella cells<br />Ureter<br />microscopicstructure and its function<br />Transitional epithelium (Urothelium)<br />Outer round cell layer-umbrella cells<br /><ul><li> urothelium is stratified (stretchable)
  131. 131. Comprising 3 – 6 layers of cells.
  132. 132. Surface cells are often called Umbrella cells</li></li></ul><li>Functions!!!<br />Umbrella cells- <br /><ul><li>impermeable to urine even when it is in full stretch
  133. 133. Prevent water entering to hypertonic urine from epithelium</li></li></ul><li>Allow to stretch the bladder and the ureter by compressing the number of cell layers<br />It is thrown up in to folds in the relaxed state to allowing the ureter to dilate during passage of bolus of urine<br />Mucosal folds<br />Transitional<br />epithelium-<br />functions:<br />
  134. 134. Wall of the ureter<br />Consists of;<br />Urothelium<br />Lamina propria<br />Two smooth muscle layers (in upper 2/3 ) <br /> -inner longitudinal layer<br /> -outer circular layer<br />Lower 1/3 has also a outermost longitudinal layer <br />
  135. 135. Muscle layers-wall<br />of the ureter<br />Outer circular layer <br />Inner longitudinal layer <br />Transitional epithelium<br />
  136. 136. Functions?<br /><ul><li>Because of the presence of smooth muscles layers it can propel urine by peristaltic movements.
  137. 137. Mucus secreted by mucosa of ureter prevents the cells from coming into contact with urine.</li></li></ul><li>1. to serve as a reservoir for urine<br />.(Without the bladder, you would just have a constant urine coming out all the time as your kidneys are constantly processing new urine. Needless to say, that would make you inconvenient)<br />Macroscopic structure and function<br />Urinary bladder <br />is like a collapsible bag<br />A hollow muscular organ<br />Functions!!!<br />.<br />2.Internal urethral orifice contributes to accumulate urine in the bladder<br />A distensible/stretchable organ<br />It can hold about 250ml of urine before we feel to pass them out.<br />
  138. 138.
  139. 139. Urinary bladder<br />Microscopic structure<br />Mainly relates with its epithelium and wall<br />Epithelium-Transitional epithelium<br />Several cell layers (stretchable)<br />Outer round cell layer<br />(umbrella cells)<br />
  140. 140. Structure of the wall of the bladder <br />a. mucosa - transitional epithelium<br />b. submucosa<br />c. muscularis (called detrusor muscle) - 3 layers of smooth muscle<br />-inner longitudinal layer<br /> -middle circular layer<br /> -outer longitudinal layer<br />d. adventitia<br />
  141. 141. Smooth muscle layers<br />Microscopic structure of the wall of the urinary bladder<br />
  142. 142. Urinary bladder-How the functions Relate with its microscopic structure <br /><ul><li>Ability to stretch because presence of transitional epithelium.
  143. 143. By contracting smooth muscle layers urine is expelled with the help of the urethra</li></li></ul><li>RENAL FAILURE<br />Groups 18, 19, 20<br />
  144. 144. Renal failure or kidney failure is a situation in which the kidneys fail to function adequately <br />
  145. 145. Renal failure can broadly be divided into two categories:<br /><ul><li>Acute renal failure
  146. 146. Chronic renal failure</li></li></ul><li><ul><li>The type of renal failure is determined by the trend in the serum creatinine.
  147. 147. Other factors which may help differentiate acute and chronic kidney disease include the presence of anemia and the kidney size on ultrasound.
  148. 148. Chronic kidney disease generally leads to anemia and small kidney size.</li></li></ul><li>ACUTE RENAL FAILURE<br />Acute renal failure (ARF) is a rapidly progressive loss of renal function, generally characterized by oliguria (decreased urine production);body water and body fluids disturbances;and electrolyte derangement.<br />ARF can result from a large number of causes.<br />
  149. 149. Symptoms of ARF<br /><ul><li>Decrease urine output (70%)
  150. 150. Edema, esp. lower extremity
  151. 151. Mental changes
  152. 152. Heart failure
  153. 153. Nausea, vomiting
  154. 154. Pruritus
  155. 155. Anemia
  156. 156. Tachypenia
  157. 157. Cool, pale, moist skin</li></li></ul><li>Causes of acute renal failure<br /><ul><li>Sudden interruption in the blood supply to the kidney,
  158. 158. Toxic overload of the kidneys.
  159. 159. Accidents, injuries or complications from surgery (where the kidneys are deprived of normal blood flow for an extended period of time.) e.g.- heart-bypass surgery.
  160. 160. Drug overdoses, such as antibiotics or chemotherapy, </li></li></ul><li>Chronic kidney disease<br />Chronic Kidney Disease (CKD) can develop slowly and show few initial symptoms, be the long term result of irreversible acute disease or be part of a disease progression<br />
  161. 161. CRF Symptoms<br /><ul><li>Malaise
  162. 162. Weakness
  163. 163. Fatigue
  164. 164. Neuropathy
  165. 165. Anorexia
  166. 166. Nausea
  167. 167. Vomiting
  168. 168. Seizure
  169. 169. Constipation
  170. 170. Peptic ulceration
  171. 171. Diverticulosis
  172. 172. Anemia
  173. 173. Pruritus
  174. 174. Jaundice
  175. 175. Abnormal hemostasis</li></li></ul><li>CHRONIC RENAL FAILURE CAUSES<br /><ul><li>Diabetes mellitus (main cause)
  176. 176. Hypertension
  177. 177. Polycystic kidney disease
  178. 178. Overuse of some common drugs, such as aspirin, ibuprofen, cocaine and acetaminophen
  179. 179. Glomerulonephritis
  180. 180. HIV nephropathy
  181. 181. Reflux nephropathy in children
  182. 182. Kidney infections & obstructions</li></li></ul><li>Polycystic kidney disease<br />
  183. 183. Polycystic kidney disease<br />
  184. 184. INVESTIGATION<br />Chronic kidney failure is measured in five stages, which are calculated using a patient’s GFR, or glomerular filtration rate<br />
  185. 185. MEDICATIONS<br /><ul><li>Unlike in chronic kidney disease, the kidneys can often recover from acute failure, allowing the patient to resume a normal life.
  186. 186. People suffering from acute failure require supportive treatment until their kidneys recover function, and often remain at an increased risk of developing future kidney failure</li></li></ul><li>Medications used in acute or chronic kidney failure may include<br /><ul><li>Diuretics – </li></ul> to flush out the kidneys, increase urine flow, and rid the body of excess sodium (eg, furosemide , mannitol )<br /><ul><li>Dopamine, atrialnatriuretic peptide (ANP) – </li></ul> to dilate blood vessels in the kidneys, increase urine flow, flush out sodium<br />
  187. 187. <ul><li>Blood pressure medications </li></ul>(eg, ACE inhibitors)<br /><ul><li>Sodium polystyrene sulfonate or insulin in dextrose – </li></ul> to control high potassium levels<br /><ul><li>Calcium acetate – </li></ul> to control high phosphorus levels <br />
  188. 188.
  189. 189. Peritoneal dialysis uses the peritoneal membrane, the lining of the abdomen, to remove excess water, wastes, and chemicals from the body.10 A dialysate passes through the abdomen via a surgically placed catheter. Fluid, wastes, and chemicals pass from capillaries in the peritoneal membrane into the dialysate. After several hours, the waste-carrying dialysate is drained from the abdomen.<br />
  190. 190. Kidney transplant<br />
  191. 191. REFERENCE<br />Davidson’s Clinical Medicine – 20th Edition (pg.491 – 496)<br /><br /><br /><br /><br /><br /> <br /><br /><br />http://<br /><br />