Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
FÓRMULAS
                               TRIGONOMETRÍA PLANA

Razones trigonométricas
                                     ...
FÓRMULAS
                                TRIGONOMETRÍA ESFÉRICA
Superficie de un triángulo esférico.
       π r2
S =      ...
Upcoming SlideShare
Loading in …5
×

Formulas Trigonometria

11,377 views

Published on

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

Formulas Trigonometria

  1. 1. FÓRMULAS TRIGONOMETRÍA PLANA Razones trigonométricas y r Seno del ángulo α: sen α = ; Cosecante del ángulo α: cos ec = r r y y α x r Coseno del ángulo α: cos α = ; Secante del ángulo α: sec α = x r x y x Tangente del ángulo α: tg α = ; Cotangente del ángulo α: cot gα = x y Fórmulas más utilizadas: sen 2 α + cos 2 α = 1 ; 1 + tg 2 α = sec 2 α ; 1 + cot g 2 α = cos ec 2 α Razones trigonométricas de la suma de dos ángulos: sen(a + b) = sen a cos b + cos a sen b cos(a + b) = cos a cos b − sen a sen b tg a + tg b tg(a + b) = 1 − tg a tg b Razones trigonométricas de la diferencia de dos ángulos: sen(a − b) = sen a cos b − cos a sen b cos(a − b) = cos a cos b + sen a sen b tg a − tg b tg(a − b) = 1 + tg a tg b Razones trigonométricas del ángulo doble: 2 tg a sen(2a ) = 2 sen a cos a ; cos(2a ) = cos 2 a − sen 2 a ; tg(2a ) = 1 − tg 2 a Razones trigonométricas del ángulo mitad: a 1 − cos a a 1 + cos a a 1 − cos a sen = ; cos = ; tg = 2 2 2 2 2 1 + cos a Suma y diferencia de senos y cósenos: A+B A−B A+B A−B sen A + sen B = 2 sen cos ; sen A − sen B = 2 cos sen 2 2 2 2 A+B A−B A+B A−B cos A + cos B = 2 cos cos ; cos A − cos B = −2 sen sen 2 2 2 2 En un triángulo plano, de lados a, b y c, y ángulos A, B y C, se verifica: a b c Teorema del seno: = = sen A sen B sen C b A Teorema del coseno: a = b + c − 2bc cos A 2 2 2 c A+B tg a+b 2 B Teorema de la tangente: = C a−b A−B tg 2 a A (p − b)(p − a ) a+b+c Fórmula de Briggs: tg = siendo p = el semiperimetro 2 p( p − a ) 2 Unidad docente de Matemáticas
  2. 2. FÓRMULAS TRIGONOMETRÍA ESFÉRICA Superficie de un triángulo esférico. π r2 S = ( α + β + γ − 180º ) ; r=radio de la esfera y α, β, γ=ángulos del T. esférico 180º Superficie de un polígono esférico: π r2 S= ( A1 + A 2 + ... + A n − (n-2) ⋅ 180º ) 180º Siendo: A1, A2, …,An ángulos del polígono. n = nº de lados del polígono Teorema del seno (1º grupo de Bessel) sen a sen b sen c = = sen A sen B sen C Teorema del coseno para lados (2º grupo de Bessel) cos a = cos b· cos c + sen b· sen c· cos A cos b = cos a cos c + sen a ·sen c cos B cos c = cos a cos b + sen a sen b cos C Teorema de la cotangente (3º grupo de Bessel) cot a ⋅ sen b = cos b ⋅ cos C + sen C ⋅ cot A cot a ⋅ sen c = cos c ⋅ cos B + sen B ⋅ cot A cot b ⋅ sen a = cos a ⋅ cos C + sen C ⋅ cot B cot b ⋅ sen c = cos c ⋅ cos A + sen A ⋅ cot B cot c ⋅ sen a = cos a ⋅ cos B + sen B ⋅ cot C cot c ⋅ sen b = cos b ⋅ cos A + sen A ⋅ cot C Teorema del coseno para ángulos (4º grupo de Bessel) cos A = - cos B⋅cos C + sen B⋅sen C⋅cos a cos B = - cos A⋅cos C + sen A⋅sen C⋅cos b cos C = - cos A⋅cos B + sen A⋅sen B⋅cos c Funciones del ángulo mitad A sen (p - b) ⋅ sen(p - c) A sen p ⋅ sen(p - a) sen = ; cos = ; 2 sen b ⋅ sen c 2 sen b ⋅ sen c A sen (p - b) ⋅ sen(p - c) tg = 2 sen p ⋅ sen (p - a) Analogías de Gauss - Delambre A+B a−b A−B a−b sen cos sen sen 2 = 2 ; 2 = 2 C c C c cos cos cos sen 2 2 2 2 A+B a+b A-B a+b cos cos cos sen 2 = 2 ; 2 = 2 C c C c sen cos sen s en 2 2 2 2 Analogías de Neper a-b a-b cos sen A+B C 2 ⋅ cotg ; tg A−B 2 ⋅ cotg C ; tg = = 2 a+b 2 2 a+b 2 cos sen 2 2 A-B A-B cos s en a+b c 2 ⋅ tg ; tg a-b 2 ⋅ tg c tg = = 2 A+B 2 2 A+B 2 cos s en 2 2 Unidad docente de Matemáticas

×