SlideShare a Scribd company logo

モジュールの凝集度・結合度・インタフェース

社内勉強会発表用 内容 ・モジュールの凝集度 ・モジュール結合度 ・オブジェクト指向 ・インタフェース

1 of 100
Download to read offline
インタフェース
   と
モジュールの
 凝集度
   と
 結合度
 柳川 一芽
            twitter: yangiYA
       WEB: http://ti.que.jp/p/
インタフェースって重要です
• 優れたインタフェース設計なら
 – 改造は簡単です
 – 機能追加は簡単です
 – 公開インタフェースを変更せず、内部実装をリファクタリング
   することでソースを改善できます。
   (インタフェースのリファクタリングは影響範囲が広い)
 – 使う人が簡単に使い方を理解できます
  • � 驚き最小の原則
 – 使う側が使いたい使い方ができます
どうやれば優れたインタフェースに
       できる?
•もっとも重要なコツは、
どうやれば優れたインタフェースに
       できる?
•もっとも重要なコツは、
状況に合わせて
よく考えること
どうやれば優れたインタフェースに
       できる?
•もっとも重要なコツは、
状況に合わせて
よく考えること
だとは思いますが、
どうやれば優れたインタフェースに
         できる?

• それ以外にあえて、

•もう少し分かりやすい
 コツをご提案させて
 いただきます。

Recommended

DockerコンテナでGitを使う
DockerコンテナでGitを使うDockerコンテナでGitを使う
DockerコンテナでGitを使うKazuhiro Suga
 
例外設計における大罪
例外設計における大罪例外設計における大罪
例外設計における大罪Takuto Wada
 
PlaySQLAlchemy: SQLAlchemy入門
PlaySQLAlchemy: SQLAlchemy入門PlaySQLAlchemy: SQLAlchemy入門
PlaySQLAlchemy: SQLAlchemy入門泰 増田
 
Pythonによる黒魔術入門
Pythonによる黒魔術入門Pythonによる黒魔術入門
Pythonによる黒魔術入門大樹 小倉
 
マイクロにしすぎた結果がこれだよ!
マイクロにしすぎた結果がこれだよ!マイクロにしすぎた結果がこれだよ!
マイクロにしすぎた結果がこれだよ!mosa siru
 
フロー効率性とリソース効率性について #xpjug
フロー効率性とリソース効率性について #xpjugフロー効率性とリソース効率性について #xpjug
フロー効率性とリソース効率性について #xpjugItsuki Kuroda
 
SQLアンチパターン - 開発者を待ち受ける25の落とし穴 (拡大版)
SQLアンチパターン - 開発者を待ち受ける25の落とし穴 (拡大版)SQLアンチパターン - 開発者を待ち受ける25の落とし穴 (拡大版)
SQLアンチパターン - 開発者を待ち受ける25の落とし穴 (拡大版)Takuto Wada
 
テスト文字列に「うんこ」と入れるな
テスト文字列に「うんこ」と入れるなテスト文字列に「うんこ」と入れるな
テスト文字列に「うんこ」と入れるなKentaro Matsui
 

More Related Content

What's hot

イミュータブルデータモデルの極意
イミュータブルデータモデルの極意イミュータブルデータモデルの極意
イミュータブルデータモデルの極意Yoshitaka Kawashima
 
イミュータブルデータモデル(入門編)
イミュータブルデータモデル(入門編)イミュータブルデータモデル(入門編)
イミュータブルデータモデル(入門編)Yoshitaka Kawashima
 
世界一わかりやすいClean Architecture
世界一わかりやすいClean Architecture世界一わかりやすいClean Architecture
世界一わかりやすいClean ArchitectureAtsushi Nakamura
 
Python 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそうPython 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそうRyuji Tsutsui
 
DDD x CQRS 更新系と参照系で異なるORMを併用して上手くいった話
DDD x CQRS   更新系と参照系で異なるORMを併用して上手くいった話DDD x CQRS   更新系と参照系で異なるORMを併用して上手くいった話
DDD x CQRS 更新系と参照系で異なるORMを併用して上手くいった話Koichiro Matsuoka
 
組織にテストを書く文化を根付かせる戦略と戦術
組織にテストを書く文化を根付かせる戦略と戦術組織にテストを書く文化を根付かせる戦略と戦術
組織にテストを書く文化を根付かせる戦略と戦術Takuto Wada
 
暗号技術の実装と数学
暗号技術の実装と数学暗号技術の実装と数学
暗号技術の実装と数学MITSUNARI Shigeo
 
イミュータブルデータモデル(世代編)
イミュータブルデータモデル(世代編)イミュータブルデータモデル(世代編)
イミュータブルデータモデル(世代編)Yoshitaka Kawashima
 
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」SQLアンチパターン 幻の第26章「とりあえず削除フラグ」
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」Takuto Wada
 
開発速度が速い #とは(LayerX社内資料)
開発速度が速い #とは(LayerX社内資料)開発速度が速い #とは(LayerX社内資料)
開発速度が速い #とは(LayerX社内資料)mosa siru
 
ドメイン駆動設計 ( DDD ) をやってみよう
ドメイン駆動設計 ( DDD ) をやってみようドメイン駆動設計 ( DDD ) をやってみよう
ドメイン駆動設計 ( DDD ) をやってみよう増田 亨
 
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭するCEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭するYoshifumi Kawai
 
ドメイン駆動設計に15年取り組んでわかったこと
ドメイン駆動設計に15年取り組んでわかったことドメイン駆動設計に15年取り組んでわかったこと
ドメイン駆動設計に15年取り組んでわかったこと増田 亨
 
オブジェクト指向の設計と実装の学び方のコツ
オブジェクト指向の設計と実装の学び方のコツオブジェクト指向の設計と実装の学び方のコツ
オブジェクト指向の設計と実装の学び方のコツ増田 亨
 
PostgreSQLアンチパターン
PostgreSQLアンチパターンPostgreSQLアンチパターン
PostgreSQLアンチパターンSoudai Sone
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIShota Imai
 
それはYAGNIか? それとも思考停止か?
それはYAGNIか? それとも思考停止か?それはYAGNIか? それとも思考停止か?
それはYAGNIか? それとも思考停止か?Yoshitaka Kawashima
 
ホットペッパービューティーにおけるモバイルアプリ向けAPIのBFF/Backend分割
ホットペッパービューティーにおけるモバイルアプリ向けAPIのBFF/Backend分割ホットペッパービューティーにおけるモバイルアプリ向けAPIのBFF/Backend分割
ホットペッパービューティーにおけるモバイルアプリ向けAPIのBFF/Backend分割Recruit Lifestyle Co., Ltd.
 
ドメイン駆動設計のためのオブジェクト指向入門
ドメイン駆動設計のためのオブジェクト指向入門ドメイン駆動設計のためのオブジェクト指向入門
ドメイン駆動設計のためのオブジェクト指向入門増田 亨
 

What's hot (20)

イミュータブルデータモデルの極意
イミュータブルデータモデルの極意イミュータブルデータモデルの極意
イミュータブルデータモデルの極意
 
イミュータブルデータモデル(入門編)
イミュータブルデータモデル(入門編)イミュータブルデータモデル(入門編)
イミュータブルデータモデル(入門編)
 
世界一わかりやすいClean Architecture
世界一わかりやすいClean Architecture世界一わかりやすいClean Architecture
世界一わかりやすいClean Architecture
 
Marp Tutorial
Marp TutorialMarp Tutorial
Marp Tutorial
 
Python 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそうPython 3.9からの新定番zoneinfoを使いこなそう
Python 3.9からの新定番zoneinfoを使いこなそう
 
DDD x CQRS 更新系と参照系で異なるORMを併用して上手くいった話
DDD x CQRS   更新系と参照系で異なるORMを併用して上手くいった話DDD x CQRS   更新系と参照系で異なるORMを併用して上手くいった話
DDD x CQRS 更新系と参照系で異なるORMを併用して上手くいった話
 
組織にテストを書く文化を根付かせる戦略と戦術
組織にテストを書く文化を根付かせる戦略と戦術組織にテストを書く文化を根付かせる戦略と戦術
組織にテストを書く文化を根付かせる戦略と戦術
 
暗号技術の実装と数学
暗号技術の実装と数学暗号技術の実装と数学
暗号技術の実装と数学
 
イミュータブルデータモデル(世代編)
イミュータブルデータモデル(世代編)イミュータブルデータモデル(世代編)
イミュータブルデータモデル(世代編)
 
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」SQLアンチパターン 幻の第26章「とりあえず削除フラグ」
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」
 
開発速度が速い #とは(LayerX社内資料)
開発速度が速い #とは(LayerX社内資料)開発速度が速い #とは(LayerX社内資料)
開発速度が速い #とは(LayerX社内資料)
 
ドメイン駆動設計 ( DDD ) をやってみよう
ドメイン駆動設計 ( DDD ) をやってみようドメイン駆動設計 ( DDD ) をやってみよう
ドメイン駆動設計 ( DDD ) をやってみよう
 
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭するCEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
 
ドメイン駆動設計に15年取り組んでわかったこと
ドメイン駆動設計に15年取り組んでわかったことドメイン駆動設計に15年取り組んでわかったこと
ドメイン駆動設計に15年取り組んでわかったこと
 
オブジェクト指向の設計と実装の学び方のコツ
オブジェクト指向の設計と実装の学び方のコツオブジェクト指向の設計と実装の学び方のコツ
オブジェクト指向の設計と実装の学び方のコツ
 
PostgreSQLアンチパターン
PostgreSQLアンチパターンPostgreSQLアンチパターン
PostgreSQLアンチパターン
 
ChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AIChatGPT 人間のフィードバックから強化学習した対話AI
ChatGPT 人間のフィードバックから強化学習した対話AI
 
それはYAGNIか? それとも思考停止か?
それはYAGNIか? それとも思考停止か?それはYAGNIか? それとも思考停止か?
それはYAGNIか? それとも思考停止か?
 
ホットペッパービューティーにおけるモバイルアプリ向けAPIのBFF/Backend分割
ホットペッパービューティーにおけるモバイルアプリ向けAPIのBFF/Backend分割ホットペッパービューティーにおけるモバイルアプリ向けAPIのBFF/Backend分割
ホットペッパービューティーにおけるモバイルアプリ向けAPIのBFF/Backend分割
 
ドメイン駆動設計のためのオブジェクト指向入門
ドメイン駆動設計のためのオブジェクト指向入門ドメイン駆動設計のためのオブジェクト指向入門
ドメイン駆動設計のためのオブジェクト指向入門
 

Viewers also liked

クラスとクラスの依存を薄くする
クラスとクラスの依存を薄くするクラスとクラスの依存を薄くする
クラスとクラスの依存を薄くするAkihiro Nakahara
 
良いクラス設計とは?
良いクラス設計とは?良いクラス設計とは?
良いクラス設計とは?basicinc_dev
 
オブジェクト指向できていますか?
オブジェクト指向できていますか?オブジェクト指向できていますか?
オブジェクト指向できていますか?Moriharu Ohzu
 
アジャイルテスティング
アジャイルテスティングアジャイルテスティング
アジャイルテスティングShuji Watanabe
 
はこだてIKA夜間勉強会 バージョン管理#01 -Subversion編-
はこだてIKA夜間勉強会 バージョン管理#01 -Subversion編-はこだてIKA夜間勉強会 バージョン管理#01 -Subversion編-
はこだてIKA夜間勉強会 バージョン管理#01 -Subversion編-Seiji KOMATSU
 
命名の話(ソースコードは読み物です)
命名の話(ソースコードは読み物です)命名の話(ソースコードは読み物です)
命名の話(ソースコードは読み物です)Akihiro Nakahara
 
第4回勉強会 単体テストのすすめ
第4回勉強会 単体テストのすすめ第4回勉強会 単体テストのすすめ
第4回勉強会 単体テストのすすめhakoika-itwg
 
組み込みでこそC++を使う10の理由
組み込みでこそC++を使う10の理由組み込みでこそC++を使う10の理由
組み込みでこそC++を使う10の理由kikairoya
 
Mini magickでの画像合成
Mini magickでの画像合成Mini magickでの画像合成
Mini magickでの画像合成Yoshiki Kobayashi
 
Redmineを業務システム化するアイデア
Redmineを業務システム化するアイデアRedmineを業務システム化するアイデア
Redmineを業務システム化するアイデアakipii Oga
 
クロージャデザインパターン
クロージャデザインパターンクロージャデザインパターン
クロージャデザインパターンMoriharu Ohzu
 
規格書で読むC++11のスレッド
規格書で読むC++11のスレッド規格書で読むC++11のスレッド
規格書で読むC++11のスレッドKohsuke Yuasa
 
定量的プロジェクト管理ツール概要 Lt 20110730
定量的プロジェクト管理ツール概要 Lt 20110730定量的プロジェクト管理ツール概要 Lt 20110730
定量的プロジェクト管理ツール概要 Lt 20110730hiroetoh
 
C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)Yuki Tamura
 
C++ マルチスレッドプログラミング
C++ マルチスレッドプログラミングC++ マルチスレッドプログラミング
C++ マルチスレッドプログラミングKohsuke Yuasa
 

Viewers also liked (20)

クラスとクラスの依存を薄くする
クラスとクラスの依存を薄くするクラスとクラスの依存を薄くする
クラスとクラスの依存を薄くする
 
よいコード、わるいコード
よいコード、わるいコードよいコード、わるいコード
よいコード、わるいコード
 
良いクラス設計とは?
良いクラス設計とは?良いクラス設計とは?
良いクラス設計とは?
 
オブジェクト指向できていますか?
オブジェクト指向できていますか?オブジェクト指向できていますか?
オブジェクト指向できていますか?
 
アジャイルテスティング
アジャイルテスティングアジャイルテスティング
アジャイルテスティング
 
By the power of metrics
By the power of metricsBy the power of metrics
By the power of metrics
 
はこだてIKA夜間勉強会 バージョン管理#01 -Subversion編-
はこだてIKA夜間勉強会 バージョン管理#01 -Subversion編-はこだてIKA夜間勉強会 バージョン管理#01 -Subversion編-
はこだてIKA夜間勉強会 バージョン管理#01 -Subversion編-
 
命名の話(ソースコードは読み物です)
命名の話(ソースコードは読み物です)命名の話(ソースコードは読み物です)
命名の話(ソースコードは読み物です)
 
第4回勉強会 単体テストのすすめ
第4回勉強会 単体テストのすすめ第4回勉強会 単体テストのすすめ
第4回勉強会 単体テストのすすめ
 
組み込みでこそC++を使う10の理由
組み込みでこそC++を使う10の理由組み込みでこそC++を使う10の理由
組み込みでこそC++を使う10の理由
 
Mini magickでの画像合成
Mini magickでの画像合成Mini magickでの画像合成
Mini magickでの画像合成
 
Redmineを業務システム化するアイデア
Redmineを業務システム化するアイデアRedmineを業務システム化するアイデア
Redmineを業務システム化するアイデア
 
クロージャデザインパターン
クロージャデザインパターンクロージャデザインパターン
クロージャデザインパターン
 
規格書で読むC++11のスレッド
規格書で読むC++11のスレッド規格書で読むC++11のスレッド
規格書で読むC++11のスレッド
 
定量的プロジェクト管理ツール概要 Lt 20110730
定量的プロジェクト管理ツール概要 Lt 20110730定量的プロジェクト管理ツール概要 Lt 20110730
定量的プロジェクト管理ツール概要 Lt 20110730
 
C++の黒魔術
C++の黒魔術C++の黒魔術
C++の黒魔術
 
Dependency injection
Dependency injectionDependency injection
Dependency injection
 
C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)
 
Extreme Learning Machine
Extreme Learning MachineExtreme Learning Machine
Extreme Learning Machine
 
C++ マルチスレッドプログラミング
C++ マルチスレッドプログラミングC++ マルチスレッドプログラミング
C++ マルチスレッドプログラミング
 

Similar to モジュールの凝集度・結合度・インタフェース

ドメインオブジェクトの見つけ方・作り方・育て方
ドメインオブジェクトの見つけ方・作り方・育て方ドメインオブジェクトの見つけ方・作り方・育て方
ドメインオブジェクトの見つけ方・作り方・育て方増田 亨
 
仕様七変化
仕様七変化仕様七変化
仕様七変化galluda
 
あなたが知らない リレーショナルモデル
あなたが知らない リレーショナルモデルあなたが知らない リレーショナルモデル
あなたが知らない リレーショナルモデルMikiya Okuno
 
スライド作成入門
スライド作成入門スライド作成入門
スライド作成入門Takahiko Ito
 
AgileTourOsaka2011 関係者に理解してもらえるアジャイル開発にむけて
AgileTourOsaka2011 関係者に理解してもらえるアジャイル開発にむけてAgileTourOsaka2011 関係者に理解してもらえるアジャイル開発にむけて
AgileTourOsaka2011 関係者に理解してもらえるアジャイル開発にむけてShuji Morisaki
 
CVPR2018 参加報告(速報版)2日目
CVPR2018 参加報告(速報版)2日目CVPR2018 参加報告(速報版)2日目
CVPR2018 参加報告(速報版)2日目Atsushi Hashimoto
 
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2Masayoshi Kondo
 
C#/.NETがやっていること 第二版
C#/.NETがやっていること 第二版C#/.NETがやっていること 第二版
C#/.NETがやっていること 第二版信之 岩永
 
Approximate Scalable Bounded Space Sketch for Large Data NLP
Approximate Scalable Bounded Space Sketch for Large Data NLPApproximate Scalable Bounded Space Sketch for Large Data NLP
Approximate Scalable Bounded Space Sketch for Large Data NLPKoji Matsuda
 
Using Deep Learning for Recommendation
Using Deep Learning for RecommendationUsing Deep Learning for Recommendation
Using Deep Learning for RecommendationEduardo Gonzalez
 
議論を描く技術「ファシリテーショングラフィック」
議論を描く技術「ファシリテーショングラフィック」議論を描く技術「ファシリテーショングラフィック」
議論を描く技術「ファシリテーショングラフィック」nishikawa_makoto7
 
Neural Concept Network v0.2 (ja)
Neural Concept Network v0.2 (ja)Neural Concept Network v0.2 (ja)
Neural Concept Network v0.2 (ja)AkihiroYamamoto
 
リレーショナルデータベースとの上手な付き合い方 long version
リレーショナルデータベースとの上手な付き合い方 long version リレーショナルデータベースとの上手な付き合い方 long version
リレーショナルデータベースとの上手な付き合い方 long version Mikiya Okuno
 
Deep learning勉強会20121214ochi
Deep learning勉強会20121214ochiDeep learning勉強会20121214ochi
Deep learning勉強会20121214ochiOhsawa Goodfellow
 
opensource and accessibility (Dec2000) Part 2
opensource and accessibility (Dec2000) Part 2opensource and accessibility (Dec2000) Part 2
opensource and accessibility (Dec2000) Part 2Takuya Nishimoto
 
できる!並列・並行プログラミング
できる!並列・並行プログラミングできる!並列・並行プログラミング
できる!並列・並行プログラミングPreferred Networks
 
XP祭り関西2011 森崎 修司「プラクティスが有効にはたらく前提は明らかになっていますか?」
XP祭り関西2011 森崎 修司「プラクティスが有効にはたらく前提は明らかになっていますか?」XP祭り関西2011 森崎 修司「プラクティスが有効にはたらく前提は明らかになっていますか?」
XP祭り関西2011 森崎 修司「プラクティスが有効にはたらく前提は明らかになっていますか?」Shuji Morisaki
 
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
LCCC2010:Learning on Cores,  Clusters and Cloudsの解説LCCC2010:Learning on Cores,  Clusters and Cloudsの解説
LCCC2010:Learning on Cores, Clusters and Cloudsの解説Preferred Networks
 

Similar to モジュールの凝集度・結合度・インタフェース (20)

Database smells
Database smellsDatabase smells
Database smells
 
ドメインオブジェクトの見つけ方・作り方・育て方
ドメインオブジェクトの見つけ方・作り方・育て方ドメインオブジェクトの見つけ方・作り方・育て方
ドメインオブジェクトの見つけ方・作り方・育て方
 
仕様七変化
仕様七変化仕様七変化
仕様七変化
 
あなたが知らない リレーショナルモデル
あなたが知らない リレーショナルモデルあなたが知らない リレーショナルモデル
あなたが知らない リレーショナルモデル
 
スライド作成入門
スライド作成入門スライド作成入門
スライド作成入門
 
AgileTourOsaka2011 関係者に理解してもらえるアジャイル開発にむけて
AgileTourOsaka2011 関係者に理解してもらえるアジャイル開発にむけてAgileTourOsaka2011 関係者に理解してもらえるアジャイル開発にむけて
AgileTourOsaka2011 関係者に理解してもらえるアジャイル開発にむけて
 
CVPR2018 参加報告(速報版)2日目
CVPR2018 参加報告(速報版)2日目CVPR2018 参加報告(速報版)2日目
CVPR2018 参加報告(速報版)2日目
 
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
深層学習(岡本孝之 著) - Deep Learning chap.1 and 2
 
C#/.NETがやっていること 第二版
C#/.NETがやっていること 第二版C#/.NETがやっていること 第二版
C#/.NETがやっていること 第二版
 
Approximate Scalable Bounded Space Sketch for Large Data NLP
Approximate Scalable Bounded Space Sketch for Large Data NLPApproximate Scalable Bounded Space Sketch for Large Data NLP
Approximate Scalable Bounded Space Sketch for Large Data NLP
 
Using Deep Learning for Recommendation
Using Deep Learning for RecommendationUsing Deep Learning for Recommendation
Using Deep Learning for Recommendation
 
議論を描く技術「ファシリテーショングラフィック」
議論を描く技術「ファシリテーショングラフィック」議論を描く技術「ファシリテーショングラフィック」
議論を描く技術「ファシリテーショングラフィック」
 
Neural Concept Network v0.2 (ja)
Neural Concept Network v0.2 (ja)Neural Concept Network v0.2 (ja)
Neural Concept Network v0.2 (ja)
 
リレーショナルデータベースとの上手な付き合い方 long version
リレーショナルデータベースとの上手な付き合い方 long version リレーショナルデータベースとの上手な付き合い方 long version
リレーショナルデータベースとの上手な付き合い方 long version
 
Deep learning勉強会20121214ochi
Deep learning勉強会20121214ochiDeep learning勉強会20121214ochi
Deep learning勉強会20121214ochi
 
opensource and accessibility (Dec2000) Part 2
opensource and accessibility (Dec2000) Part 2opensource and accessibility (Dec2000) Part 2
opensource and accessibility (Dec2000) Part 2
 
できる!並列・並行プログラミング
できる!並列・並行プログラミングできる!並列・並行プログラミング
できる!並列・並行プログラミング
 
深層学習入門
深層学習入門深層学習入門
深層学習入門
 
XP祭り関西2011 森崎 修司「プラクティスが有効にはたらく前提は明らかになっていますか?」
XP祭り関西2011 森崎 修司「プラクティスが有効にはたらく前提は明らかになっていますか?」XP祭り関西2011 森崎 修司「プラクティスが有効にはたらく前提は明らかになっていますか?」
XP祭り関西2011 森崎 修司「プラクティスが有効にはたらく前提は明らかになっていますか?」
 
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
LCCC2010:Learning on Cores,  Clusters and Cloudsの解説LCCC2010:Learning on Cores,  Clusters and Cloudsの解説
LCCC2010:Learning on Cores, Clusters and Cloudsの解説
 

モジュールの凝集度・結合度・インタフェース