SlideShare a Scribd company logo

Deep Learning for Computer Vision (1/4): Image Analytics @ laSalle 2016

Universitat Politècnica de Catalunya
Universitat Politècnica de Catalunya
Universitat Politècnica de CatalunyaAssociate Professor at Universitat Politècnica de Catalunya

Deep learning technologies are at the core of the current revolution in artificial intelligence for multimedia data analysis. The convergence of big annotated data and affordable GPU hardware has allowed the training of neural networks for data analysis tasks which had been addressed until now with hand-crafted features. Architectures such as convolutional neural networks, recurrent neural networks and Q-nets for reinforcement learning have shaped a brand new scenario in signal processing. This course will cover the basic principles and applications of deep learning to computer vision problems, such as image classification, object detection or text captioning.

Deep Learning for Computer Vision (1/4): Image Analytics @ laSalle 2016

1 of 143
Download to read offline
@DocXavi
Deep Learning for Computer Vision
Image Analytics
5 May 2016
Xavier Giró-i-Nieto
Master en
Creació Multimedia
2
Densely linked slides
3
Introduction
Xavier Giro-i-Nieto
• Web: https://imatge.upc.edu/web/people/xavier-giro
Associate Professor at Universitat Politecnica de Catalunya (UPC)
4
Acknowledgments
5
Acknowledgments
One lecture organized in three parts
6
Images (global) Objects (local)
Deep ConvNets for Recognition for...
Video (2D+T)

Recommended

Deep convnets for global recognition (Master in Computer Vision Barcelona 2016)
Deep convnets for global recognition (Master in Computer Vision Barcelona 2016)Deep convnets for global recognition (Master in Computer Vision Barcelona 2016)
Deep convnets for global recognition (Master in Computer Vision Barcelona 2016)Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision (3/4): Video Analytics @ laSalle 2016
Deep Learning for Computer Vision (3/4): Video Analytics @ laSalle 2016Deep Learning for Computer Vision (3/4): Video Analytics @ laSalle 2016
Deep Learning for Computer Vision (3/4): Video Analytics @ laSalle 2016Universitat Politècnica de Catalunya
 
Deep Convnets for Video Processing (Master in Computer Vision Barcelona, 2016)
Deep Convnets for Video Processing (Master in Computer Vision Barcelona, 2016)Deep Convnets for Video Processing (Master in Computer Vision Barcelona, 2016)
Deep Convnets for Video Processing (Master in Computer Vision Barcelona, 2016)Universitat Politècnica de Catalunya
 
Image classification on Imagenet (D1L4 2017 UPC Deep Learning for Computer Vi...
Image classification on Imagenet (D1L4 2017 UPC Deep Learning for Computer Vi...Image classification on Imagenet (D1L4 2017 UPC Deep Learning for Computer Vi...
Image classification on Imagenet (D1L4 2017 UPC Deep Learning for Computer Vi...Universitat Politècnica de Catalunya
 
Image Classification on ImageNet (D1L3 Insight@DCU Machine Learning Workshop ...
Image Classification on ImageNet (D1L3 Insight@DCU Machine Learning Workshop ...Image Classification on ImageNet (D1L3 Insight@DCU Machine Learning Workshop ...
Image Classification on ImageNet (D1L3 Insight@DCU Machine Learning Workshop ...Universitat Politècnica de Catalunya
 
Deep Learning for Computer Vision (2/4): Object Analytics @ laSalle 2016
Deep Learning for Computer Vision (2/4): Object Analytics @ laSalle 2016Deep Learning for Computer Vision (2/4): Object Analytics @ laSalle 2016
Deep Learning for Computer Vision (2/4): Object Analytics @ laSalle 2016Universitat Politècnica de Catalunya
 

More Related Content

What's hot

Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks
Temporal Activity Detection in Untrimmed Videos with Recurrent Neural NetworksTemporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks
Temporal Activity Detection in Untrimmed Videos with Recurrent Neural NetworksUniversitat Politècnica de Catalunya
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...Universitat Politècnica de Catalunya
 
Deep Video Object Tracking 2020 - Xavier Giro - UPC TelecomBCN Barcelona
Deep Video Object Tracking 2020 - Xavier Giro - UPC TelecomBCN BarcelonaDeep Video Object Tracking 2020 - Xavier Giro - UPC TelecomBCN Barcelona
Deep Video Object Tracking 2020 - Xavier Giro - UPC TelecomBCN BarcelonaUniversitat Politècnica de Catalunya
 
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...Universitat Politècnica de Catalunya
 
Interpretability of Convolutional Neural Networks - Xavier Giro - UPC Barcelo...
Interpretability of Convolutional Neural Networks - Xavier Giro - UPC Barcelo...Interpretability of Convolutional Neural Networks - Xavier Giro - UPC Barcelo...
Interpretability of Convolutional Neural Networks - Xavier Giro - UPC Barcelo...Universitat Politècnica de Catalunya
 
Language and Vision (D3L5 2017 UPC Deep Learning for Computer Vision)
Language and Vision (D3L5 2017 UPC Deep Learning for Computer Vision)Language and Vision (D3L5 2017 UPC Deep Learning for Computer Vision)
Language and Vision (D3L5 2017 UPC Deep Learning for Computer Vision)Universitat Politècnica de Catalunya
 
Closing, Course Offer 17/18 & Homework (D5 2017 UPC Deep Learning for Compute...
Closing, Course Offer 17/18 & Homework (D5 2017 UPC Deep Learning for Compute...Closing, Course Offer 17/18 & Homework (D5 2017 UPC Deep Learning for Compute...
Closing, Course Offer 17/18 & Homework (D5 2017 UPC Deep Learning for Compute...Universitat Politècnica de Catalunya
 
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...GeeksLab Odessa
 
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)Universitat Politècnica de Catalunya
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...Universitat Politècnica de Catalunya
 
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...Universitat Politècnica de Catalunya
 
DeepFix: a fully convolutional neural network for predicting human fixations...
DeepFix:  a fully convolutional neural network for predicting human fixations...DeepFix:  a fully convolutional neural network for predicting human fixations...
DeepFix: a fully convolutional neural network for predicting human fixations...Universitat Politècnica de Catalunya
 
Intro To Convolutional Neural Networks
Intro To Convolutional Neural NetworksIntro To Convolutional Neural Networks
Intro To Convolutional Neural NetworksMark Scully
 
Self-supervised Audiovisual Learning 2020 - Xavier Giro-i-Nieto - UPC Telecom...
Self-supervised Audiovisual Learning 2020 - Xavier Giro-i-Nieto - UPC Telecom...Self-supervised Audiovisual Learning 2020 - Xavier Giro-i-Nieto - UPC Telecom...
Self-supervised Audiovisual Learning 2020 - Xavier Giro-i-Nieto - UPC Telecom...Universitat Politècnica de Catalunya
 

What's hot (20)

Deep Learning for Video: Action Recognition (UPC 2018)
Deep Learning for Video: Action Recognition (UPC 2018)Deep Learning for Video: Action Recognition (UPC 2018)
Deep Learning for Video: Action Recognition (UPC 2018)
 
Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks
Temporal Activity Detection in Untrimmed Videos with Recurrent Neural NetworksTemporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks
Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks
 
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
Learning Representations for Sign Language Videos - Xavier Giro - NIST TRECVI...
 
Deep Video Object Tracking 2020 - Xavier Giro - UPC TelecomBCN Barcelona
Deep Video Object Tracking 2020 - Xavier Giro - UPC TelecomBCN BarcelonaDeep Video Object Tracking 2020 - Xavier Giro - UPC TelecomBCN Barcelona
Deep Video Object Tracking 2020 - Xavier Giro - UPC TelecomBCN Barcelona
 
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...
 
Interpretability of Convolutional Neural Networks - Xavier Giro - UPC Barcelo...
Interpretability of Convolutional Neural Networks - Xavier Giro - UPC Barcelo...Interpretability of Convolutional Neural Networks - Xavier Giro - UPC Barcelo...
Interpretability of Convolutional Neural Networks - Xavier Giro - UPC Barcelo...
 
Language and Vision (D3L5 2017 UPC Deep Learning for Computer Vision)
Language and Vision (D3L5 2017 UPC Deep Learning for Computer Vision)Language and Vision (D3L5 2017 UPC Deep Learning for Computer Vision)
Language and Vision (D3L5 2017 UPC Deep Learning for Computer Vision)
 
Video Analysis (D4L2 2017 UPC Deep Learning for Computer Vision)
Video Analysis (D4L2 2017 UPC Deep Learning for Computer Vision)Video Analysis (D4L2 2017 UPC Deep Learning for Computer Vision)
Video Analysis (D4L2 2017 UPC Deep Learning for Computer Vision)
 
Closing, Course Offer 17/18 & Homework (D5 2017 UPC Deep Learning for Compute...
Closing, Course Offer 17/18 & Homework (D5 2017 UPC Deep Learning for Compute...Closing, Course Offer 17/18 & Homework (D5 2017 UPC Deep Learning for Compute...
Closing, Course Offer 17/18 & Homework (D5 2017 UPC Deep Learning for Compute...
 
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
 
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
Multimodal Deep Learning (D4L4 Deep Learning for Speech and Language UPC 2017)
 
Deep Video Object Tracking - Xavier Giro - UPC Barcelona 2019
Deep Video Object Tracking - Xavier Giro - UPC Barcelona 2019Deep Video Object Tracking - Xavier Giro - UPC Barcelona 2019
Deep Video Object Tracking - Xavier Giro - UPC Barcelona 2019
 
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
Deep Learning for Computer Vision: Image Retrieval (UPC 2016)
 
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
Self-Supervised Audio-Visual Learning - Xavier Giro - UPC TelecomBCN Barcelon...
 
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
Advanced Deep Architectures (D2L6 Deep Learning for Speech and Language UPC 2...
 
Welcome (D1L1 2017 UPC Deep Learning for Computer Vision)
Welcome (D1L1 2017 UPC Deep Learning for Computer Vision)Welcome (D1L1 2017 UPC Deep Learning for Computer Vision)
Welcome (D1L1 2017 UPC Deep Learning for Computer Vision)
 
Intepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural NetworksIntepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural Networks
 
DeepFix: a fully convolutional neural network for predicting human fixations...
DeepFix:  a fully convolutional neural network for predicting human fixations...DeepFix:  a fully convolutional neural network for predicting human fixations...
DeepFix: a fully convolutional neural network for predicting human fixations...
 
Intro To Convolutional Neural Networks
Intro To Convolutional Neural NetworksIntro To Convolutional Neural Networks
Intro To Convolutional Neural Networks
 
Self-supervised Audiovisual Learning 2020 - Xavier Giro-i-Nieto - UPC Telecom...
Self-supervised Audiovisual Learning 2020 - Xavier Giro-i-Nieto - UPC Telecom...Self-supervised Audiovisual Learning 2020 - Xavier Giro-i-Nieto - UPC Telecom...
Self-supervised Audiovisual Learning 2020 - Xavier Giro-i-Nieto - UPC Telecom...
 

Viewers also liked

Deep Learning for Computer Vision (4/4): Beyond vision @ laSalle 2016
Deep Learning for Computer Vision (4/4): Beyond vision @ laSalle 2016Deep Learning for Computer Vision (4/4): Beyond vision @ laSalle 2016
Deep Learning for Computer Vision (4/4): Beyond vision @ laSalle 2016Universitat Politècnica de Catalunya
 
Cwin16 tls cnes-realite_augmentee_eng_v1 2
Cwin16 tls cnes-realite_augmentee_eng_v1 2Cwin16 tls cnes-realite_augmentee_eng_v1 2
Cwin16 tls cnes-realite_augmentee_eng_v1 2Capgemini
 
Classification of blue whale D calls and fin whale 40-Hz calls using deep lea...
Classification of blue whale D calls and fin whale 40-Hz calls using deep lea...Classification of blue whale D calls and fin whale 40-Hz calls using deep lea...
Classification of blue whale D calls and fin whale 40-Hz calls using deep lea...Jeremy Karnowski
 
Augmented reality intro for mobile apps
Augmented reality intro for mobile appsAugmented reality intro for mobile apps
Augmented reality intro for mobile appsHeather Downing
 
Create connected home devices using a Raspberry Pi, Siri and ESPNow for makers.
Create connected home devices using a Raspberry Pi, Siri and ESPNow for makers.Create connected home devices using a Raspberry Pi, Siri and ESPNow for makers.
Create connected home devices using a Raspberry Pi, Siri and ESPNow for makers.Nat Weerawan
 
See like a terminator: augmented reality with oculus rift - Martin Förtsch
See like a terminator: augmented reality with oculus rift - Martin FörtschSee like a terminator: augmented reality with oculus rift - Martin Förtsch
See like a terminator: augmented reality with oculus rift - Martin FörtschWithTheBest
 
How to Design Augmented Reality Experience ?
How to Design Augmented Reality Experience ?How to Design Augmented Reality Experience ?
How to Design Augmented Reality Experience ?Deepak Kamboj
 
6 Retail Trends & 7 Ways Amazon is Changing Everything
6 Retail Trends & 7 Ways Amazon is Changing Everything 6 Retail Trends & 7 Ways Amazon is Changing Everything
6 Retail Trends & 7 Ways Amazon is Changing Everything Deborah Weinswig
 
Augmented reality vs virtual reality
Augmented reality vs virtual realityAugmented reality vs virtual reality
Augmented reality vs virtual realityheretohelpyou
 
Wolfgang Stelzle (RE’FLEKT) Time to make Money with Augmented Reality – Tools...
Wolfgang Stelzle (RE’FLEKT) Time to make Money with Augmented Reality – Tools...Wolfgang Stelzle (RE’FLEKT) Time to make Money with Augmented Reality – Tools...
Wolfgang Stelzle (RE’FLEKT) Time to make Money with Augmented Reality – Tools...AugmentedWorldExpo
 
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...Universitat Politècnica de Catalunya
 
Chatbot AI Aeromexico (public)
Chatbot AI Aeromexico (public)Chatbot AI Aeromexico (public)
Chatbot AI Aeromexico (public)Brian Gross
 
Chatbot 101 - Robert McGovern
Chatbot 101 - Robert McGovernChatbot 101 - Robert McGovern
Chatbot 101 - Robert McGovernRobert McGovern
 

Viewers also liked (19)

Deep Learning for Computer Vision: Visualization (UPC 2016)
Deep Learning for Computer Vision: Visualization (UPC 2016)Deep Learning for Computer Vision: Visualization (UPC 2016)
Deep Learning for Computer Vision: Visualization (UPC 2016)
 
Deep Learning for Computer Vision (4/4): Beyond vision @ laSalle 2016
Deep Learning for Computer Vision (4/4): Beyond vision @ laSalle 2016Deep Learning for Computer Vision (4/4): Beyond vision @ laSalle 2016
Deep Learning for Computer Vision (4/4): Beyond vision @ laSalle 2016
 
Cwin16 tls cnes-realite_augmentee_eng_v1 2
Cwin16 tls cnes-realite_augmentee_eng_v1 2Cwin16 tls cnes-realite_augmentee_eng_v1 2
Cwin16 tls cnes-realite_augmentee_eng_v1 2
 
Classification of blue whale D calls and fin whale 40-Hz calls using deep lea...
Classification of blue whale D calls and fin whale 40-Hz calls using deep lea...Classification of blue whale D calls and fin whale 40-Hz calls using deep lea...
Classification of blue whale D calls and fin whale 40-Hz calls using deep lea...
 
Augmented reality intro for mobile apps
Augmented reality intro for mobile appsAugmented reality intro for mobile apps
Augmented reality intro for mobile apps
 
Create connected home devices using a Raspberry Pi, Siri and ESPNow for makers.
Create connected home devices using a Raspberry Pi, Siri and ESPNow for makers.Create connected home devices using a Raspberry Pi, Siri and ESPNow for makers.
Create connected home devices using a Raspberry Pi, Siri and ESPNow for makers.
 
See like a terminator: augmented reality with oculus rift - Martin Förtsch
See like a terminator: augmented reality with oculus rift - Martin FörtschSee like a terminator: augmented reality with oculus rift - Martin Förtsch
See like a terminator: augmented reality with oculus rift - Martin Förtsch
 
How to Design Augmented Reality Experience ?
How to Design Augmented Reality Experience ?How to Design Augmented Reality Experience ?
How to Design Augmented Reality Experience ?
 
6 Retail Trends & 7 Ways Amazon is Changing Everything
6 Retail Trends & 7 Ways Amazon is Changing Everything 6 Retail Trends & 7 Ways Amazon is Changing Everything
6 Retail Trends & 7 Ways Amazon is Changing Everything
 
Augmented reality vs virtual reality
Augmented reality vs virtual realityAugmented reality vs virtual reality
Augmented reality vs virtual reality
 
Wolfgang Stelzle (RE’FLEKT) Time to make Money with Augmented Reality – Tools...
Wolfgang Stelzle (RE’FLEKT) Time to make Money with Augmented Reality – Tools...Wolfgang Stelzle (RE’FLEKT) Time to make Money with Augmented Reality – Tools...
Wolfgang Stelzle (RE’FLEKT) Time to make Money with Augmented Reality – Tools...
 
Deep Learning for Computer Vision: Object Detection (UPC 2016)
Deep Learning for Computer Vision: Object Detection (UPC 2016)Deep Learning for Computer Vision: Object Detection (UPC 2016)
Deep Learning for Computer Vision: Object Detection (UPC 2016)
 
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
 
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
Deep Learning for Computer Vision: Transfer Learning and Domain Adaptation (U...
 
Chatbot AI Aeromexico (public)
Chatbot AI Aeromexico (public)Chatbot AI Aeromexico (public)
Chatbot AI Aeromexico (public)
 
Deep Learning for Computer Vision: Backward Propagation (UPC 2016)
Deep Learning for Computer Vision: Backward Propagation (UPC 2016)Deep Learning for Computer Vision: Backward Propagation (UPC 2016)
Deep Learning for Computer Vision: Backward Propagation (UPC 2016)
 
Deep Learning for Computer Vision: Deep Networks (UPC 2016)
Deep Learning for Computer Vision: Deep Networks (UPC 2016)Deep Learning for Computer Vision: Deep Networks (UPC 2016)
Deep Learning for Computer Vision: Deep Networks (UPC 2016)
 
Chatbot 101 - Robert McGovern
Chatbot 101 - Robert McGovernChatbot 101 - Robert McGovern
Chatbot 101 - Robert McGovern
 
Deep Learning for Computer Vision: Medical Imaging (UPC 2016)
Deep Learning for Computer Vision: Medical Imaging (UPC 2016)Deep Learning for Computer Vision: Medical Imaging (UPC 2016)
Deep Learning for Computer Vision: Medical Imaging (UPC 2016)
 

Similar to Deep Learning for Computer Vision (1/4): Image Analytics @ laSalle 2016

Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019Universitat Politècnica de Catalunya
 
Deep Learning Hardware: Past, Present, & Future
Deep Learning Hardware: Past, Present, & FutureDeep Learning Hardware: Past, Present, & Future
Deep Learning Hardware: Past, Present, & FutureRouyun Pan
 
MediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep Models
MediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep ModelsMediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep Models
MediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep Modelsmultimediaeval
 
An Introduction to Computer Vision
An Introduction to Computer VisionAn Introduction to Computer Vision
An Introduction to Computer Visionguestd1b1b5
 
Fcv learn yu
Fcv learn yuFcv learn yu
Fcv learn yuzukun
 
Inspirational applications of deep learning
Inspirational applications of deep learningInspirational applications of deep learning
Inspirational applications of deep learningssh1
 
A Beginner's Guide to Monocular Depth Estimation
A Beginner's Guide to Monocular Depth EstimationA Beginner's Guide to Monocular Depth Estimation
A Beginner's Guide to Monocular Depth EstimationRyo Takahashi
 
Solr and Machine Vision - Scott Cote, Lucidworks & Trevor Grant, IBM
Solr and Machine Vision - Scott Cote, Lucidworks & Trevor Grant, IBMSolr and Machine Vision - Scott Cote, Lucidworks & Trevor Grant, IBM
Solr and Machine Vision - Scott Cote, Lucidworks & Trevor Grant, IBMLucidworks
 
最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - 最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - Hiroshi Fukui
 
Visual Object Tracking: Action-Decision Networks (ADNets)
Visual Object Tracking: Action-Decision Networks (ADNets)Visual Object Tracking: Action-Decision Networks (ADNets)
Visual Object Tracking: Action-Decision Networks (ADNets)Yehya Abouelnaga
 
On the Influence Propagation of Web Videos
On the Influence Propagation of Web VideosOn the Influence Propagation of Web Videos
On the Influence Propagation of Web Videosabidhavp
 
Can AI say from our eyes when we read relevant information?
Can AI say from our eyes when we read relevant information?Can AI say from our eyes when we read relevant information?
Can AI say from our eyes when we read relevant information?Nilavra Bhattacharya
 
Large scale landuse classification of satellite imagery
Large scale landuse classification of satellite imageryLarge scale landuse classification of satellite imagery
Large scale landuse classification of satellite imagerySuneel Marthi
 
Sparse representation based human action recognition using an action region-a...
Sparse representation based human action recognition using an action region-a...Sparse representation based human action recognition using an action region-a...
Sparse representation based human action recognition using an action region-a...Wesley De Neve
 
Graph Representation Learning
Graph Representation LearningGraph Representation Learning
Graph Representation LearningJure Leskovec
 
#4 Convolutional Neural Networks for Natural Language Processing
#4 Convolutional Neural Networks for Natural Language Processing#4 Convolutional Neural Networks for Natural Language Processing
#4 Convolutional Neural Networks for Natural Language ProcessingBerlin Language Technology
 

Similar to Deep Learning for Computer Vision (1/4): Image Analytics @ laSalle 2016 (20)

Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
Neural Architectures for Still Images - Xavier Giro- UPC Barcelona 2019
 
Deep Learning Hardware: Past, Present, & Future
Deep Learning Hardware: Past, Present, & FutureDeep Learning Hardware: Past, Present, & Future
Deep Learning Hardware: Past, Present, & Future
 
med_poster_spie
med_poster_spiemed_poster_spie
med_poster_spie
 
MediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep Models
MediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep ModelsMediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep Models
MediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep Models
 
An Introduction to Computer Vision
An Introduction to Computer VisionAn Introduction to Computer Vision
An Introduction to Computer Vision
 
Fcv learn yu
Fcv learn yuFcv learn yu
Fcv learn yu
 
Inspirational applications of deep learning
Inspirational applications of deep learningInspirational applications of deep learning
Inspirational applications of deep learning
 
convnets.pptx
convnets.pptxconvnets.pptx
convnets.pptx
 
A Beginner's Guide to Monocular Depth Estimation
A Beginner's Guide to Monocular Depth EstimationA Beginner's Guide to Monocular Depth Estimation
A Beginner's Guide to Monocular Depth Estimation
 
Solr and Machine Vision - Scott Cote, Lucidworks & Trevor Grant, IBM
Solr and Machine Vision - Scott Cote, Lucidworks & Trevor Grant, IBMSolr and Machine Vision - Scott Cote, Lucidworks & Trevor Grant, IBM
Solr and Machine Vision - Scott Cote, Lucidworks & Trevor Grant, IBM
 
conv_nets.pptx
conv_nets.pptxconv_nets.pptx
conv_nets.pptx
 
最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - 最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に -
 
Visual Object Tracking: Action-Decision Networks (ADNets)
Visual Object Tracking: Action-Decision Networks (ADNets)Visual Object Tracking: Action-Decision Networks (ADNets)
Visual Object Tracking: Action-Decision Networks (ADNets)
 
On the Influence Propagation of Web Videos
On the Influence Propagation of Web VideosOn the Influence Propagation of Web Videos
On the Influence Propagation of Web Videos
 
Can AI say from our eyes when we read relevant information?
Can AI say from our eyes when we read relevant information?Can AI say from our eyes when we read relevant information?
Can AI say from our eyes when we read relevant information?
 
Large scale landuse classification of satellite imagery
Large scale landuse classification of satellite imageryLarge scale landuse classification of satellite imagery
Large scale landuse classification of satellite imagery
 
Sparse representation based human action recognition using an action region-a...
Sparse representation based human action recognition using an action region-a...Sparse representation based human action recognition using an action region-a...
Sparse representation based human action recognition using an action region-a...
 
Sharath copy
Sharath   copySharath   copy
Sharath copy
 
Graph Representation Learning
Graph Representation LearningGraph Representation Learning
Graph Representation Learning
 
#4 Convolutional Neural Networks for Natural Language Processing
#4 Convolutional Neural Networks for Natural Language Processing#4 Convolutional Neural Networks for Natural Language Processing
#4 Convolutional Neural Networks for Natural Language Processing
 

More from Universitat Politècnica de Catalunya

The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...Universitat Politècnica de Catalunya
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-NietoTowards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-NietoUniversitat Politècnica de Catalunya
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in VideosGeneration of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in VideosUniversitat Politècnica de Catalunya
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...Universitat Politècnica de Catalunya
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Universitat Politècnica de Catalunya
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020Universitat Politècnica de Catalunya
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...Universitat Politècnica de Catalunya
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020Universitat Politècnica de Catalunya
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)Universitat Politècnica de Catalunya
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...Universitat Politècnica de Catalunya
 
Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020
Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020
Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020Universitat Politècnica de Catalunya
 
Transcription-Enriched Joint Embeddings for Spoken Descriptions of Images and...
Transcription-Enriched Joint Embeddings for Spoken Descriptions of Images and...Transcription-Enriched Joint Embeddings for Spoken Descriptions of Images and...
Transcription-Enriched Joint Embeddings for Spoken Descriptions of Images and...Universitat Politècnica de Catalunya
 
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...Universitat Politècnica de Catalunya
 
Self-supervised Visual Learning 2020 - Xavier Giro-i-Nieto - UPC Barcelona
Self-supervised Visual Learning 2020 - Xavier Giro-i-Nieto - UPC BarcelonaSelf-supervised Visual Learning 2020 - Xavier Giro-i-Nieto - UPC Barcelona
Self-supervised Visual Learning 2020 - Xavier Giro-i-Nieto - UPC BarcelonaUniversitat Politècnica de Catalunya
 

More from Universitat Politècnica de Catalunya (20)

Deep Generative Learning for All
Deep Generative Learning for AllDeep Generative Learning for All
Deep Generative Learning for All
 
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
The Transformer in Vision | Xavier Giro | Master in Computer Vision Barcelona...
 
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-NietoTowards Sign Language Translation & Production | Xavier Giro-i-Nieto
Towards Sign Language Translation & Production | Xavier Giro-i-Nieto
 
The Transformer - Xavier Giró - UPC Barcelona 2021
The Transformer - Xavier Giró - UPC Barcelona 2021The Transformer - Xavier Giró - UPC Barcelona 2021
The Transformer - Xavier Giró - UPC Barcelona 2021
 
Open challenges in sign language translation and production
Open challenges in sign language translation and productionOpen challenges in sign language translation and production
Open challenges in sign language translation and production
 
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in VideosGeneration of Synthetic Referring Expressions for Object Segmentation in Videos
Generation of Synthetic Referring Expressions for Object Segmentation in Videos
 
Discovery and Learning of Navigation Goals from Pixels in Minecraft
Discovery and Learning of Navigation Goals from Pixels in MinecraftDiscovery and Learning of Navigation Goals from Pixels in Minecraft
Discovery and Learning of Navigation Goals from Pixels in Minecraft
 
Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...Learn2Sign : Sign language recognition and translation using human keypoint e...
Learn2Sign : Sign language recognition and translation using human keypoint e...
 
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
Convolutional Neural Networks - Xavier Giro - UPC TelecomBCN Barcelona 2020
 
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
Attention for Deep Learning - Xavier Giro - UPC TelecomBCN Barcelona 2020
 
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
Generative Adversarial Networks GAN - Xavier Giro - UPC TelecomBCN Barcelona ...
 
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
Q-Learning with a Neural Network - Xavier Giró - UPC Barcelona 2020
 
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
Language and Vision with Deep Learning - Xavier Giró - ACM ICMR 2020 (Tutorial)
 
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
 
Curriculum Learning for Recurrent Video Object Segmentation
Curriculum Learning for Recurrent Video Object SegmentationCurriculum Learning for Recurrent Video Object Segmentation
Curriculum Learning for Recurrent Video Object Segmentation
 
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
Deep Self-supervised Learning for All - Xavier Giro - X-Europe 2020
 
Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020
Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020
Deep Learning Representations for All - Xavier Giro-i-Nieto - IRI Barcelona 2020
 
Transcription-Enriched Joint Embeddings for Spoken Descriptions of Images and...
Transcription-Enriched Joint Embeddings for Spoken Descriptions of Images and...Transcription-Enriched Joint Embeddings for Spoken Descriptions of Images and...
Transcription-Enriched Joint Embeddings for Spoken Descriptions of Images and...
 
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
Object Detection with Deep Learning - Xavier Giro-i-Nieto - UPC School Barcel...
 
Self-supervised Visual Learning 2020 - Xavier Giro-i-Nieto - UPC Barcelona
Self-supervised Visual Learning 2020 - Xavier Giro-i-Nieto - UPC BarcelonaSelf-supervised Visual Learning 2020 - Xavier Giro-i-Nieto - UPC Barcelona
Self-supervised Visual Learning 2020 - Xavier Giro-i-Nieto - UPC Barcelona
 

Recently uploaded

Zi-Stick UBS Dongle ZIgbee from Aeotec manual
Zi-Stick UBS Dongle ZIgbee from  Aeotec manualZi-Stick UBS Dongle ZIgbee from  Aeotec manual
Zi-Stick UBS Dongle ZIgbee from Aeotec manualDomotica daVinci
 
2024 February Patch Tuesday
2024 February Patch Tuesday2024 February Patch Tuesday
2024 February Patch TuesdayIvanti
 
Microsoft Azure News - Feb 2024
Microsoft Azure News - Feb 2024Microsoft Azure News - Feb 2024
Microsoft Azure News - Feb 2024Daniel Toomey
 
Artificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdfArtificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdfIsidro Navarro
 
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdf
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdfQuinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdf
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdfDomotica daVinci
 
Manual sensor Zigbee 3.0 MOES ZSS-X-PIRL-C
Manual  sensor Zigbee 3.0 MOES ZSS-X-PIRL-CManual  sensor Zigbee 3.0 MOES ZSS-X-PIRL-C
Manual sensor Zigbee 3.0 MOES ZSS-X-PIRL-CDomotica daVinci
 
M.Aathiraju Self Intro.docx-AD21001_____
M.Aathiraju Self Intro.docx-AD21001_____M.Aathiraju Self Intro.docx-AD21001_____
M.Aathiraju Self Intro.docx-AD21001_____Aathiraju
 
Manual Eurotronic Thermostatic Valve Comry Z-Wave
Manual Eurotronic Thermostatic Valve Comry Z-WaveManual Eurotronic Thermostatic Valve Comry Z-Wave
Manual Eurotronic Thermostatic Valve Comry Z-WaveDomotica daVinci
 
Put a flag on it. A busy developer's guide to feature toggles.
Put a flag on it. A busy developer's guide to feature toggles.Put a flag on it. A busy developer's guide to feature toggles.
Put a flag on it. A busy developer's guide to feature toggles.Mateusz Kwasniewski
 
My sample product research idea for you!
My sample product research idea for you!My sample product research idea for you!
My sample product research idea for you!KivenRaySarsaba
 
5 Things You Shouldn’t Do at Salesforce World Tour Sydney 2024!
5 Things You Shouldn’t Do at Salesforce World Tour Sydney 2024!5 Things You Shouldn’t Do at Salesforce World Tour Sydney 2024!
5 Things You Shouldn’t Do at Salesforce World Tour Sydney 2024!XfilesPro
 
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre..."Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...shaiyuvasv
 
Navigating the Never Normal Strategies for Portfolio Leaders
Navigating the Never Normal Strategies for Portfolio LeadersNavigating the Never Normal Strategies for Portfolio Leaders
Navigating the Never Normal Strategies for Portfolio LeadersOnePlan Solutions
 
AWS for the beginning is cloud computing
AWS for the beginning  is  cloud computingAWS for the beginning  is  cloud computing
AWS for the beginning is cloud computingkajalghule1
 
Bluetooth Low Energy(BLE) and beacons working
Bluetooth Low Energy(BLE) and beacons workingBluetooth Low Energy(BLE) and beacons working
Bluetooth Low Energy(BLE) and beacons workingshrey Ansh
 
Importance of magazines in education ppt
Importance of magazines in education pptImportance of magazines in education ppt
Importance of magazines in education pptsafnarafeek2002
 
AWS reInvent 2023 recaps from Chicago AWS user group
AWS reInvent 2023 recaps from Chicago AWS user groupAWS reInvent 2023 recaps from Chicago AWS user group
AWS reInvent 2023 recaps from Chicago AWS user groupAWS Chicago
 
Q1 Memory Fabric Forum: SMART CXL Product Lineup
Q1 Memory Fabric Forum: SMART CXL Product LineupQ1 Memory Fabric Forum: SMART CXL Product Lineup
Q1 Memory Fabric Forum: SMART CXL Product LineupMemory Fabric Forum
 

Recently uploaded (20)

Zi-Stick UBS Dongle ZIgbee from Aeotec manual
Zi-Stick UBS Dongle ZIgbee from  Aeotec manualZi-Stick UBS Dongle ZIgbee from  Aeotec manual
Zi-Stick UBS Dongle ZIgbee from Aeotec manual
 
2024 February Patch Tuesday
2024 February Patch Tuesday2024 February Patch Tuesday
2024 February Patch Tuesday
 
Microsoft Azure News - Feb 2024
Microsoft Azure News - Feb 2024Microsoft Azure News - Feb 2024
Microsoft Azure News - Feb 2024
 
Artificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdfArtificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdf
 
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdf
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdfQuinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdf
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdf
 
GTA 6.pdf
GTA 6.pdfGTA 6.pdf
GTA 6.pdf
 
Manual sensor Zigbee 3.0 MOES ZSS-X-PIRL-C
Manual  sensor Zigbee 3.0 MOES ZSS-X-PIRL-CManual  sensor Zigbee 3.0 MOES ZSS-X-PIRL-C
Manual sensor Zigbee 3.0 MOES ZSS-X-PIRL-C
 
M.Aathiraju Self Intro.docx-AD21001_____
M.Aathiraju Self Intro.docx-AD21001_____M.Aathiraju Self Intro.docx-AD21001_____
M.Aathiraju Self Intro.docx-AD21001_____
 
Manual Eurotronic Thermostatic Valve Comry Z-Wave
Manual Eurotronic Thermostatic Valve Comry Z-WaveManual Eurotronic Thermostatic Valve Comry Z-Wave
Manual Eurotronic Thermostatic Valve Comry Z-Wave
 
Put a flag on it. A busy developer's guide to feature toggles.
Put a flag on it. A busy developer's guide to feature toggles.Put a flag on it. A busy developer's guide to feature toggles.
Put a flag on it. A busy developer's guide to feature toggles.
 
COE AI Lab Universities
COE AI Lab UniversitiesCOE AI Lab Universities
COE AI Lab Universities
 
My sample product research idea for you!
My sample product research idea for you!My sample product research idea for you!
My sample product research idea for you!
 
5 Things You Shouldn’t Do at Salesforce World Tour Sydney 2024!
5 Things You Shouldn’t Do at Salesforce World Tour Sydney 2024!5 Things You Shouldn’t Do at Salesforce World Tour Sydney 2024!
5 Things You Shouldn’t Do at Salesforce World Tour Sydney 2024!
 
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre..."Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
"Journey of Aspiration: Unveiling the Path to Becoming a Technocrat and Entre...
 
Navigating the Never Normal Strategies for Portfolio Leaders
Navigating the Never Normal Strategies for Portfolio LeadersNavigating the Never Normal Strategies for Portfolio Leaders
Navigating the Never Normal Strategies for Portfolio Leaders
 
AWS for the beginning is cloud computing
AWS for the beginning  is  cloud computingAWS for the beginning  is  cloud computing
AWS for the beginning is cloud computing
 
Bluetooth Low Energy(BLE) and beacons working
Bluetooth Low Energy(BLE) and beacons workingBluetooth Low Energy(BLE) and beacons working
Bluetooth Low Energy(BLE) and beacons working
 
Importance of magazines in education ppt
Importance of magazines in education pptImportance of magazines in education ppt
Importance of magazines in education ppt
 
AWS reInvent 2023 recaps from Chicago AWS user group
AWS reInvent 2023 recaps from Chicago AWS user groupAWS reInvent 2023 recaps from Chicago AWS user group
AWS reInvent 2023 recaps from Chicago AWS user group
 
Q1 Memory Fabric Forum: SMART CXL Product Lineup
Q1 Memory Fabric Forum: SMART CXL Product LineupQ1 Memory Fabric Forum: SMART CXL Product Lineup
Q1 Memory Fabric Forum: SMART CXL Product Lineup
 

Deep Learning for Computer Vision (1/4): Image Analytics @ laSalle 2016

  • 1. @DocXavi Deep Learning for Computer Vision Image Analytics 5 May 2016 Xavier Giró-i-Nieto Master en Creació Multimedia
  • 3. 3 Introduction Xavier Giro-i-Nieto • Web: https://imatge.upc.edu/web/people/xavier-giro Associate Professor at Universitat Politecnica de Catalunya (UPC)
  • 6. One lecture organized in three parts 6 Images (global) Objects (local) Deep ConvNets for Recognition for... Video (2D+T)
  • 7. One lecture organized in three parts 7 Images (global) Objects (local) Deep ConvNets for Recognition for... Video (2D+T)
  • 8. Previously, before deep learning... 8Slide credit: Jose M Àlvarez Dog
  • 9. 9Slide credit: Jose M Àlvarez Dog Learned Representation Previously, before deep learning...
  • 10. Outline for Part I: Image Analytics... 10 Dog Learned Representation Part I: End-to-end learning (E2E)
  • 11. 11 Learned Representation Part I: End-to-end learning (E2E) Task A (eg. image classification) Outline for Part I: Image Analytics...
  • 12. 12 Task A (eg. image classification) Learned Representation Part I: End-to-end learning (E2E) Task B (eg. image retrieval)Part II: Off-the-shelf features Outline for Part I: Image Analytics...
  • 13. 13 Task A (eg. image classification) Learned Representation Part I: End-to-end learning (E2E) Task B (eg. image retrieval)Part II: Off-the-shelf features Outline for Part I: Image Analytics...
  • 14. E2E: Classification: Supervised learning 14 Manual Annotations Model New Image Automatic classification Training Test Anchor
  • 15. E2E: Classification: LeNet-5 15 LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278- 2324.
  • 16. E2E: Classification: LeNet-5 16 Demo: 3D Visualization of a Convolutional Neural Network Harley, Adam W. "An Interactive Node-Link Visualization of Convolutional Neural Networks." In Advances in Visual Computing, pp. 867-877. Springer International Publishing, 2015.
  • 17. E2E: Classification: Similar to LeNet-5 17 Demo: Classify MNIST digits with a Convolutional Neural Network “ConvNetJS is a Javascript library for training Deep Learning models (mainly Neural Networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat.”
  • 18. E2E: Classification: Databases 18 Li Fei-Fei, “How we’re teaching computers to understand pictures” TEDTalks 2014. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web]
  • 19. 19 E2E: Classification: Databases Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web]
  • 20. 20 Zhou, Bolei, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. "Learning deep features for scene recognition using places database." In Advances in neural information processing systems, pp. 487-495. 2014. [web] E2E: Classification: Databases ● 205 scene classes (categories). ● Images: ○ 2.5M train ○ 20.5k validation ○ 41k test
  • 21. 21 E2E: Classification: ImageNet ILSRVC ● 1000 object classes (categories). ● Images: ○ 1.2 M train ○ 100k test.
  • 22. E2E: Classification: ImageNet ILSRVC Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web] ● Predict 5 classes.
  • 23. Slide credit: Rob Fergus (NYU) Image Classifcation 2012 -9.8% Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2014). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web] 23 E2E: Classification: ILSRVC
  • 24. E2E: Classification: AlexNet (Supervision) 24Slide credit: Junting Pan, “Visual Saliency Prediction using Deep Learning Techniques” (ETSETB-UPC 2015) Orange A Krizhevsky, I Sutskever, GE Hinton “Imagenet classification with deep convolutional neural networks” Part of: Advances in Neural Information Processing Systems 25 (NIPS 2012)
  • 25. 25Slide credit: Junting Pan, “Visual Saliency Prediction using Deep Learning Techniques” (ETSETB-UPC 2015) E2E: Classification: AlexNet (Supervision)
  • 26. 26Slide credit: Junting Pan, “Visual Saliency Prediction using Deep Learning Techniques” (ETSETB-UPC 2015) E2E: Classification: AlexNet (Supervision)
  • 27. 27Image credit: Deep learning Tutorial (Stanford University) E2E: Classification: AlexNet (Supervision)
  • 28. 28Image credit: Deep learning Tutorial (Stanford University) E2E: Classification: AlexNet (Supervision)
  • 29. 29Image credit: Deep learning Tutorial (Stanford University) E2E: Classification: AlexNet (Supervision)
  • 30. 30 Rectified Linear Unit (non-linearity) f(x) = max(0,x) Slide credit: Junting Pan, “Visual Saliency Prediction using Deep Learning Techniques” (ETSETB-UPC 2015) E2E: Classification: AlexNet (Supervision)
  • 31. 31 Dot Product Slide credit: Junting Pan, “Visual Saliency Prediction using Deep Learning Techniques” (ETSETB-UPC 2015) E2E: Classification: AlexNet (Supervision)
  • 32. ImageNet Classification 2013 Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web] Slide credit: Rob Fergus (NYU) 32 E2E: Classification: ImageNet ILSRVC
  • 33. The development of better convnets is reduced to trial-and- error. 33 E2E: Classification: Visualize: ZF Visualization can help in proposing better architectures. Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014 (pp. 818-833). Springer International Publishing.
  • 34. “A convnet model that uses the same components (filtering, pooling) but in reverse, so instead of mapping pixels to features does the opposite.” Zeiler, Matthew D., Graham W. Taylor, and Rob Fergus. "Adaptive deconvolutional networks for mid and high level feature learning." Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011. 34 E2E: Classification: Visualize: ZF
  • 35. Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014 (pp. 818-833). Springer International Publishing. DeconvN et Conv Net 35 E2E: Classification: Visualize: ZF
  • 39. “To examine a given convnet activation, we set all other activations in the layer to zero and pass the feature maps as input to the attached deconvnet layer.” 39 E2E: Classification: Visualize: ZF
  • 41. “(i) Unpool: In the convnet, the max pooling operation is non-invertible, however we can obtain an approximate inverse by recording the locations of the maxima within each pooling region in a set of switch variables.” 41 E2E: Classification: Visualize: ZF
  • 42. XX “(ii) Rectification: The convnet uses ReLU non-linearities, which rectify the feature maps thus ensuring the feature maps are always positive.” 42 E2E: Classification: Visualize: ZF
  • 43. “(iii) Filtering: The convnet uses learned filters to convolve the feature maps from the previous layer. To approximately invert this, the deconvnet uses transposed versions of the same filters (as other autoencoder models, such as RBMs), but applied to the rectified maps, not the output of the layer beneath. In practice this means flipping each filter vertically and horizontally. XX XX 43 E2E: Classification: Visualize: ZF
  • 44. “(iii) Filtering: The convnet uses learned filters to convolve the feature maps from the previous layer. To approximately invert this, the deconvnet uses transposed versions of the same filters (as other autoencoder models, such as RBMs), but applied to the rectified maps, not the output of the layer beneath. In practice this means flipping each filter vertically and horizontally. XX XX 44 E2E: Classification: Visualize: ZF
  • 45. 45 Top 9 activations in a random subset of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach. Corresponding image patches. E2E: Classification: Visualize: ZF
  • 49. Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014 (pp. 818-833). Springer International Publishing. 49 E2E: Classification: Visualize: ZF
  • 50. Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014 (pp. 818-833). Springer International Publishing. 50 E2E: Classification: Visualize: ZF
  • 51. 51 The smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features and fewer “dead" features. AlexNet (Layer 1) Clarifai (Layer 1) E2E: Classification: Visualize: ZF
  • 52. 52 Cleaner features in Clarifai, without the aliasing artifacts caused by the stride 4 used in AlexNet. AlexNet (Layer 2) Clarifai (Layer 2) E2E: Classification: Visualize: ZF
  • 53. 53 Regularization with dropout: Reduction of overfitting by setting to zero the output of a portion (typically 50%) of each intermediate neuron. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580. Chicago E2E: Classification: Dropout: ZF
  • 56. ImageNet Classification 2013 Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web] -5% Slide credit: Rob Fergus (NYU) 56 E2E: Classification: ImageNet ILSRVC
  • 57. ImageNet Classification 2013 Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web] -5% Slide credit: Rob Fergus (NYU) 57 E2E: Classification: ImageNet ILSRVC
  • 60. E2E: Classification: GoogLeNet 60 ● 22 layers, but 12 times fewer parameters than AlexNet. Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions."
  • 61. E2E: Classification: GoogLeNet 61 ● Challenges of going deeper: ○ Overfitting, due to the increase amount of parameters. ○ Inefficient computation if most weights end up close to zero. Solution Sparsity How ? Inception modules
  • 63. E2E: Classification: GoogLeNet 63 Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014.
  • 64. E2E: Classification: GoogLeNet 64 Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014.
  • 65. E2E: Classification: GoogLeNet (NiN) 65 3x3 and 5x5 convolutions deal with different scales. Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014. [Slides]
  • 66. 66 1x1 convolutions does dimensionality reduction (c3<c2) and accounts for rectified linear units (ReLU). Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014. [Slides] E2E: Classification: GoogLeNet (NiN)
  • 67. 67 In NiN, the Cascaded 1x1 Convolutions compute reductions after the convolutions. Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014. [Slides] E2E: Classification: GoogLeNet (NiN)
  • 68. E2E: Classification: GoogLeNet 68 In GoogLeNet, the Cascaded 1x1 Convolutions compute reductions before the expensive 3x3 and 5x5 convolutions.
  • 69. E2E: Classification: GoogLeNet 69 Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014.
  • 70. E2E: Classification: GoogLeNet 70 3x3 max pooling introduces somewhat spatial invariance, and has proven a benefitial effect by adding an alternative parallel path.
  • 71. E2E: Classification: GoogLeNet 71 Two Softmax Classifiers at intermediate layers combat the vanishing gradient while providing regularization at training time. ...and no fully connected layers needed !
  • 73. E2E: Classification: GoogLeNet 73NVIDIA, “NVIDIA and IBM CLoud Support ImageNet Large Scale Visual Recognition Challenge” (2015)
  • 74. E2E: Classification: GoogLeNet 74 Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." CVPR 2015. [video] [slides] [poster]
  • 75. E2E: Classification: VGG 75 Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." International Conference on Learning Representations (2015). [video] [slides] [project]
  • 76. E2E: Classification: VGG 76 Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." International Conference on Learning Representations (2015). [video] [slides] [project]
  • 77. E2E: Classification: VGG: 3x3 Stacks 77 Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." International Conference on Learning Representations (2015). [video] [slides] [project]
  • 78. E2E: Classification: VGG 78 Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." International Conference on Learning Representations (2015). [video] [slides] [project] ● No poolings between some convolutional layers. ● Convolution strides of 1 (no skipping).
  • 79. E2E: Classification 79 3.6% top 5 error… with 152 layers !!
  • 80. E2E: Classification: ResNet 80 He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385 (2015). [slides]
  • 81. E2E: Classification: ResNet 81 ● Deeper networks (34 is deeper than 18) are more difficult to train. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385 (2015). [slides] Thin curves: training error Bold curves: validation error
  • 82. E2E: Classification: ResNet 82 ● Residual learning: reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385 (2015). [slides]
  • 83. E2E: Classification: ResNet 83 He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385 (2015). [slides]
  • 84. 84 E2E: Classification: Humans Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web]
  • 85. 85 E2E: Classification: Humans “Is this a Border terrier” ? Crowdsourcing Yes No ● Binary ground truth annotation from the crowd. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web]
  • 86. 86 ● Annotation Problems: Carlier, Axel, Amaia Salvador, Ferran Cabezas, Xavier Giro-i-Nieto, Vincent Charvillat, and Oge Marques. "Assessment of crowdsourcing and gamification loss in user-assisted object segmentation." Multimedia Tools and Applications (2015): 1-28. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web] Crowdsource loss (0.3%) More than 5 objects classes E2E: Classification: Humans
  • 87. 87 Andrej Karpathy, “What I learned from competing against a computer on ImageNet” (2014) ● Test data collection from one human. [interface] E2E: Classification: Humans
  • 88. 88 Andrej Karpathy, “What I learned from competing against a computer on ImageNet” (2014) ● Test data collection from one human. [interface] “Aww, a cute dog! Would you like to spend 5 minutes scrolling through 120 breeds of dog to guess what species it is ?” E2E: Classification: Humans
  • 89. E2E: Classification: Humans 89 NVIDIA, “Mocha.jl: Deep Learning for Julia” (2015) ResNet
  • 91. 91
  • 96. 96 E2E: Saliency Slide credit: Junting Pan, “Visual Saliency Prediction using Deep Learning Techniques” (ETSETB 2015)
  • 97. 97 Eye Tracker Mouse Click Slide credit: Junting Pan, “Visual Saliency Prediction using Deep Learning Techniques” (ETSETB 2015) E2E: Saliency
  • 98. 98 E2E: Saliency: JuntingNet Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 99. 99 E2E: Saliency: JuntingNet Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 100. 100 TRAIN VALIDATION TEST 10,000 5,000 5,000 6,000 926 2,000 CAT2000 [Borji’15] 2,000 - 2,000 MIT300 [Judd’12] 300 - -Large Scale E2E: Saliency: JuntingNet Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 103. 103 Upsample + filter 2D map 96x96 2340=48x48 3 CONV LAYERS E2E: Saliency: JuntingNet
  • 104. 104 Upsample + filter 2D map 96x96 2340=48x48 2 DENSE LAYERS E2E: Saliency: JuntingNet
  • 107. 107 Loss function Mean Square Error (MSE) Weight initialization Gaussian distribution Learning rate 0.03 to 0.0001 Mini batch size 128 Training time 7h (SALICON) / 4h (iSUN) Acceleration SGD+ nesterov momentum (0.9) Regularisation Maxout norm GPU NVidia GTX 980 E2E: Saliency: JuntingNet Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 108. 108 Number of iterations (Training time) ● Back-propagation with the Euclidean distance. ● Training curve for the SALICON database. E2E: Saliency: JuntingNet Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 109. 109 JuntingNetGround TruthPixels E2E: Saliency: JuntingNet: iSUN Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 110. 110 JuntingNetGround TruthPixels E2E: Saliency: JuntingNet: iSUN Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 111. 111 Results from CVPR LSUN Challenge 2015 E2E: Saliency: JuntingNet: iSUN Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 112. 112 JuntingNetGround TruthPixels E2E: Saliency: JuntingNet: SALICON Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 113. 113 JuntingNetGround TruthPixels E2E: Saliency: JuntingNet: SALICON Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 114. 114 Results from CVPR LSUN Challenge 2015 E2E: Saliency: JuntingNet: SALICON Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 115. 115 E2E: Saliency: JuntingNet Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." CVPR 2016
  • 116. 116 Part I: End-to-end learning (E2E) Domain B Fine-tuned Learned Representation Part I’: End-to-End Fine-Tuning (FT) Part I: End-to-end learning (E2E) Domain ALearned Representation Part I: End-to-end learning (E2E) Transfer Outline for Part I: Image Analytics
  • 117. 117 E2E: Fine-tuning Fine-tuning a pre-trained network Slide credit: Victor Campos, “Layer-wise CNN surgery for Visual Sentiment Prediction” (ETSETB 2015)
  • 118. 118 E2E: Fine-tuning Slide credit: Victor Campos, “Layer-wise CNN surgery for Visual Sentiment Prediction” (ETSETB 2015) Fine-tuning a pre-trained network
  • 119. 119 E2E: Fine-tuning: Sentiments CNN Campos, Victor, Amaia Salvador, Xavier Giro-i-Nieto, and Brendan Jou. "Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction." In Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia, pp. 57-62. ACM, 2015.
  • 120. 120 Campos, Victor, Xavier Giro-i-Nieto, and Brendan Jou. “From pixels to sentiments” (Submitted) Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully Convolutional Networks for Semantic Segmentation." CVPR 2015 E2E: Fine-tuning: Sentiments True positive True negative False positive False negative Visualizations with fully convolutional networks.
  • 121. 121 E2E: Fine-tuning: Cultural events ChaLearn Workshop A. Salvador, Zeppelzauer, M., Manchon-Vizuete, D., Calafell-Orós, A., and Giró-i-Nieto, X., “Cultural Event Recognition with Visual ConvNets and Temporal Models”, in CVPR ChaLearn Looking at People Workshop 2015, 2015. [slides]
  • 122. 122 VGG + Fine tuned E2E: Fine-tuning: Saliency prediction
  • 123. 123 E2E: Fine-tuning: Saliency prediction Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." In Proceedings of the IEEE International Conference on Computer Vision. 2016. From scratch VGG + Fine tuned
  • 124. 124 E2E: Fine-tuning: Saliency prediction Junting Pan, Kevin McGuinness, Elisa Sayrol, Noel O'Connor, and Xavier Giro-i-Nieto. "Shallow and Deep Convolutional Networks for Saliency Prediction." In Proceedings of the IEEE International Conference on Computer Vision. 2016.
  • 125. 125 Task A (eg. image classification) Learned Representation Part I: End-to-end learning (E2E) Task B (eg. image retrieval) Part II: Off-The-Shelf features (OTS) Outline for Part I: Image Analytics...
  • 126. 126 Razavian, Ali, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. "CNN features off-the-shelf: an astounding baseline for recognition." CVPRW 2014 Off-The-Shelf (OTS) Features
  • 127. ● Intermediate features can be used as regular visual descriptors for any task. 127 Off-The-Shelf (OTS) Features Babenko, Artem, et al. "Neural codes for image retrieval." Computer Vision–ECCV 2014
  • 128. 128 OTS: Classification: Razavian Razavian, Ali, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. "CNN features off-the-shelf: an astounding baseline for recognition." CVPRW 2014 Pascal VOC 2007
  • 129. 129 OTS: Classification: Return of devil Chatfield, K., Simonyan, K., Vedaldi, A. and Zisserman, A.. Return of the devil in the details: Delving deep into convolutional nets. BMVC 2014 Classifier L2-normalization Accuracy +5%
  • 130. Three representative architectures considered: AlexNet ZF OverFeat 5 days (fast) 3 weeks (slow) @ NVIDIA GTX Titan GPU 130 OTS: Classification: Return of devil Chatfield, K., Simonyan, K., Vedaldi, A. and Zisserman, A.. Return of the devil in the details: Delving deep into convolutional nets. BMVC 2014
  • 131. F C 131 OTS: Classification: Return of devil Data augmentation Chatfield, K., Simonyan, K., Vedaldi, A. and Zisserman, A.. Return of the devil in the details: Delving deep into convolutional nets. BMVC 2014
  • 132. 132 OTS: Classification: Return of devil Fisher Kernels (FK) ConvNets (CNN)
  • 133. Color Gray Scale (GS) Accuracy -2.5% 133 OTS: Classification: Return of devil Chatfield, K., Simonyan, K., Vedaldi, A. and Zisserman, A.. Return of the devil in the details: Delving deep into convolutional nets. BMVC 2014
  • 134. Dimensionality reduction by retraining the last layer to smaller sizes. Accuracy -2% Size x32 134 OTS: Classification: Return of devil Chatfield, K., Simonyan, K., Vedaldi, A. and Zisserman, A.. Return of the devil in the details: Delving deep into convolutional nets. BMVC 2014
  • 135. Ranking Summary of the paper by Amaia Salvador on Bitsearch. Babenko, Artem, et al. "Neural codes for image retrieval." Computer Vision–ECCV 2014. Springer International Publishing, 2014. 584-599. 135 OTS: Retrieval
  • 136. Oxford Buildings Inria Holidays UKB 136 OTS: Retrieval
  • 137. Pooled from the network from Krizhevsky et. al. pretrained with images from ImageNet. 137 OTS: Retrieval: FC layers Summary of the paper by Amaia Salvador on Bitsearch. Babenko, Artem, et al. "Neural codes for image retrieval." Computer Vision–ECCV 2014.
  • 138. Off-the-shelf CNN descriptors from fully connected layers show useful but not superior (w.r.t. FV, VLAD, Sparse Coding,...) 138Babenko, Artem, et al. "Neural codes for image retrieval." Computer Vision–ECCV 2014. OTS: Retrieval: FC layers
  • 139. Razavian et al, A baseline for visual instance retrieval with deep convolutional networks, ICLR 2015. 139 Convolutional layers have shown better performance than fully connected ones. OTS: Retrieval: Conv layers
  • 140. OTS: Retrieval: Conv layers Razavian et al, A baseline for visual instance retrieval with deep convolutional networks, ICLR 2015. 140 Spatial Search, (extract N local descriptor from predefined locations) increases performance at computational cost.
  • 141. Medium memory footprints Razavian et al, A baseline for visual instance retrieval with deep convolutional networks, ICLR 2015. 141 OTS: Retrieval: Conv layers
  • 142. 142 OTS: Summarization Bolaños M, Mestre R, Talavera E, Giró-i-Nieto X, Radeva P. Visual Summary of Egocentric Photostreams by Representative Keyframes. In: IEEE International Workshop on Wearable and Ego-vision Systems for Augmented Experience (WEsAX) 2015. Turin, Italy: 2015 Clustering based on Euclidean distance over FC7 features from AlexNet.