PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet

ML / Data Engineer
May. 7, 2017
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet
1 of 20

More Related Content

What's hot

ACM TechTalks : Apache Arrow and the Future of Data FramesACM TechTalks : Apache Arrow and the Future of Data Frames
ACM TechTalks : Apache Arrow and the Future of Data FramesWes McKinney
Strata London 2016: The future of column oriented data processing with Arrow ...Strata London 2016: The future of column oriented data processing with Arrow ...
Strata London 2016: The future of column oriented data processing with Arrow ...Julien Le Dem
PyCon.DE / PyData Karlsruhe keynote: "Looking backward, looking forward"PyCon.DE / PyData Karlsruhe keynote: "Looking backward, looking forward"
PyCon.DE / PyData Karlsruhe keynote: "Looking backward, looking forward"Wes McKinney
An Incomplete Data Tools Landscape for Hackers in 2015An Incomplete Data Tools Landscape for Hackers in 2015
An Incomplete Data Tools Landscape for Hackers in 2015Wes McKinney
Apache Arrow at DataEngConf Barcelona 2018Apache Arrow at DataEngConf Barcelona 2018
Apache Arrow at DataEngConf Barcelona 2018Wes McKinney
Apache Arrow: Present and Future @ ScaledML 2020Apache Arrow: Present and Future @ ScaledML 2020
Apache Arrow: Present and Future @ ScaledML 2020Wes McKinney

Similar to PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet

ApacheCon Europe Big Data 2016 – Parquet in practice & detailApacheCon Europe Big Data 2016 – Parquet in practice & detail
ApacheCon Europe Big Data 2016 – Parquet in practice & detailUwe Korn
PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...
PyConDE / PyData Karlsruhe 2017 – Connecting PyData to other Big Data Landsca...Uwe Korn
What's new in Hadoop Common and HDFS What's new in Hadoop Common and HDFS
What's new in Hadoop Common and HDFS DataWorks Summit/Hadoop Summit
Taming the resource tigerTaming the resource tiger
Taming the resource tigerElizabeth Smith
Taming the resource tigerTaming the resource tiger
Taming the resource tigerElizabeth Smith
Realtime traffic analyserRealtime traffic analyser
Realtime traffic analyserAlex Moskvin

Similar to PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet(20)

More from Uwe Korn

pandas.(to/from)_sql is simple but not fastpandas.(to/from)_sql is simple but not fast
pandas.(to/from)_sql is simple but not fastUwe Korn
PyData Frankfurt - (Efficient) Data Exchange with "Foreign" EcosystemsPyData Frankfurt - (Efficient) Data Exchange with "Foreign" Ecosystems
PyData Frankfurt - (Efficient) Data Exchange with "Foreign" EcosystemsUwe Korn
Berlin Buzzwords 2019 - Taming the language border in data analytics and scie...Berlin Buzzwords 2019 - Taming the language border in data analytics and scie...
Berlin Buzzwords 2019 - Taming the language border in data analytics and scie...Uwe Korn
Fulfilling Apache Arrow's Promises: Pandas on JVM memory without a copyFulfilling Apache Arrow's Promises: Pandas on JVM memory without a copy
Fulfilling Apache Arrow's Promises: Pandas on JVM memory without a copyUwe Korn
Scalable Scientific Computing with DaskScalable Scientific Computing with Dask
Scalable Scientific Computing with DaskUwe Korn
PyData Amsterdam 2018 – Building customer-visible data science dashboards wit...PyData Amsterdam 2018 – Building customer-visible data science dashboards wit...
PyData Amsterdam 2018 – Building customer-visible data science dashboards wit...Uwe Korn

Recently uploaded

Data processing.pdfData processing.pdf
Data processing.pdfMuthuLakshmi124949
Building and deploying LLM applications with Apache AirflowBuilding and deploying LLM applications with Apache Airflow
Building and deploying LLM applications with Apache AirflowKaxil Naik
Prescriber's Guide: Stahl's Essential PsychopharmacologyPrescriber's Guide: Stahl's Essential Psychopharmacology
Prescriber's Guide: Stahl's Essential PsychopharmacologyDoloresLPerez
CASL compliance.pptxCASL compliance.pptx
CASL compliance.pptxpapalipadhihari
Data collection.pdfData collection.pdf
Data collection.pdfMuthuLakshmi124949
Dunning - SIGMOD - Data Economy.pptxDunning - SIGMOD - Data Economy.pptx
Dunning - SIGMOD - Data Economy.pptxTed Dunning

PyData London 2017 – Efficient and portable DataFrame storage with Apache Parquet