Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
×

# Portafolio de algebra lomas 1

2,044 views

Published on

• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

• Be the first to like this

### Portafolio de algebra lomas 1

1. 1. EL SISTEMA DE LOS NÚMEROS REALES _________________________________________ 11 Introducción ___________________________________________________________________11 Conjunto de los números reales____________________________________________________11 Conjunto de los números naturales_________________________________________________11 Conjunto de los números enteros __________________________________________________12 Conjunto de los números racionales ________________________________________________12 Conjunto de los números reales____________________________________________________12 EL CONJUNTO DE LOS NÚMEROS REALES _______________________________________ 13 LOS NÚMEROS REALES Y LA RECTA REAL________________________________________ 14 PROPIEDADES DE LAS OPERACIONES BINARIAS __________________________________ 17 Propiedad conmutativa. _______________________________________________________17 Propiedad Anti conmutativa ______________________________________________________18 Ejemplos ____________________________________________________________________________19 Propiedad distributiva. ________________________________________________________19 Divisores del cero _______________________________________________________________20 Elementos distinguidos _______________________________________________________21 Elemento neutro________________________________________________________________21 Elemento involutivo _____________________________________________________________22 Elemento absorbente ____________________________________________________________22 Operación inversa_______________________________________________________________22 POTENCIACION Y RADICACION________________________________________________ 23 POTENCIACION ____________________________________________________________ 23 Propiedades de la potenciación ____________________________________________________24 Potencia de potencia ____________________________________________________________________24 Multiplicación de potencias de igual base ___________________________________________________24 División de potencias de igual base_________________________________________________________24 Propiedad distributiva ___________________________________________________________________24 Propiedad conmutativa __________________________________________________________________25 Potencia de exponente 0 _________________________________________________________________25 Potencia de exponente 1 _________________________________________________________________25 Potencia de base 10 _____________________________________________________________________25 RADICACIÓN ______________________________________________________________ 26
3. 3. Operaciones con los números Reales _______________________________________________________67 1. Sumar números reales_______________________________________________________________67 Restar números reales_________________________________________________________________68 Multiplicar números reales _____________________________________________________________68 Propiedades de los números reales. ________________________________________________69 APLICACIONES DE ECUACIONES LINEALES _______________________________________ 69 Ecuaciones lineales de primer grado ________________________________________________72 a) ecuaciones lineales propiamente tales ____________________________________________________72 b) ecuaciones fraccionarias _______________________________________________________________73 c) ecuaciones literales ___________________________________________________________________73 Sistemas de ecuaciones lineales _______________________________________________74 Sistema compatible indeterminado _________________________________________________74 Sistema lineal de dos ecuaciones con dos incógnitas____________________________________74 CLASIFICAMOS LOS SIGUIENTES SISTEMAS DE ECUACIONES LINEALES ________________ 75 Métodos de resolución de sistemas de ecuaciones lineales _________________ 78 Método de reducción ____________________________________________________________78 Ejemplo ______________________________________________________________________________79 Ejemplo ______________________________________________________________________________80 Método de sustitución_________________________________________________________81 Ejemplo ______________________________________________________________________________81 Método de Gauss _____________________________________________________________82 Ejemplo ______________________________________________________________________________82 EXPRESIONES ALGEBRAICAS ___________________________________________ 84 10 Ejemplos de Términos Semejantes: _________________________________________85 CLASIFICACION DE LAS EXPRESIONES ALGEBRAICA________________________________ 85 MONOMIO. ____________________________________________________________________85 BINOMIO______________________________________________________________________85 TRINOMIO. ____________________________________________________________________85 POLINOMIO. ___________________________________________________________________86 GRADO DE UN MONOMIOS __________________________________________________ 86 GRADO DE UN POLINOMIO___________________________________________________ 86 ORDENAR UN POLINOMIO ___________________________________________________ 86 NOMENCLATURA ALGEBRAICA________________________________________________ 89
6. 6. ___________________________________________________ ¡Error! Marcador no definido. Bibliografia ______________________________________________________________ 170
7. 7. EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como análisis lo constituye el llamado sistema de los números reales. Números tales como 1, 3,√ , π , e, y sus correspondientes negativos, son usados en mediciones cuantitativas. Existen dos métodos principales para estudiar el sistema de los números reales. Uno de ellos comienza con un sistema más primitivo –tal como el conjunto de los números naturales o enteros positivos 1, 2, 3, 4, ... −, y a partir de él, por medio de una secuencia lógica de definiciones y teoremas, se construye el sistema de los números reales1. En el segundo método se hace una descripción formal del sistema de los números reales (asumiendo que existe), por medio de un conjunto fundamental de propiedades (axiomas), de las cuales pueden deducirse muchas otras propiedades. En esta primera parte se hará una presentación intuitiva del conjunto R de los números reales. Se parte de un conjunto primitivo como es el conjunto` de los números naturales y se efectúan las sucesivas ampliaciones del mismo, atendiendo más a la necesidad de resolver ciertas ecuaciones en las cuales los conjuntos que se van definiendo resultan insuficientes para la solución, que a un desarrollo axiomático del mismo. Conjunto de los números reales El conjunto de los números reales está constituido por diferentes clases de números. Entre ellas, se pueden mencionar los siguientes subconjuntos: Conjunto de los números naturales El conjunto de los números naturales, que se denota por N o también por Z corrientemente se presenta así:
8. 8. N = {1, 2, 3, 4, 5,...}. La notación de conjunto que incluye los puntos suspensivos es de carácter informal. Este conjunto permite fundamentar las sucesivas ampliaciones que se hacen de los sistemas numéricos y lleva principalmente a la consideración de los números reales. Conjunto de los números enteros El conjunto de los números enteros, que se denota por Z, corrientemente se presenta así: Z = {..., –3, –2, –1, 0, 1, 2, 3,...}. En el conjunto de los números enteros se pueden resolver ecuaciones que no tienen solución en N, como sucede por ejemplo con la ecuación x + 3 = 1, cuya solución es x = –2. Puede notarse que N ⊂ Z. Conjunto de los números racionales El conjunto de los números racionales, que se denota por Q, se define de la siguiente manera { } La introducción de los números racionales responde al problema de resolver la ecuación ax = b, con a, b ∈ Z, a ≠ 0. Ésta sólo tiene solución en Z, en el caso particular en que a sea un divisor de b. Conjunto de los números reales Se define como. ℜ= ∪ En el conjunto de los números reales están definidas dos operaciones: adición (+) y multiplicación (·), las cuales verifican las siguientes propiedades AC (llamadas también axiomas de campo). (Peano, 1889)
9. 9. EL CONJUNTO DE LOS NÚMEROS REALES Al conjunto de los números reales se llega por sucesivas ampliaciones del campo numérico a partir de los números naturales. En cada una de las ampliaciones se avanza y mejora respecto de la anterior. Con los números naturales (N) se puede sumar y multiplicar pero no se puede restar (a- b) si a < b. Se definen así los números negativos o enteros negativos que al unirse con el cero y los naturales constituyen el conjunto de los números enteros (Z). Con los números enteros (Z) se puede sumar, restar, multiplicar pero no dividir si a no es múltiplo de b. Se definen así los números fraccionarios que unidos a los enteros constituyen el conjunto de los números racionales. Todo número racional se puede expresar como un número decimal exacto o como un número decimal periódico, es decir con infinitas cifras decimales que se repiten Con los números racionales se puede sumar, restar, multiplicar y dividir ( si b ¹ 0). Si bien el conjunto de los números racionales tiene una muy buena estructura para realizar las diferentes operaciones quedan algunas situaciones que no se pueden considerar dentro de él ( , , p , entre otros). Surgen los números irracionales para dar respuesta a estas instancias. Los números irracionales se pueden expresar como números decimales de infinitas cifras decimales no periódicas. Los números irracionales (I) unidos a los racionales (Q) definen el conjunto de los números reales (R).
11. 11.  Se asocia a cada número negativo - p el punto que está a p unidades de distancia del origen en la dirección negativa. Los puntos en la recta se identifican con los números que representan. El número real que le corresponde a un punto de la recta se denomina coordenada o abscisa del punto y la recta recibe el nombre de recta real, recta coordenada, recta numérica o recta de los números reales. También se la conoce como eje coordenado o eje real. El conjunto de los reales cubre o completa la recta sin dejar "huecos". Ejemplo. Orden Los números reales están ordenados cumpliendo sólo una de las afirmaciones siguientes: dados dos números reales a y b puede ser que a sea menor que b, a sea mayor que b o a sea igual a b. Puede observarse en la recta que a < b si y sólo si el punto que representa al númeroa está a la izquierda del punto que representa al número b. Análogamente, a > b sí y sólo sí el punto que representa al número a se halla a la derecha del que representa a b.
12. 12. Si a = b, los puntos se superponen. La relación de orden queda establecida teniendo en cuenta que el punto a precede al punto b si el número real a es menor que el número real b (a < b).(matemati@fca.unl.edu.ar, s.f.)
13. 13. PROPIEDADES DE LAS OPERACIONES BINARIAS En álgebra las operaciones binarias internas en el conjunto A, o bien las aplicaciones de A x A en A: son las de mayor interés, porque se utilizan tanto en los sistemas numéricos o, más abstractamente, en los sistemas algebraicos. Las operaciones gozan de ciertas propiedades, usadas con frecuencia en la axiomatización de los diversos sistemas matemáticos  Propiedad conmutativa. Dado un conjunto no vacío A, en el que se ha definido una ley de composición interna *: se dice que * tiene la propiedad conmutativa en A si se cumple: Para todo a, b de A, se cumple que el resultado de operar a con b es igual al de operar b con a. Del mismo modo podemos decir que la ley de composición interna *, no es conmutativa en A si: Si existe algún a, b en A, que cumple que el resultado de operar a con b es distinto de operar b con a. La adición en los conjuntos N, Z, Q, R, C (1)de los naturales, enteros, racionales, reales y complejos es conmutativa y se cumple que a+b = b+a, siendo a y b elementos de mismo cualquier conjunto indicado La multiplicación es asociativa en cualquiera de los conjuntos
14. 14. La división en Q*, racionales sin el cero, no es conmutativa; pues a:b≠ b:a, salvo para 1 y -1. El producto de dos matrices cuadradas de orden n no es conmutativo. El producto cartesiano de dos conjuntos no es conmutativo, AxB ≠ BxA. Propiedad Anti conmutativa Para todo a, b de A, se cumple que el resultado de operar a con b es igual al opuesto de operar b con a. Como ejemplo si en 3-E el espacio de vectores de tres componentes, decimos: Se tiene con el producto vectorial : Y En general, para cualquier par de vectores a, b: Para los enteros, se ve que la sustracción Es anti conmutativa, pues si: Sea A un conjunto no vacío y * una operación binaria en A: Se dice que * es asociativa si, solo si:
15. 15. Para todo a, b, c de A se cumple que operando a con b y el resultado con c es igual a operar a con el resultado de operar b con c. También se puede decir que la operación * no es asociativa si se cumple: Existen a, b, c en A que cumplen que operando a con b y el resultado con c es distinto de operar a con el resultado de operar b con c. Ejemplos La adición y la multiplicación con números pares son asociativas. La sustracción en el conjunto Z de los enteros no es asociativa La adición en el conjunto Z[i] es asociativa el producto vectorial de vectores en el espacio R3 no es asociativo; esto es: (uxv)xw ≠ ux(vxw), donde u,v y w son vectores y x indica el producto vectorial. Si en en el conjunto R de los reales definimos a*b = ab +a+b +1, * es asociativo en R. (α) Propiedad distributiva. Dado un conjunto A no vacío en el que se han definidos dos operaciones internas: Que expresaremos se dice que la operación es distributiva por la derecha de si se cumple: Ejemplos el producto vectorial de vectores respecto de la suma de vectores ux (v+ w) =uxv + uxw Otro ejemplo: el producto de matrices respecto a la suma de matrices. M(N+Q)= MN + MQ. Es importante el orden de factor en la definición de R-módulos a izquierda. Del mismo modo se dice que la operación es distributiva por la izquierda de si se cumple:
16. 16. Ejemplo el caso del producto de matrices que no es conmutativo. Se tiene (M+N)P= MP+ NP, la simple yuxtaposición indica el producto de matrices. La composición de funciones reales en un intervalo cerrado respecto de la suma de funciones: (f +g)º=, donde f,g, h son funciones cualesquiera del caso señalado. Una operación es distributiva sobre otra si es distributiva por la derecha y por la izquierda. Los conjuntos numéricos gozan de la distributiva por ambos lados. Al definir un anillo se indican las dos formas distributivas a(b+c) = ab +ac, por la izquierda; y por la derecha, (b+ c)a = ba +ca. Pues, al semi grupo multiplicativo no se exige la conmutatividad. Ver si se cumple a*(b+ c) = a*b + a*c siendo * la operación definida en (α) y , + la suma usual en R. Sea A con la operación * si a*b =a*c implica que b=c, se dice que se ha simplificado a por la izquierda. Y si de b*a =c*a de deduce b=a se dice que se ha simplificado por la derecha. Si se puede simplificar por ambos lados se haba de simplificación o cancelación. En el caso de la suma de números (de cualquier naturaleza) a+ b= a + c , cancelando a, resulta b=c En el caso de los grupos es importante el orden. No todo grupo es conmutativo, para el caso, los grupos simétricos. Divisores del cero . Sea el conjunto A y la operación * , siendo a ≠ 0, b≠ 0 se deduce que a*b = 0 , se dice que a y b son divisores del 0. Hay matrices cuadradas de orden 2 no nulas cuyo producto es la matriz 0. En el conjunto Z[6]= {0,1,2,3,4,5} de los restos módulo 6 con la multiplicación * de restos, resulta 2*3=0.
17. 17. Sean las funciones reales: f / f(x) =0 si x≥0 y f(x)=1 en otro caso, g(x)= 1 si x≥0 y g(x) =0 en otro caso; tanto f y g no son nulas pero sí su producto θ(x) = 0 para todo x real. Sea el conjunto Z[4] = {0,1,2,3} de los restos módulo 4; con la adición tenemos que en este caso 2+2 = 0. De modo que no siempre "dos más dos dan cuatro". Elementos distinguidos Elemento neutro Si se tiene el conjunto A, no vacío, provisto de una operación binaria *, que indicaremos: (A,*), Diremos que el elemento es el elemento neutro por la derecha si: Se demuestra que si hay otro elemento neutro por la izquierda e', tal que e'*a = a, e = e'; hecho que se conoce como unicidad del elemento neutro. Ejemplo: En los sistemas aditivos Z, Q, R de los enteros, racionales y reales el 0 cero es el elemento neutro aditivo. Esto es a+0= 0+ a =a. En los mismos sistemas, pero con la multiplicación, el 1 uno es el elemento neutro multiplicativo. a.1 = 1.a = a. En el conjunto de los racionales con la operación a*b = a+b +ab , el elemento neutro es 0. En el conjunto de las matrices cuadradas con la multiplicación, el elemento neutro es la matriz que tiene unos en la diagonal principal y los demás elementos son cero. En la composición de funciones de variable real, el elemento neutro es la función I(x) = x para todo x. Sea A un conjunto no vacío y * una operación binaria: Diremos que a' es simétrico de a si:
18. 18. Donde es el elemento neutro. El 2 es el simétrico de -2 en Z con la adición; 1/2 es el simétrico de 2 en Q* con la multiplicación. En el casos de los sistemas algebraicos aditivos, el simétrico se llama opuesto o inverso aditivo, en el caso de los multiplicativos se llama: inverso multiplicativo. Elemento involutivo Se llama así al elemento d de A, con la operación binaria *, tal que d*d= d. el 0 y 1 son elementos involutivos respecto de la multiplicación en el conjunto Z de los enteros. Elemento absorbente Se denomina así al elemento s de A, tal que s * a= s, para todo a de A, provisto de la operación *. 0 es elemento absorbente se un sistema numérico multiplicativo. El conjunto vacío Ø es elemento absorbente para la intersección definida en el conjunto de partes de U. Operación inversa Sea A un conjunto con una operación binaria *: Por lo que cabe la ecuación: Pero si se da el caso de que:
19. 19. Donde se trata de conocer el elemento y, se recurre a operación inversa. Si A admite elementos simétricos, se define: (S.R) POTENCIACION Y RADICACION POTENCIACION ROF. José Luis Gallardo La potenciación es una nueva forma de escribir el producto de un número por él mismo. Es muy práctica, elegante, útil y fácil. Fíjate que la base es el número que multiplicas varias veces por sí mismo, el exponente es la cantidad de veces que lo haces y la potencia es el resultado. Así por ejemplo: Significa que a 5 (la base) lo multiplicamos 3 veces (el exponente) por sí mismo y obtenemos 125 (la potencia) ya que: 5 x 5 x 5 = 125. Cuando un número se multiplica por sí mismo una cantidad definida de veces es una potenciación. Por ejemplo, si se multiplica ocho por sí mismo cinco veces se tendrá 8 X 8 X 8 X 8 X 8. Si se escribe en forma exponencial se anota, 85 . En este caso, al número ocho se lo llama base (número que se va a multiplicar por sí mismo) y al cinco se le denomina exponente (número de veces que se va a multiplicar al ocho por sí mismo). De acuerdo con lo anterior, se puede decir que: 85 = 8 X 8 X 8 X 8 X 8 = 32.768 Elevar a una potencia el número 10
20. 20. Un caso interesante es cuando se eleva a un exponente el número 10. Por ejemplo lo elevamos a la cuarta: 104 = 10 X 10 X 10 X 10 = 10.000 Observa que 104 es igual a un uno con cuatro ceros. Así se puede decir que 108 es igual a un uno y 8 ceros, o sea 100 millones (100.000.000)... Propiedades de la potenciación Las propiedades de la potenciación son las siguientes: Potencia de potencia La potencia de una potencia de base a es igual a la potencia de base a y exponente igual a la multiplicación de los primeros exponentes. Multiplicación de potencias de igual base La multiplicación de dos o más potencias de igual base a es igual a la potencia de base a y exponente igual a la suma de los mismos exponentes. División de potencias de igual base La división de dos potencias de igual base a es igual a la potencia de base a y exponente igual a la resta de los exponentes respectivos. Propiedad distributiva La potenciación es distributiva con respecto a la multiplicación y a la división, pero no lo es con respecto a la suma ni a la resta. En particular: (a + b)m = am + bm (a − b)m = am − bm Se cumple en los siguientes casos: Si m=1. Si, entre a y b, uno es igual a 0 y el otro igual a 1, siempre que m sea distinto de 0. Si a y b son iguales a 0 y m≠0.
21. 21. Propiedad conmutativa La propiedad conmutativa no se cumple para la potenciación, exceptuando aquellos casos en que base y exponente son el mismo número / la misma cifra o equivalentes. En particular: ab = ba Si y sólo si a=b. Potencia de exponente 0 Toda potencia de exponente 0 y base distinta de 0 es igual a 1. a0 = 1 si se cumple que Potencia de exponente 1 Toda potencia de base a y exponente 1 es igual a a. a1 = a Potencia de base 10 Toda potencia de base 10 es igual a la unidad seguida de tantos ceros como unidades posee el exponente. 101 = 10 Como también pues ser unos conjuntos de números potenciados o elevados a un exponente 106 = 1000000 104 = 10000
23. 23. En nuestro ejemplo nos quedaría 156 5- después multiplicamos por 2 el número que hemos calculado hasta el momento de la raíz. En nuestro ejemplo seria 2 * 2 = 4 6- A continuación tenemos que buscar un número que multiplicado por el número que resulta de multiplicar por 10 el número anterior y sumarle el número que estamos buscando se acerque lo más posible al número que tenemos como resto. Ese número será el siguiente número de la raíz. En nuestro ejemplo el número seria 3 porque 43 * 3 = 129 que es el número que se aproxima más a 156 y la raíz seria 23... 7- Ahora tenemos que volver a calcular el resto restando el número obtenido del que queríamos obtener realmente. En nuestro ejemplo: 156 - 129 = 27 8- A continuación repetimos el paso 4, esto es, ponemos al lado del resto anterior el número del siguiente grupo En nuestro ejemplo: 2701 9- A continuación repetimos el paso 5 En nuestro ejemplo: 23 * 2 = 46 10- después repetimos el paso 6 En nuestro ejemplo el número seria 5 porque 465 *5 = 2325 que es el número que se aproxima más a 2701 y la raíz seria 235... 11- después repetimos el paso 7 En nuestro ejemplo: 2701 - 2325 = 376 12- A continuación repetimos el paso 8 En nuestro ejemplo: 37664 13 A continuación repetimos el paso 5 En nuestro ejemplo seria 235 * 2 = 470 14- A continuación repetimos el paso 6
26. 26. + 0x3 + 4x2 - 2x - 3 ____________________ 5x3 + 0x2 - x + 6 A + B = 5x3 - x + 6 Se llama términos "semejantes" a los que tienen el mismo grado (en los polinomios con un solo tipo de letra). Entre estos dos polinomios no hay términos semejantes. Se puede observar que el resultado es la suma de todos términos de los dos polinomios, sin modificarse ninguno, ya que a cada uno se le sumó cero, por no tener otro término semejante. EJEMPLO 4: (No hay términos semejantes) A = 4x3 + 5 B = -2x + x2 4x3 + 0x2 + 0x + 5 + 0x3 + x2 - 2x + 0 ____________________ 4x3 + x2 - 2x + 5 A + B = 4x3 + x2 - 2x + 5 Cuando los polinomios tienen varias letras, se suman los términos semejantes, que son los que tienen las mismas letras con los mismos exponentes (la misma"parte literal"). Para sumar estos polinomios, no es práctico usar el procedimiento de ordenarlos y sumarlos "en columnas", porque en general hay pocas coincidencias entre sus partes literales. Así que es mejor sumarlos "uno al lado del otro" y "juntar" los términos de igual parte literal. EJEMPLO 5: (Suma de polinomios de varias letras) A = -3xy2 + 4 - 7x2 y2 - 6x2 y - 5xy
27. 27. B = 8xy - 2xy2 + 10 + 4x3 y A + B = (-3xy2 + 4 - 7x2 y2 - 6x2 y - 5xy) + (8xy - 2xy2 + 10 + 4x3 y) = -3xy2 + 4 - 7x2 y2 - 6x2 y - 5xy + 8xy - 2xy2 + 10 + 4x3 y = -3xy2 - 6x2 y + 4 + 10 - 5xy + 8xy - 2xy2 + 4x3 y - 7x2 y2 = -9xy2 + 14 + 3xy - 2xy2 + 4x3 y - 7x2 y2 RESTA: EJEMPLO 1: (Resta de polinomios de igual grado) A = - 3x2 + 9x4 - 8 - 4x3 + 1/2 x B = 5x4 - 10 + 3x + 7x3 9x4 - 4x3 - 3x2 + 1/2 x - 8 (el polinomio A ordenado y completo) - 5x4 + 7x3 + 0x2 + 3x - 10 (el polinomio B ordenado y completo) ______________________________ La resta se puede transformar en suma, cambiando todos los signos del segundo polinomio: 9x4 - 4x3 - 3x2 + 1/2 x - 8 + -5x4 - 7x3 + 0x2 - 3x + 10 (el polinomio B con los signos cambiados) ______________________________ 4x4 - 11x3 - 3x2 - 5/2 x + 2 A - B = 4x4 - 11x3 - 3x2 - 5/2 x + 2
28. 28. Para restar polinomios se suelen cambiar los signos de todos los términos del polinomio que se resta ("el de abajo"), y transformar la resta en suma, ya que restar es lo mismo que sumar el "opuesto". Pero también se puede hacer restando los coeficientes del mismo grado. Y también se los puede restar "en el mismo renglón", tal como mostré que se puede hacer en la suma. EJEMPLO 2: (Resta de polinomios de distinto grado) A = 5x - 4 - 3x2 (grado 2) B = 2x + 4x3 - + 1 + 5x2 (grado 3) 0x3 - 3x2 + 5x - 4 (el polinomio A ordenado y completo) - 4x3 - 5x2 + 2x + 1 (el polinomio B ordenado y completo) ____________________ 0x3 - 3x2 + 5x - 4 + -4x3 + 5x2 - 2x - 1 (el polinomio B con los signos cambiados) ____________________ -4x3 + 2x2 + 3x - 5 A - B = -4x3 + 2x2 + 3x - 5 Igual que en la suma: En el polinomio de menor grado, se pueden completar los primeros términos con ceros. Así, se rellenan las columnas que faltan adelante de uno de los polinomios, para que quede en columnado término a término con el otro polinomio.
30. 30. EJEMPLO 1: (Multiplicación por un monomio) A = -3x2 + 2x4 - 8 - x3 + 5x B = -5x4 -3x2 + 2x4 - 8 - x3 + 5x X -5x4 ______________________________ 15x6 - 10x8 + 40x4 + 5 x7 - 25x5 A x B = 15x6 - 10x8 + 40x4 + 5 x7 - 25x5 Se multiplica al monomio por cada término del polinomio: Coeficiente con coeficiente, y la letra con la letra. Al multiplicar las letras iguales se suman los exponentes, ya que es una multiplicación de potencias de igual base. También se pueden multiplicar "en el mismo renglón": poniendo el polinomio entre paréntesis y luego aplicando la propiedad distributiva. En las EXPLICACIONES muestro los ejemplos resueltos de las dos maneras. EXPLICACIÓN DEL EJEMPLO 1 EJEMPLO 2: (Multiplicación de polinomios completos) A = 4x3 - 5x2 + 2x + 1 B = 3x - 6 4x3 - 5x2 + 2x + 1 (el polinomio A ordenado y completo) X 3x - 6 (el polinomio B ordenado y completo) ____________________ -24x3 + 30x2 - 12x - 6 + 12x4 - 15x3 + 6x2 + 3x _________________________ 12x4 - 39x3 + 36x2 - 9x - 6
32. 32. Aunque no es obligatorio, se pueden completar y ordenar los dos polinomios. Así es más fácil ubicar en la columna correspondiente a cada uno de los resultados, porque todo va saliendo en orden de grado. Incluso si se completa con 0 en el segundo polinomio, se puede multiplicar todo el primer polinomio por cero. Esto puede servir cuando uno recién aprende el tema, pero luego cuando se tiene más práctica se preferirá no completar ni multiplicar por cero. En el EJEMPLO 4 se puede ver hecha esta misma multiplicación sin completar los polinomios. En el resultado final ya no se ponen los términos con 0. EJEMPLO 4: (Multiplicación de polinomios incompletos; sin completarlos, pero sí ordenándolos) A = -9x2 + x + 5x4 B = 3 - 2x2 5x4 - 9x2 + x (polinomio A incompleto pero ordenado) X -2x2 + 3 (polinomio B incompleto pero ordenado) _____________________ 15x4 - 27x2 + 3x -10x6 + 18x4 - 2x3 ____________________________ -10x6 + 33x4 - 2x3 - 27x2 + 3x A x B = -10x6 + 33x4 - 2x3 - 27x2 + 3x
34. 34. EJEMPLO 6: (Ordenando y completando el primero; y ordenando pero no completando el segundo) A = -9x2 + x + 5x4 B = 3 - 2x2 5x4 + 0x3 - 9x2 + x + 0 (polinomio A completo y ordenado) X -2x2 + 3 (polinomio B completo y ordenado) ______________________________ 15x4 + 0x3 - 27x2 + 3x + 0 -10x6 + 0x5 + 18x4 - 2x3 + 0x2 ________________________________________ -10x6 + 0x5 + 33x4 - 2x3 - 27x2 + 3x + 0 A x B = -10x6 + 33x4 - 2x3 - 27x2 + 3x Fue necesario saltearse dos columnas en vez de una, para ubicar el 0x2 debajo del - 27x2, y es porque al segundo polinomio le falta el término de grado x. Todo lo demás salió ordenado por grado. EJEMPLO 7: (Sin ordenar ni completar) A = -9x2 + x + 5x4 B = 3 - 2x2
36. 36. Se multiplica el dividendo del primer término por el divisor del segundo para crear el dividendo de la división, y el divisor del primero por el dividendo del segundo para crear el divisor de la división (esto se llama división cruzada) Se divide el coeficiente del dividendo entre el coeficiente del divisor Se aplica ley de los exponentes tomando las letras que no se encuentren como elevadas a cero (nº = 1), y se escriben en orden alfabético. Ejemplos: División de polinomios entre monomios. Para dividir un polinomio entre un monomio se distribuye el polinomio sobre el monomio, esto se realiza convirtiéndolos en fracciones. Pasos: Colocamos el monomio como denominador de él polinomio. Separamos el polinomio en diferentes términos separados por el signo y cada uno dividido por el monomio. Se realizan las respectivas divisiones entre monomios tal como se realizo en el capitulo anterior. Se realizan las sumas y restas necesarias. Ejemplos:
37. 37. División entre polinomios. En este tipo de división se procede de manera similar a la división aritmética los pasos a seguir son los siguientes. Se ordenan los polinomios con respecto a una misma letra y en el mismo sentido (en orden ascendente u orden descendente), si el polinomio no es completo se dejan los espacios de los términos que faltan. El primer término del cociente se obtiene dividiendo el primer término del dividendo entre el primer miembro del divisor. Se multiplica el primer término del cociente por todos los términos del divisor, se coloca este producto debajo de él dividendo y se resta del dividendo. El segundo término del cociente se obtiene dividiendo el primer término del dividendo parcial o resto (resultado del paso anterior), entre el primer término del divisor. Se multiplica el segundo término del cociente por todos los términos del divisor, se coloca este producto debajo de él dividendo parcial y se resta del dividendo parcial. Se continua de esta manera hasta que el resto sea cero o un dividendo parcial cuyo primer término no pueda ser dividido por el primer término del divisor. Cuando esto ocurre el resto será el residuo de la división. La intención con este método de división es que con cada resta se debe eliminar el término que se encuentra más a la izquierda en el dividendo o dividendo parcial.
38. 38. Ejemplos: PRODUCTOS NOTABLES Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones algebraicas que se encuentran frecuentemente y que es preciso saber factoriza las a simple vista; es decir, sin necesidad de hacerlo paso por paso. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
40. 40. Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a2 – 2ab + b2 debemos identificarla de inmediato y saber que podemos factoriza la como (a – b)2 Producto de la suma por la diferencia de dos cantidades (o producto de dos binomios conjugados) (a + b) (a – b) = a2 – b2 El producto de la suma por la diferencia de dos cantidades es igual al cuadrado de la primera cantidad, menos el cuadrado de la segunda Demostración: Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma (a + b) (a – b) debemos identificarla de inmediato y saber que podemos factoriza la como a2 – b2 Otros casos de productos notables (o especiales): Producto de dos binomios con un término común, de la forma x2 + (a + b)x + ab = (x + a) (x + b)
41. 41. Demostración: Veamos un ejemplo explicativo: Tenemos la expresión algebraica x2 + 9 x + 14 Obtenida del producto entre (x + 2) (x + 7 ) ¿Cómo llegamos a la expresión? a) El cuadrado del término común es (x)(x) = x2 b) La suma de términos no comunes multiplicada por el término común es (2 + 7)x = 9x c) El producto de los términos no comunes es (2)(7) = 14 Así, tenemos: x2 + 9 x + 14 = (x + 2) (x + 7 ) Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 + (a + b)x + ab debemos identificarla de inmediato y saber que podemos factoriza la como (x + a) (x + b) Producto de dos binomios con un término común, de la forma x2 + (a – b)x – ab = (x + a) (x – b) Demostración:
42. 42. Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 + (a – b)x – ab debemos identificarla de inmediato y saber que podemos factoriza la como (x + a) (x – b). Producto de dos binomios con un término común, de la forma x2 – (a + b)x + ab = (x – a) (x – b) Demostración: Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 – (a + b)x + ab debemos identificarla de inmediato y saber que podemos factorizarla como (x – a) (x – b). Producto de dos binomios con un término común, de la forma mnx2 + ab + (mb + na)x = (mx + a) (nx + b) En este caso, vemos que el término común (x) tiene distinto coeficiente en cada binomio (mx y nx). Demostración:
43. 43. Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma mnx2 + ab + (mb + na)xdebemos identificarla de inmediato y saber que podemos factorizarla como (mx + a) (nx + b). Cubo de una suma a3 + 3a2 b + 3ab2 + b3 = (a + b)3 Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a3 + 3a2 b + 3ab2 + b3 debemos identificarla de inmediato y saber que podemos factorizarla como (a + b)3 . Cubo de una diferencia a3 – 3a2 b + 3ab2 – b3 = (a – b)3 Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a3 – 3a2 b + 3ab2 – b3 debemos identificarla de inmediato y saber que podemos factorizarla como (a – b)3 . A modo de resumen, se entrega el siguiente cuadro con Productos notables y la expresión algebraica que lo representa: Producto notable Expresión algebraica Nombre (a + b)2 = a2 + 2ab + b2 Binomio al cuadrado (a + b)3 = a3 + 3a2 b + 3ab2 + b3 Binomio al cubo a2 - b2 = (a + b) (a - b) Diferencia de cuadrados a3 - b3 = (a - b) (a2 + b2 + ab) Diferencia de cubos a3 + b3 = (a + b) (a2 + b2 - ab) Suma de cubos a4 - b4 = (a + b) (a - b) (a2 + b2 ) Diferencia cuarta (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc Trinomio al cuadrado
44. 44. MAXIMO COMUN DIVISOR DE POLINOMIOS El problema de calcular el máximo común divisor (MCD) de dos polinomios es de importancia fundamental en álgebra computacional. Estos cálculos aparecen como subproblemas en operaciones aritméticas sobre funciones racionales o aparecen como cálculo prominente en factorización de polinomios y en integración simbólica, además de otros cálculos en álgebra. En general, podemos calcular el MCD de dos polinomios usando una variación del algoritmo de Euclides. El algoritmo de Euclides es conocido desde mucho tiempo atrás, es fácil de entender y de implementar. Sin embargo, desde el punto de vista del álgebra computacional, este algoritmo tiene varios inconvenientes. Desde finales de los sesentas se han desarrollado algoritmos mejorados usando técnicas un poco más sofisticadas. En esta primera parte vamos a entrar en la teoría básica y en los algoritmos (relativamente) más sencillos, el algoritmo "subresultant PRS'' (aquí lo llamaremos PRS subresultante) y el algoritmo heurístico (conocido como "GCDHEU''). Este último algoritmo es muy eficiente en problemas de pocas variables y se usa también como complemento de otros algoritmos. De hecho, se estima que el 90% de los cálculos de MCD's en MAPLE se hacen con este algoritmo [13]. No se puede decir con certeza que haya un "mejor'' algoritmo para el cálculo del MCD de dos polinomios. Los algoritmos más usados, para calcular MCD en son "EZ-GCD'' (Extended Zassenhaus GCD), GCDHEU y "SPMOD'' (Sparse Modular Algorithm) [16] GCDHEU es más veloz que EZGCD y SPMOD en algunos casos, especialmente para polinomios con cuatro o menos variables. En general, SPMOD es más veloz que EZGCD y GCDHEU en problemas donde los polinomios son "ralos'', es decir con muchos coeficientes nulos y éstos, en la práctica, son la mayoría.
45. 45. En la segunda parte, en el próximo número, nos dedicaremos a EZGCD y SPMOD. Estos algoritmos requieren técnicas más sofisticadas basadas en inversión de homomorfismos vía el teorema chino del resto, iteración lineal p-ádica de Newton y construcción de Hensel. Como CGDHEU es un algoritmo modular, aprovechamos para iniciar con parte de la teoría necesaria para los dos primeros algoritmos. En este trabajo, primero vamos a presentar los preliminares algebraicos, el algoritmo de Euclides, el algoritmo primitivo de Euclides, el algoritmo PRS Subresultante y el algoritmo heurístico, además de el algoritmo extendido de Euclides. Las implementaciones requieren, por simplicidad, construir un par de clases para manejo de polinomios con coeficientes racionales grandes ("BigRational'') y para manejo de polinomios con coeficientes enteros grandes ("BigInteger'').(Escuela de Matemática - Centro de Recursos Virtuales (CRV). Instituto Tecnológico de Costa Rica) EJERCICIOS Ejemplo a) Hallar el m.c.d. de 4a^2+4ab y 2a^4-2a^2b^2 1°) Se factorizan las expresiones dadas: –> 4a^2 + 4ab = 4a(a+b) (Se aplicó Caso I de Factorización) –> 2a^4 -2a^2b^2 = 2a^2(a^2 – b^2) = 2a^2(a+b)(a-b) (Se aplicó Caso I y IV de Factorización) 2°) Se buscan los factores comunes de las expresiones encontradas: Factor común de 4a y 2a^2 son 2a Factor común de (a+b) y (a+b)(a-b) son (a+b) por lo tanto, el m.c.d. de 4a(a+b) y 2a^2(a+b)a-b es = 2a(a+b) , que es la Solución. NOTA : Al factorizar es necesario aplicar las reglas para la Descomposición de Factores o Factorización, según el Caso que le corresponda.
46. 46. ___________________________________________________________ Ejemplo b) Hallar el m.c.d. de x^2 – 4 , x^2 -x -6 , x^2 +4x +4 1°) Se factorizan las expresiones dadas: –> x^2 -4 = (x -2)(x +2) Se aplicó el Caso IV de Factorización –> x^2 -x -6 = (x -3)(x +2) Se aplicó el Caso III de Factorización. –> x^2 +4x +4 = (x +2)^2 = (x +2)(x +2) Se aplicó el Caso III de Factorización. Se buscan los factores comunes de las expresiones encontradas: Factor común de las 3 expresiones es = (x +2) por lo tanto, el m.c.d. de x^2 -4, x^2 -x -6 y x^2 +4x +4 es = x +2 Solución. ___________________________________________________________ Ejercicio 112. 1) Hallar el m.c.d. de 2a^2 +2ab , 4a^2 -4ab Factorizando las expresiones dadas: –> 2a^2 +2ab = 2a(a +b) Se aplicó el Caso I de Factorización. –> 4a^2 -4ab = 2a(2a -2b) Se aplicó el Caso I de Factorización. Buscando los factores comunes de las expresiones encontradas: Factor común de 2a(a +b) y 4a(a -b) es = 2a por lo tanto el m.c.d. de 2a^2 +2ab y 4a^2 -4ab es = 2a <– Solución. _________________________________________________________ 2) Hallar el m.c.d. de 6x^3y -6x^2y , 9x^3y^2 +18x^2y^2 Factorizando las expresiones dadas: –> 6x^3y -6x^2y = 3x^2y(2x -2) –> 9x^3y^2 +18x^2y^2 = 3x^2y^2(3x +6) ( Para ambas expresiones se aplicó el Caso I) Buscando los factores comunes de las expresiones encontradas:
47. 47. Factor común de 3x^2y(2x -2) y 3x^2y^2(3x +6) es = 3x^2y por lo tanto el m.c.d. de 6x^3y -6x^2y y 9x^3y^2 +18x^2y^2 es = 3x^2y <– Solución. _________________________________________________________ 3) Hallar el m.c.d. de 12a^2b^3 y 4a^3b^2 -8a^2b^3 Faxctorizando las expresiones dadas: –> 12a^2b^3 = 4a^2b^2(3b) –> 4a^3b^2 -8a^2b^3 = 4a^2b^2(3b) (Para ambas expresiones se aplicó el Caso I) Factor común de 4a^2b^2(3b) y 4a^2b^2(3b) es = 4a^2b^2 Por lo tanto el m.c.d. de 12a^2b^3 y 4a^3b^2 -8a^2b^3 es = 4a^2b^2 <– Solución. __________________________________________________________ 4) Hallar el m.c.d. de ab +b y a^2 +a Factorizando las expresiones dadas: –> ab +b = b(a +1) –> a^2 +a = a(a +1) (Para ambas expresiones se aplicó el Caso I) Factor común de b(a +1) y a(a +1) es = (a +1) Por lo tanto el m.c.d. de ab +b y a^2 +a es = a +1 <– Solución. ___________________________________________________________ 5) Hallar el m.c.d. de x^2 -x y x^3 -x^2 Factorizando las expresiones dadas: –> x^2 -x = x(x -1) –> x^3 -x^2 = x^2(x -1) (Para ambas expresiones se aplicó el Caso I) Factor común de x(x -1) y x^2(x -1) es = x(x -1) Por lo tanto el m.c.d. de x(x -1) y x^2(x -1) es = x(x -1) <– Solución. ___________________________________________________________
48. 48. 6) Hallar el m.c.d. de 30ax^2 -15x^3 , 10axy^2 -20x^2y^2 Factorizando las expresiones dadas: –> 30ax^2 -15x^3 = 15x^2(2a -x) = (3)(5)(x)(x)(2a -x) –> 10axy^2 -20x^2y^2 = 10xy^2(a -2x) = (2)(5)(x)(y^2)(a -2x) Se aplicó el Caso I Factor común de (3)(5)(x)(x)(2a -x) y (2)(5)(x)(y^2)(a -2x) es = 5x Por lo tanto el m.c.d. de 30ax^2 -15x^3 , 10axy^2 -20x^2y^2 es = 5x <– Solución. ___________________________________________________________ 7) Hallar el m.c.d. de 18a^2x^3y^4 , 6a^2x^2y^4 -18a^2xy^4 Factorizando las expresiones dadas: –> 18a^2x^3y^4 = 6a^2xy^4(3x^2) –> 6a^2x^2y^4 -18a^2xy^4 = 6a^2xy^4(x -3) Se aplicó el Caso I para ambas expresiones. Factor común para 6a^2xy^4(3x^2) y 6a^2xy^4(x -3) es = 6a^2xy^4 Por lo tanto el m.c.d. de 18a^2x^3y^4 , 6a^2x^2y^4 -18a^2xy^4 es = 6a^2xy^4 <– Solución. ___________________________________________________________ 8) Hallar el m.c.d. de 5a^2 -15a , a^3 -3a^2 Factorizando las expresiones dadas: –> 5a^2 -15a = 5a(a -3) –> a^3 -3a^2 = a^2(a -3) Se aplicó el Caso I, para ambas expresiones. Factor común de 5a(a -3) y a^2(a -3) es = a(a-3) Por lo tanto el m.c.d. de 5a^2 -15a , a^3 -3a^2 es = a(a -3) <– Solución. Aplicaciones del m.c.m. 1. Reducir fracciones a común denominador. Ejemplo: Reducir a común denominador las siguientes fracciones:
50. 50. y obtenemos la fracción equivalente irreducible: 2. Resolver problemas de la vida práctica. Ejemplo: Queremos embaldosar el suelo de una cocina rectangular con baldosas cuadradas. La cocina mide 270 cm de largo por 180 cm de ancho. ¿De qué tamaño tengo que comprar las baldosas de manera que encajen enteras en estas dimensiones y sean lo más grande posible? ¿Cuántas baldosas tengo que comprar? Solución: la longitud del lado de la baldosa ha de ser un divisor común de 270 y 180, y el más grande posible. Por lo tanto, estamos buscando el máximo común divisor de 270 y 180. Factorizamos 270 y 180: 270 = 2 x 33 x 5 180 = 22 x 33 x 5 Elegimos los factores primos comunes elevados al menor exponente y tenemos que: M.C.D. (270,180) = 2 • 32 • 5 = 2 • 9 • 5 = 90. Por lo tanto, comprando baldosas de 90 cm de lado podremos pavimentar la cocina sin tener que romper ninguna. Ahora vamos a calcular cuántas necesitamos: 270 : 90 = 3. Tres baldosas de largo. 180 : 90 = 2. Dos baldosas de ancho. Respuesta: Necesitamos 6 baldosas.
51. 51. RESOLUCIÓN DE ECUACIONES CUADRÁTICAS POR FACTORIZACI ÓN Descripción: La función cuadrática es una función de los reales en los reales cuya regla de correspondencia está dada por f(x) = ax 2 + bx + c (a0) y cuyo dominio incluye todos los números reales. Para resolver ecuaciones cuadráticas utilizamos principalmente el método de factorización. Ejemplos: 1) Resuelva x  32x 1 9 . Solución: Lo primero es lograr que la ecuación se iguale a cero. Para esto, primero multiplicaremos el lado izquierdo y luego restaremos el nueve. Después factorizaremos la ecuación resultante para obtener la solución final. Es conveniente verificar la solución final en la ecuación original. x  32x 1 9 2x 2  x  6x 3  9 2x 2  5x 3 9  0 2x 2  5x 12  0 2x 3x  4 0 2x 3  0 2x  3 x  3/2
52. 52. ó x  4  0 x  4 2) Halle las soluciones de x 3 8x 2 16x  0. Solución: Como la ecuación ya está igualada a cero solamente hay que factorizar e igualar sus factores a cero y resolver en términos de x . xx 2 8x 16 0 xx 4x 4 0 x  0 ó x 4  0 x  4
55. 55. x + 2x + 1 = 97 3x = 96 x = 32 Reemplazando este valor de x, se concluye que la edad de Humberto es 32 y la de Sergio es 65. Respuesta: la edad del menor es 32. Ejemplo: 1.-Resolución de la ecuación 2x - 3 = 2 1º paso: Se suma a los dos miembros 3. 2x -3 + 3 = 2 + 3 2x = 5 2º pasó. Se divide los dos miembros por 2. 2x /2 = 5/2 2.- Resolución de la ecuación 3x -2 = x + 5 1º paso: Restamos x a los dos miembros. 3x -2 -x = x - x + 5; 2x - 2 = 5 2º pasó. Sumamos 2 a los dos miembros. 2x - 2 + 2 = 5 + 2; 2x = 7 3º pasó. Dividimos por 2, el coeficiente de la x 2x/2 = 7/2 SOLUCIÓN: x = 7 / 2 3.- Resolución de la ecuación 5x - 4 + x = 7 - 3x + 5 1º paso: Se simplifica los dos miembros. 6x - 4 = 12 - 3x 2º paso: Sumamos 3x a los dos miembros.
57. 57. Pero este tipo de ecuación puede presentarse de diferentes formas: Ejemplos: 9x2 + 6x + 10 = 0 a = 9, b = 6, c = 10 3x2 – 9x + 0 = 0 a = 3, b = –9, c = 0 (el cero, la c, no se escribe, no está) –6x2 + 0x + 10 = 0 a = -6, b = 0, c = 10 (el cero equis, la b, no se escribe) Para resolver la ecuación cuadrática de la forma ax2 + bx + c = 0 (o cualquiera de las formas mostradas), puede usarse cualquiera de los siguientes métodos: Solución por factorización En toda ecuación cuadrática uno de sus miembros es un polinomio de segundo grado y el otro es cero; entonces, cuando el polinomio de segundo grado pueda factorizarse, tenemos que convertirlo en un producto de binomios. Obtenido el producto de binomios, debemos buscar el valor de x de cada uno. Para hacerlo igualamos a cero cada factor y se despeja para la variable. Igualamos a cero ya que sabemos que si un producto es igual a cero, uno de sus multiplicandos, o ambos, es igual a cero. Ejemplos 1) Resolver (x + 3)(2x − 1) = 9 Lo primero es igualar la ecuación a cero. Para hacerlo, multiplicamos los binomios: Ahora, pasamos el 9, con signo contrario, al primer miembro para igualar a cero: Ahora podemos factorizar esta ecuación: (2x − 3)(x + 4) = 0 Ahora podemos igualar a cero cada término del producto para resolver las incógnitas:
59. 59. x2 + bx + c = 0 por ejemplo, la ecuación x2 + 8x = 48, que también puede escribirse x2 + 8x − 48 = 0 Al primer miembro de la ecuación (x2 + 8x) le falta un término para completar el cuadrado de la suma de un binomio del tipo (ax + b)2 Que es lo mismo que (ax + b) (ax + b) Que es lo mismo que ax2 + 2axb + b2 En nuestro ejemplo x2 + 8x = 48, el 8 representa al doble del segundo número del binomio, por lo tanto, ese número debe ser obligadamente 8 dividido por 2 (8/2), que es igual a 4, y como en el cuadrado de la suma de un binomio ( a2 + 2ab + b2 ) el tercer término corresponde al cuadrado del segundo término (42 = 16) amplificamos ambos miembros de la ecuación por 16, así tenemos x2 + 8x + 16 = 48 + 16 x2 + 8x + 16 = 64 la cual, factorizando, podemos escribir como sigue: (x + 4) (x + 4) = 64 Que es igual a (x + 4)2 = 64 Extraemos raíz cuadrada de ambos miembros y tenemos Nos queda x + 4 = 8 Entonces x = 8 − 4 x = 4
61. 61. x = 5 − 3 x = 2 Y x = − 5 − 3 x = − 8 La ecuación 1 da x = 2 y la ecuación 2 da x = −8. Solución por la fórmula general Existe una fórmula que permite resolver cualquier ecuación de segundo grado, que es la siguiente: La fórmula genera dos respuestas: Una con el signo más (+) y otra con el signo menos (−) antes de la raíz. Solucionar una ecuación de segundo grado se limita, entonces, a identificar las letras a, b y c y sustituir sus valores en la fórmula. La fórmula general para resolver una ecuación de segundo grado sirve para resolver cualquier ecuación de segundo grado, sea completa o incompleta, y obtener buenos resultados tiene que ver con las técnicas de factorización. Resolver la ecuación 2x2 + 3x − 5 = 0 Vemos claramente que a = 2, b = 3 y c = −5, así es que: Ahora, tenemos que obtener las dos soluciones, con el + y con el – Así es que las soluciones son
63. 63. El valor absoluto de un número puede determinarse por medio de la definición. Por ejemplo. Operaciones con los números Reales 1. Sumar números reales Para sumar dos números con el mismo signo (ambos positivos o ambos negativos) Sume sus valores absolutos y coloque el mismo signo común antes de la suma. La suma de dos números positivos será un número positivo, y la suma de dos números negativos será un número negativo. Ejemplo. -5 + (-9) Solución: Como ambos números que se suman son negativos, la suma será negativa. Para determinar la suma, sume los valores absolutos de estos números y coloque un signo negativo antes del valor. Para sumar dos números con signos diferentes (uno positivo y el otro negativo) Reste el valor absoluto menor del valor absoluto mayor. La respuesta tiene el signo del número con el valor absoluto más grande. La suma de un número positivo y un número negativo puede ser positiva, negativa o cero, el signo de la respuesta será el mismo signo que el numero con mayor valor absoluto. Ejemplo. 3 + (-8) Como los números que se suman son de signos opuestos, restamos el valor absoluto más pequeño del valor absoluto mayor. Primero tomamos cada valor absoluto.
64. 64. Ahora determinamos la diferencia, 8 – 3 = 5. El número -8 tiene un valor absoluto mayor que el número 3, por lo que la suma es negativa. 3 + (-8) = -5 Restar números reales Todo problema de sustracción puede expresarse como un problema de suma por medio de la regla siguiente. a – b = a + (-b) Para restar b de a, sume el opuesto (o inverso aditivo de b a a Ejemplo. 5 - 8 significa 5 – (+8). Para restar 5 – 8, sume el opuesto de +8, que es -7, a 5. 5 – 8 = 5 + (-8) = -3 Multiplicar números reales Para multiplicar dos números con signos iguales, ambos positivos o ambos negativos, multiplique sus valores absolutos. La respuesta es positiva. Para multiplicar dos números con signos diferentes, uno positivo y el otro negativo, multiplique sus valores absolutos. La respuesta es negativa. Ejemplo Cuando multiplicamos más de dos números, el producto será negativo cuando exista un número impar de números negativos. El producto será positivo cuando exista un número par de números negativos. Propiedad del cero en la multiplicación Para cualquier número a, Dividir números reales Para dividir dos números con signos iguales, ambos positivos o ambos negativos, divida sus valores absolutos. La respuesta es positiva. Para dividir dos números con signos diferentes, uno positivo y el otro negativo, divida sus valores absolutos. La respuesta es negativa. Ejemplos. Cuando el denominador de una fracción es un numero negativo, por lo común reescribimos la fracción con un denominador positivo. Para hacerlo, usamos el hecho siguiente.
65. 65. Propiedades de los números reales. Propiedades de los números reales. APLICACIONES DE ECUACIONES LINEALES Pasos para la solución de problemas: 1. Leer el problema hasta entenderlo para ser capaz de explicarlo con otras palabras. 2. Identificar la información disponible y qué es lo que se pregunta. 3. Representar la incógnita con un símbolo algebraico, como x. 4. Expresar las demás cantidades en términos de x. 5. Traducir el enunciado del problema a expresiones algebraicas que contengan x. 6. Resolver las expresiones algebraicas siguiendo los métodos adecuados. 7. Analizar la respuesta algebraica para ver si es posible. 8. Traducir la respuesta algebraica al lenguaje común. Ejemplos El 20% de los estudiantes de un colegio, que tiene 240 alumnos, practica deporte. ¿Cuántos estudiantes practican deporte?
66. 66. Solución: Como , entonces para calcular el 20% de 240, basta con multiplicar 240 por 0,2, es decir: 240 · 0,2 = 48. Ejemplo Entonces 48 alumnos (de los 240) practican deporte. En un curso con 200 alumnos, el 55% de las mujeres y el 65% de los hombres aprobaron. Si en el curso el 30% son mujeres, ¿qué porcentaje de alumnos aprobaron el examen? Solución: Cantidad de mujeres: 0,3.200 = 60 Cantidad de mujeres que aprobaron: 0,55.60 = 33 Cantidad de varones: 0,7.200 = 140 (se podría haber hecho 200 – 60 = 140) Cantidad de varones que aprobaron: 0,65.140 = 91 Total de alumnos que aprobaron: 33 + 91 = 124 Si x representa al porcentaje de alumnos que aprobaron, entonces Ejemplos La tía Berta al morir dejo 160 millones repartido entre sus tres nietos, a pedro le dejo el doble que a Laurita, pero juanita tiene 5 veces más que Laura ¿a cuánto le toco cada uno? Solución Laurita=x Pedro=2x (dos veces más que Laura)
67. 67. juanita=5x (cinco veces más que Laurita) x+2x+5x=160 8x=160 x=160/8 x=20 con el valor descubierto de x ahora sabemos que Laurita le dejaron 20 millones, a pedro 40 y a juanita 100 millones.. Ejemplos Los miembros de una fundación desean invertir \$18,000 en dos tipos de seguros que pagan dividendos anuales del 9 y 6%, respectivamente. ¿Cuánto deberán invertir a cada tasa si el ingreso debe ser equivalente al que produciría al 8% de la inversión total? Solución: Sea P la cantidad a invertir al 9%, por lo tanto (\$18,000 − P) será la cantidad a invertir al 6%. Establecemos: (Ingreso devengado al 9%) + (Ingreso devengado al 6%) = Ingreso Total Sustituimos los valores (9%) P + (6%)(\$18,000 − P) = (8%)*(\$18,000) Resolvemos para P: .09P + .06 (18,000 − P) = .08*(18,000) .09P + 1,080 − .06P = 1,440 .09P − .06P = 1,440 − 1,080 .15P = 360 P = (360) / (.15) P = 2,400 Los miembros de la fundación deben invertir \$2,400 al 9% y \$18,000 − \$2,400 = \$15,600 al 6%.
68. 68. Ecuaciones lineales de primer grado Sabemos que una ecuación lineal o de primer grado es aquella que involucra solamente sumas y restas de variables elevadas a la primera potencia (elevadas a uno, que no se escribe). Son llamadas lineales por que se pueden representar como rectas en el sistema cartesiano. Se pueden presentar tres tipos de ecuaciones lineales: a) ecuaciones lineales propiamente tales En este tipo de ecuación el denominador de todas las expresiones algebraicas es igual a 1 (no se presentan como fracción, aunque el resultado sí puede serlo). Para proceder a la resolución se debe: Eliminar paréntesis. Dejar todos los términos que contengan a "x" en un miembro y los números en el otro. Luego despejar "x" reduciendo términos semejantes. Ejemplo: 4x – 2(6x – 5) = 3x + 12(2x + 16) 4x – 12x + 10 = 3x + 24x + 192 4x – 12x – 3x – 24x = 192 – 10 –35x = 182
69. 69. b) ecuaciones fraccionarias En este tipo de ecuación lineal el denominador de a lo menos una de las expresiones algebraicas es diferente de 1 (es una fracción). Para proceder a la resolución se debe: Llevar a ecuación lineal (eliminar la fracción) multiplicando la ecuación por el mínimo común múltiplo de los denominadores (m.c.m.) Ejemplo: m.c.m. de 2, 4 y 3 = 12 c) ecuaciones literales Pueden ser lineales o fraccionarias. Si son fraccionarias, se llevan al tipo lineal, pero en el paso de reducir términos semejantes se factoriza por "x" para despejarla. Ejemplo:
70. 70. Sistemas de ecuaciones lineales Un sistema de ecuaciones lineales con dos incógnitas tiene la siguiente la forma: Donde cada una de las ecuaciones corresponde a la ecuación de una recta. Determinar la solución del sistema, es hallar un punto que satisfaga ambas ecuaciones, esto es, hallar el punto donde se intersectan ambas rectas. Gráficamente, la situación es la siguiente Sistema compatible indeterminado Sistema lineal de dos ecuaciones con dos incógnitas
71. 71. Se puede ver: Con lo que podemos decir que la primera ecuación multiplicada por tres da la segunda ecuación, por lo tanto no son dos ecuaciones independientes, sino dos formas de expresar la misma ecuación. Tomando una de las ecuaciones, por ejemplo la primera, tenemos: CLASIFICAMOS LOS SIGUIENTES SISTEMAS DE ECUACIONES LINEALES a) 2 x + y = 6 2 x - y = 2 a) Dibujamos las rectas que representan las soluciones de cada ecuación: Dos soluciones de la primera ecuación son:
72. 72. x = 1, y = 4; x = 2, y = 2 Dos soluciones de la segunda ecuación son: x = 1, y= 0; x = 2, y = 2 Las rectas se cortan en un punto que será la solución:x = 2, y = 2. Por tanto, el sistema será compatible determinado. Vemos la representación más abajo .x + y = 3 2 x + 2 y = 6 b) Dibujamos las rectas que representan las soluciones de cada ecuación: Dos soluciones de la primera ecuación son: x = 0, y = 3; x = 3, y = 0 Dos soluciones de la segunda ecuación son: x = 1, y = 2; x = 2, y = 1 Las rectas coinciden, toda la recta es solución del sistema (infinitas soluciones). Por tanto, el sistema será compatible indeterminado. Vemos la representación más abajo b) x + y = 3 x + y = - 1 c) Dibujamos las rectas que representan las soluciones de cada ecuación: Dos soluciones de la primera ecuación son: x = 0,y = 3; x = 3,y = 0 Dos soluciones de la segunda ecuación son: x = 0, y =-1; x = -2, y = 1
73. 73. Las rectas son paralelas, no tienen ningún punto en común, luego el sistema no tiene solución. Por tanto, el sistema será incompatible. Vemos la representación siguiente:
74. 74. Graficas Métodos de resolución de sistemas de ecuaciones lineales Método de reducción Consiste en multiplicar ecuaciones por números y sumarlas para reducir el número de incógnitas hasta llegar a ecuaciones con solo una incógnita.
75. 75. Multiplicar una ecuación por un número consiste en multiplicar ambos miembros de la ecuación por dicho número. Sumar dos ecuaciones consiste en obtener una nueva ecuación cuyo miembro derecho (izquierdo) es la suma de los miembros derechos (izquierdos ) de las ecuaciones que se suman. Ejemplo Multiplicando la primera ecuación por 3 y la segunda por -5, se obtienen las ecuaciones El sumar ambas ecuaciones nos da la ecuación Que es una ecuación con una sola incógnita y cuya solución es La elección de los factores 3 y -5 se ha hecho precisamente para que la desaparezca al sumar ambas ecuaciones. Sustituyendo por uno en la primera ecuación del sistema de ecuaciones de partida, se obtiene Que es otra ecuación con una sola incógnita y cuya solución es . Método de igualación
76. 76. El método de igualación consiste en lo siguiente: Supongamos que tenemos dos ecuaciones: Donde , , y representan simplemente los miembros de estas ecuaciones ( son expresiones algebraicas ). De las dos igualdades anteriores se deduce que Si resulta que una incógnita del sistema de ecuaciones no aparece ni en ni en , entonces la ecuación No contendría dicha incógnita. Este proceso de eliminación de incógnitas se puede repetir varias veces hasta llegar a una ecuación con solo una incógnita, digamos . Una vez que se obtiene la solución de esta ecuación se sustituye por su solución en otras ecuaciones donde aparezca para reducir el número de incógnitas en dichas ecuaciones. Ejemplo El sistema de ecuaciones Es equivalente a este otro
77. 77. El segundo sistema lo he obtenido pasando los términos en del miembro de la izquierda al miembro de la derecha en cada una de las ecuaciones del primer sistema. Del segundo sistema se deduce que Que es una ecuación con una sola incógnita cuya solución es . Sustituyendo por 1 en la primera ecuación del sistema de partida se tiene que Que es una ecuación con una sola incógnita y cuya solución es . Método de sustitución Supongamos que un sistema de ecuaciones se puede poner de la forma Entonces podemos despejar en la segunda ecuación y sustituirla en la primera, para obtener la ecuación: Lo que se busca es que esta ecuación dependa de menos incógnitas que las de partida. Aquí y son expresiones algebraicas de las incógnitas del sistema. Ejemplo Intentemos resolver La primera ecuación se puede reescribir de la forma Por otra parte, de la segunda ecuación del sistema se deduce que
78. 78. Sustituyendo por en Se tiene que Que es una ecuación con solo una incógnita y cuya solución es . Sustituyendo por uno en la primera ecuación del sistema de ecuaciones de partida obtenemos una ecuación de una sola incógnita Cuya solución es . Método de Gauss Gauss es uno de los matemáticos más importantes de todos los tiempos. ¡Fue un GENIO! El método de Gauss consiste en transformar el sistema dado en otro equivalente. Para ello tomamos la matriz ampliada del sistema y mediante las operaciones elementales con sus filas la transformamos en una matriz triangular superior ( o inferior ). De esta forma obtenemos un sistema equivalente al inicial y que es muy fácil de resolver. Es esencialmente el método de reducción. En el método de Gauss se opera con ecuaciones, como se hace en el método de reducción, pero uno se ahorra el escribir las incógnitas porque al ir los coeficientes de una misma incógnita siempre en una misma columna, uno sabe en todo momento cual es la incógnita a la que multiplican. Ejemplo La matriz ampliada del sistema de ecuaciones:
79. 79. Es: Si a la tercera y segunda fila le restamos la primera, obtenemos: Lo que acabamos de hacer es equivalente a restar a la tercera y segunda ecuación la primera. Si ahora intercambiamos la segunda y tercera filas (ecuaciones ), obtenemos la siguiente matriz triangular superior: Que es la matriz ampliada del sistema de ecuaciones: Que es equivalente al inicial. Solucionamos la tercera ocupación para obtener : En la primera y segunda ecuación, sustituimos por la solución de la tercera ecuación ( ), para obtener: