Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Tema 8 treball i energia

5,529 views

Published on

Published in: Education
  • Login to see the comments

  • Be the first to like this

Tema 8 treball i energia

  1. 1. James Prescott Joule Física 1r Batxillerat Escola Vedruna de Palamós
  2. 2. Y   Anomenem treball d’una força sobre un cos, quan sobre un cos apliquem una força i aquesta el mou des d’un punt A a un punt B. Es calcula com: W= F .∆ r =F.Δr.cos α → F A → α F → ∆r B α → rA → rB O X
  3. 3. F És una magnitud escalar Depèn de la força aplicada i la distància recorreguda. La unitat del SI és el Joule (J). 1J = 1N.1m Treball efectuat per la força resultant       Δr Característiques  El treball de la força resultat és igual als treballs realitzats per les diverses forces Segons l’angle format entre la força i el desplaçament: • • • • Si α = 0º ⇒ cos 0º = 1 Si 0º ≤ α < 90º ⇒ W > 0 Si α = 90º ⇒ cos 90º = 0 Si 90º < α ≤ 180º ⇒ W < 0 ⇒ ⇒ ⇒ ⇒ el treball realitzat és màxim és l’anomenat treball motor el treball realitzat és nul és l’anomenat treball resistent
  4. 4.   La potència mesura la rapidesa amb la que es realitza un treball Es calcula com W F·r = = F ·v P = t t m   Es mesura en J/s = W (Watts) El cavall de vapor és una unitat de potència que no pertany al S.I. però es encara molt utilitzada. 1CV = 735 W
  5. 5.  Un motor elèctric s’utilitza per treure aigua d’un pou de 30m de profunditat, a raó de 600L per minut. Sabent que el rendiment de la bomba és del 85% de la potència del motor. Calcula la potència efectiva del motor en CV i la potència teòrica. • El treball realitzat per la bomba és W = m g ∆h = 600 . 9,8 . 30 = 176400 J • La potència efectiva del motor és Pefectiva • = W = 176 400 = 2 940 W t 60 ⇒ ⇒ W = 176400 J Pefectiva = 2 940 W Un rendimiento del 85% de la potència del motor, significa que per obtenir aquesta potència, el motor ha de consumir una potencia teòrica:
  6. 6. F W = Área = Fx.∆x O Una força constant Fx actua en la direcció de l’eix X sobre un cos y el desplaça en aquesta mateixa direcció: ∆x = xf − x0.  Al representar Fx en funció x X de ∆x, l’àrea compresa serà Fx ∆x, que coincideix numèricament amb el treball realitzat per la força.   W = ∫ F .dr  Fx xo ∆x El resultat és vàlid encara que la força no sigui constant, tot i que per calcular amb precisió l’àrea és necessari integrar 1
  7. 7.  Definició   És una magnitud física que permet als cossos produir transformacions a altres cossos o a ells mateixos. Característiques:  Tot i ser un concepte abstracte té una sèrie de característiques bàsiques:    Sempre està relacionada amb processos de transformació. L’energia es una propietat dels cossos que permet que aquests es transformin o produeixin transformacions a altres cossos. L’energia és la capacitat de fer un treball. En un sistema aïllat sempre es conserva; és a dir, l’energia que existeix a l’Univers es sempre la mateixa. Principi de conser vació de l’energia. El seu caràcter degradable; no conserva la seva qualitat. Degradació de l’energia
  8. 8. Energia mecànica Energia cinètica VELOCITAT Energia potencial POSICIÓ
  9. 9.   És l’energia que posseeix un cos a l’estar en moviment. Tot cos en moviment pot realitzar un treball i es manifesta quan el volem aturar bruscament. La bala té molta energia cinètica ja que té una velocitat molt elevada. 1 m 2 v Ec = 2 El tren té molta energia cinètica ja que té una massa molt gran.
  10. 10.    És l’energia que adquireix un cos quan s’allunya de l’equilibri. Quan és deguda a la posició que ocupa un cos respecte al centre de la Terra s’anomena energia potencial gravitatòria. Hi ha altres classes d’energia potencial:    Una molla estirada (energia potencial elàstica ) Un combustible (energia potencial química ) Un condensador carregat (energia potencial elèctrica)
  11. 11. • Epg = m g h m2 h2 Si m1 = m2 y h2 > h1 ⇒ Ep > Ep 1 2 h1 • m1
  12. 12. 1 2 Epe = Kx 2 K és la constant elàstica x és la distància des de la posició d’equilibri x
  13. 13.  Fx = m ax ⇒ W = m ax ∆x 2 2 vf − v0 = 2 a x ∆x El treball realitzat per Fx quan el cos experimenta un desplaçament és: W = Fx ∆x cos 0 = Fx ∆x 2 2 2 vf − v 0 1 m v2 1 m v0 Ec − Ec f − = = f ⇒ W=m 0 2 2 2 W = ∆Ec W = ∆Ec El treball realitzat per la força resultant El treball realitzat per la força resultant que actua sobre un cos s’utilitza per a que actua sobre un cos s’utilitza per a variar l’energia cinètica del mateix. variar l’energia cinètica del mateix.
  14. 14.   Si volem elevar a v=cte el cos de la figura des de la taula fins a la part superior, cal fer una força igual a la del pes i un desplaçament. El treball realitzat serà: Wf = F ∆y = m g ∆y = m g y2 − m g y1 Wf = Ep2 − Ep1 = ∆Ep  Com que la v=cte, el treball realitzat pel pes serà: Wp = − ∆Ep • El treball realitzat per aixecar el cos s'utilitza per augmentar l’Ep •El treball realitzat pel pes tendeix a portar-lo a l’equilibri i per tant disminuir l’Ep
  15. 15.  FORCES CONSERVATIVES    Una força és conservativa quan el treball no depèn del camí si no únicament de les posicions inicial y final. En un camí tancat, el treball realitzat és 0. Exemples:      Força gravitatòria Força elàstica Els treballs realitzats amb aquest tipus de forces permeten recuperar tota l’energia potencial emmagatzemada. Des del punt de vista físic són forces que conserven tota l’energia mecànica total. Són forces que tendeixen a transportar el cos a l’equilibri.
  16. 16. • Un objecte de massa m cau al buit des d’una m V0 = 0 µ=0 altura h . Calculem l’Ec i Ep a dos punts 1 i 2 del recorregut • En el punt 1 Punt 1 h • En el punt 2 h1 Punt 2 h2 • ∆Ec = Ec2 − Ec1 = m g (h1 − h2) ∆Ep = Ep2 − Ep1 = m g (h2 − h1) Ec1 + Ep1 = Ec2 + Ep2 • ∆Em = 0 ∆Em = 0 Si les úniques forces que realitzen un treball sobre un cos són conservatives, la seva energia mecànica es manté constant. 18
  17. 17.  FORCES NO CONSERVATIVES     El treball necessari per desplaçar-se d’un punt a un altre DEPÈN de la trajectòria. Treball degut a la força de fregament És una força que s’oposa al moviment. Es una força resistent i per tant negativa. L’energia calorífica és una forma poc útil ja que no es pot reconvertir totalment. És per això que es diu que degut al fregament l’energia es disipa. ∆Ec + ∆ Ep = ∆Em= WFNC=-WFf ∆Ec + ∆ Ep = ∆Em= WFNC=-WFf

×