We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
http://imatge-upc.github.io/retrieval-2017-cam/
Image retrieval in realistic scenarios targets large dynamic datasets of unlabeled images. In these cases, training or fine-tuning a model every time new images are added to the database is neither efficient nor scalable.
Convolutional neural networks trained for image classification over large datasets have been proven effective feature extractors when transferred to the task of image retrieval. The most successful approaches are based on encoding the activations of convolutional layers as they convey the image spatial information. Our proposal goes beyond and aims at a local-aware encoding of these features depending on the predicted image semantics, with the advantage of using only of the knowledge contained inside the network.
In particular, we employ Class Activation Maps (CAMs) to obtain the most discriminative regions from a semantic perspective. Additionally, CAMs are also used to generate object proposals during an unsupervised re-ranking stage after a first fast search.
Our experiments on two public available datasets for instance retrieval, Oxford5k and Paris6k, demonstrate that our system is competitive and even outperforms the current state-of-the-art when using off-the-shelf models trained on the object classes of ImageNet.
http://imatge-upc.github.io/retrieval-2017-cam/
Image retrieval in realistic scenarios targets large dynamic datasets of unlabeled images. In these cases, training or fine-tuning a model every time new images are added to the database is neither efficient nor scalable.
Convolutional neural networks trained for image classification over large datasets have been proven effective feature extractors when transferred to the task of image retrieval. The most successful approaches are based on encoding the activations of convolutional layers as they convey the image spatial information. Our proposal goes beyond and aims at a local-aware encoding of these features depending on the predicted image semantics, with the advantage of using only of the knowledge contained inside the network.
In particular, we employ Class Activation Maps (CAMs) to obtain the most discriminative regions from a semantic perspective. Additionally, CAMs are also used to generate object proposals during an unsupervised re-ranking stage after a first fast search.
Our experiments on two public available datasets for instance retrieval, Oxford5k and Paris6k, demonstrate that our system is competitive and even outperforms the current state-of-the-art when using off-the-shelf models trained on the object classes of ImageNet.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!