Past, present, and future of Recommender Systems: an industry perspective

Xavier Amatriain
Xavier AmatriainCofounder/CTO at Curai
Past, Present, and Future of
Recommender Systems
Xavier Amatriain (@xamat)
A bit about me...
A bit about me...
A bit about me...
A bit about me...
A bit about me...
A bit about me...
Quora
Our Mission
“To share and grow
the world’s knowledge”
• Millions of questions & answers
• Millions of users
• Thousands of topics
• ...
Demand
What we care about
Quality
Relevance
1. The Recommender Problem
2. The Netflix Prize
3. Beyond Rating Prediction
4. Lessons Learned
Index
1. The Recommender
Problem
The “Recommender problem”
● Traditional definition: Estimate a utility function that
automatically predicts how much a user will like an
item.
● Based on:
o Past behavior
o Relations to other users
o Item similarity
o Context
o …
Recommendation as data mining
The core of the Recommendation
Engine can be assimilated to a
general data mining problem
(Amatriain et al. Data Mining Methods for Recommender
Systems in Recommender Systems Handbook)
Data Mining + all those other things
● User Interface
● System requirements (efficiency, scalability, privacy....)
● Serendipity
● Diversity
● Awareness
● Explanations
● …
2. The Netflix Prize
What we were interested in:
▪ High quality recommendations
Proxy question:
▪ Accuracy in predicted rating
▪ Improve by 10% = $1million!
2007 Progress Prize
▪ Top 2 algorithms
▪ SVD - Prize RMSE: 0.8914
▪ RBM - Prize RMSE: 0.8990
▪ Linear blend Prize RMSE: 0.88
▪ Currently in use as part of Netflix’ rating prediction
component
▪ Limitations
▪ Designed for 100M ratings, not XB ratings
▪ Not adaptable as users add ratings
▪ Performance issues
What about the final prize ensembles?
● Offline studies showed they were too computationally
intensive to scale
● Expected improvement not worth engineering effort
● Plus…. Focus had already shifted to other issues that had
more impact than rating prediction.
3. Beyond Rating
Prediction
Everything is a recommendation
Evolution of the Recommender Problem
Rating Ranking Page Optimization
4.7
Context-aware
Recommendations
Context
3.1 Ranking
Ranking
● Most recommendations are presented in a sorted list
● Recommendation can be understood as a ranking problem
● Popularity is the obvious baseline
● What about rating predictions?
Ranking by ratings
4.7 4.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
Niche titles
High average ratings… by those who would watch it
RMSE
Popularity
PredictedRating
1
2
3
4
5
Linear Model:
frank
(u,v) = w1
p(v) + w2
r(u,v) + b
FinalRanking
Example: Two features, linear model
Popularity
1
2
3
4
5
FinalRanking
PredictedRatingExample: Two features, linear model
Learning to rank
● Machine learning problem: goal is to construct ranking
model from training data
● Training data can be a partial order or binary judgments
(relevant/not relevant).
● Resulting order of the items typically induced from a
numerical score
● Learning to rank is a key element for personalization
● You can treat the problem as a standard supervised
classification problem
Learning to rank - Metrics
● Quality of ranking measured using metrics as
o Normalized Discounted Cumulative Gain
o Mean Reciprocal Rank (MRR)
o Fraction of Concordant Pairs (FCP)
o Others…
● But, it is hard to optimize machine-learned models directly
on these measures (e.g. non-differentiable)
● Recent research on models that directly optimize ranking
measures
Ranking - Quora Feed
● Goal: Present most interesting
stories for a user at a given time
○ Interesting = topical relevance +
social relevance + timeliness
○ Stories = questions + answers
● ML: Personalized learning-to-rank
approach
● Relevance-ordered vs time-ordered =
big gains in engagement
3.2 Similarity
● Displayed in
many different
contexts
○ In response to
user
actions/context
(search, queue
add…)
○ More like… rows
Similars
Similars: Related Questions
● Given interest in question A (source) what other
questions will be interesting?
● Not only about similarity, but also “interestingness”
● Features such as:
○ Textual
○ Co-visit
○ Topics
○ …
● Important for logged-out use case
Graph-based similarities
0.8
0.2
0.3
0.4
0.3
0.7
0.3
Example of graph-based similarity: SimRank
● SimRank (Jeh & Widom, 02): “two objects are
similar if they are referenced by similar objects.”
Similarity ensembles
● Similarity can refer to different dimensions
○ Similar in metadata/tags
○ Similar in user play behavior
○ Similar in user rating behavior
○ …
● Combine them using an ensemble
○ Weights are learned using regression over existing response
○ Or… some MAB explore/exploit approach
● The final concept of “similarity” responds to what users vote as
similar
3.3 Social
Recommendations
Recommendations - Users
Goal: Recommend new users to follow
● Based on:
○ Other users followed
○ Topics followed
○ User interactions
○ User-related features
○ ...
User Trust/Expertise Inference
Goal: Infer user’s trustworthiness in relation
to a given topic
● We take into account:
○ Answers written on topic
○ Upvotes/downvotes received
○ Endorsements
○ ...
● Trust/expertise propagates through the network
● Must be taken into account by other algorithms
Social and Trust-based recommenders
● A social recommender system recommends items that are “popular”
in the social proximity of the user.
● Social proximity = trust (can also be topic-specific)
● Given two individuals - the source (node A) and sink (node C) -
derive how much the source should trust the sink.
● Algorithms
o Advogato (Levien)
o Appleseed (Ziegler and Lausen)
o MoleTrust (Massa and Avesani)
o TidalTrust (Golbeck)
Other ways to use Social
● Social connections can be used in combination with
other approaches
● In particular, “friendships” can be fed into collaborative
filtering methods in different ways
○ replace or modify user-user “similarity” by using social network
information
○ use social connection as a part of the ML objective function as
regularizer
○ ...
3.4 Explore/Exploit
● One of the key issues when building any kind of
personalization algorithm is how to trade off:
○ Exploitation: Cashing in on what we know about the user right
now
○ Exploration: Using the interaction as an opportunity to learn
more about the user
● We need to have informed and optimal strategies to
drive that tradeoff
○ Solution: pick a reasonable set of candidates and show users
only “enough” to gather information on them
Explore/Exploit
● Given possible strategies/candidates (slot machines) pick the arm that has
the maximum potential of being good (minimize regret)
● Naive strategy: ε-greedy
○ Explore with a small probability ε (e.g. 5%) -> choose an arm at random
○ Exploit with a high probability (1 - ε ) (e.g. 95%) -> choose the best-known arm so far
● Translation to recommender systems
○ Choose an arm = choose an item/choose an algorithm (MAB testing)
● Thompson Sampling
○ Given a posterior distribution, sample on each iteration and choose the action that
maximizes the expected reward
Multi-armed Bandits
Multi-armed Bandits
3.5 Page
Optimization
10,000s of
possible
rows …
10-40
rows
Variable number of
possible videos per
row (up to thousands)
1 personalized page
per device
Page Composition
Page Composition
From “Modeling User Attention and
Interaction on the Web” 2014 - PhD Thesis by Dmitry Lagun (Emory U.)
User Attention Modeling
From “Modeling User Attention and
Interaction on the Web” 2014 - PhD Thesis by Dmitry Lagun (Emory U.)
vs.Accurate Diverse
vs.Discovery Continuation
vs.Depth Coverage
vs.Freshness Stability
vs.Recommendations Tasks
Page Composition
● To put things together we need to combine different elements
o Navigational/Attention Model
o Personalized Relevance Model
o Diversity Model
4. Lessons Learned
1. Implicitsignalsbeat
explicitones
(almostalways)
Implicit vs. Explicit
● Many have acknowledged
that implicit feedback is more
useful
● Is implicit feedback really always
more useful?
● If so, why?
● Implicit data is (usually):
○ More dense, and available for all users
○ Better representative of user behavior vs.
user reflection
○ More related to final objective function
○ Better correlated with AB test results
● E.g. Rating vs watching
Implicit vs. Explicit
● However
○ It is not always the case that
direct implicit feedback correlates
well with long-term retention
○ E.g. clickbait
● Solution:
○ Combine different forms of
implicit + explicit to better represent
long-term goal
Implicit vs. Explicit
2.bethoughtfulaboutyour
TrainingData
Defining training/testing data
● Training a simple binary classifier for
good/bad answer
○ Defining positive and negative labels ->
Non-trivial task
○ Is this a positive or a negative?
■ funny uninformative answer with many
upvotes
■ short uninformative answer by a well-known
expert in the field
■ very long informative answer that nobody
reads/upvotes
■ informative answer with grammar/spelling
mistakes
■ ...
3.YourModelwilllearn
whatyouteachittolearn
Training a model
● Model will learn according to:
○ Training data (e.g. implicit and explicit)
○ Target function (e.g. probability of user reading an answer)
○ Metric (e.g. precision vs. recall)
● Example 1 (made up):
○ Optimize probability of a user going to the cinema to
watch a movie and rate it “highly” by using purchase history
and previous ratings. Use NDCG of the ranking as final
metric using only movies rated 4 or higher as positives.
Example 2 - Quora’s feed
● Training data = implicit + explicit
● Target function: Value of showing a
story to a
user ~ weighted sum of actions:
v = ∑a
va
1{ya
= 1}
○ predict probabilities for each action, then compute expected
value: v_pred = E[ V | x ] = ∑a
va
p(a | x)
● Metric: any ranking metric
4.Explanationsmightmatter
morethantheprediction
Explanation/Support for Recommendations
Social Support
5.Learntodealwith
PresentationBias
2D Navigational modeling
More likely
to see
Less likely
The curse of presentation bias
● User can only click on what you decide to show
○ But, what you decide to show is the result of what your model
predicted is good
● Simply treating things you show as negatives is not
likely to work
● Better options
○ Correcting for the probability a user will click on a position ->
Attention models
○ Explore/exploit approaches such as MAB
corollary:
TheUIistheonlycommunication
channelwithwhatmattersthemost:
Users
UI->Algorithm->UI
● The UI generates the user feedback
that we will input into the algorithms
● The UI is also where the results of
our algorithms will be shown
● A change in the UI might require a
change in algorithms and viceversa
Conclusions
● Recommendation is about much more than just
predicting a rating
● All forms of recommendation require of a tight
connection with the UI
○ Capture the right kind of feedback
■ Explicit/implicit feedback
■ Correct for presentation bias
■ ...
○ Present the recommendations correctly
■ Explanations
■ Diversity
■ Exploration/Exploitation
■ ….
Questions?
1 of 71

Recommended

Time, Context and Causality in Recommender Systems by
Time, Context and Causality in Recommender SystemsTime, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender SystemsYves Raimond
5.9K views35 slides
Tutorial on Deep Learning in Recommender System, Lars summer school 2019 by
Tutorial on Deep Learning in Recommender System, Lars summer school 2019Tutorial on Deep Learning in Recommender System, Lars summer school 2019
Tutorial on Deep Learning in Recommender System, Lars summer school 2019Anoop Deoras
2.2K views102 slides
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale by
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix ScaleQcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix ScaleXavier Amatriain
15.1K views38 slides
Personalized Page Generation for Browsing Recommendations by
Personalized Page Generation for Browsing RecommendationsPersonalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing RecommendationsJustin Basilico
5.3K views44 slides
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys... by
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...
Recsys 2016 tutorial: Lessons learned from building real-life recommender sys...Xavier Amatriain
16.5K views46 slides
Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se... by
 Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se... Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...Sudeep Das, Ph.D.
13K views32 slides

More Related Content

What's hot

Past, Present & Future of Recommender Systems: An Industry Perspective by
Past, Present & Future of Recommender Systems: An Industry PerspectivePast, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry PerspectiveJustin Basilico
65K views20 slides
Recent Trends in Personalization at Netflix by
Recent Trends in Personalization at NetflixRecent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixJustin Basilico
24.2K views57 slides
Recent Trends in Personalization: A Netflix Perspective by
Recent Trends in Personalization: A Netflix PerspectiveRecent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix PerspectiveJustin Basilico
30.3K views64 slides
Learning a Personalized Homepage by
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized HomepageJustin Basilico
6.5K views34 slides
Deep Learning for Recommender Systems by
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender SystemsYves Raimond
15.4K views33 slides
Artwork Personalization at Netflix Fernando Amat RecSys2018 by
Artwork Personalization at Netflix Fernando Amat RecSys2018 Artwork Personalization at Netflix Fernando Amat RecSys2018
Artwork Personalization at Netflix Fernando Amat RecSys2018 Fernando Amat
3.5K views24 slides

What's hot(20)

Past, Present & Future of Recommender Systems: An Industry Perspective by Justin Basilico
Past, Present & Future of Recommender Systems: An Industry PerspectivePast, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry Perspective
Justin Basilico65K views
Recent Trends in Personalization at Netflix by Justin Basilico
Recent Trends in Personalization at NetflixRecent Trends in Personalization at Netflix
Recent Trends in Personalization at Netflix
Justin Basilico24.2K views
Recent Trends in Personalization: A Netflix Perspective by Justin Basilico
Recent Trends in Personalization: A Netflix PerspectiveRecent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix Perspective
Justin Basilico30.3K views
Learning a Personalized Homepage by Justin Basilico
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized Homepage
Justin Basilico6.5K views
Deep Learning for Recommender Systems by Yves Raimond
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
Yves Raimond15.4K views
Artwork Personalization at Netflix Fernando Amat RecSys2018 by Fernando Amat
Artwork Personalization at Netflix Fernando Amat RecSys2018 Artwork Personalization at Netflix Fernando Amat RecSys2018
Artwork Personalization at Netflix Fernando Amat RecSys2018
Fernando Amat3.5K views
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl... by MLconf
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
Rishabh Mehrotra - Recommendations in a Marketplace: Personalizing Explainabl...
MLconf4K views
Deep Learning for Recommender Systems by Justin Basilico
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
Justin Basilico21K views
Calibrated Recommendations by Harald Steck
Calibrated RecommendationsCalibrated Recommendations
Calibrated Recommendations
Harald Steck4.2K views
Artwork Personalization at Netflix by Justin Basilico
Artwork Personalization at NetflixArtwork Personalization at Netflix
Artwork Personalization at Netflix
Justin Basilico28.1K views
A Multi-Armed Bandit Framework For Recommendations at Netflix by Jaya Kawale
A Multi-Armed Bandit Framework For Recommendations at NetflixA Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at Netflix
Jaya Kawale11.1K views
Déjà Vu: The Importance of Time and Causality in Recommender Systems by Justin Basilico
Déjà Vu: The Importance of Time and Causality in Recommender SystemsDéjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender Systems
Justin Basilico11.8K views
Recommender system introduction by Liang Xiang
Recommender system   introductionRecommender system   introduction
Recommender system introduction
Liang Xiang12.2K views
Missing values in recommender models by Parmeshwar Khurd
Missing values in recommender modelsMissing values in recommender models
Missing values in recommender models
Parmeshwar Khurd117 views
Crafting Recommenders: the Shallow and the Deep of it! by Sudeep Das, Ph.D.
Crafting Recommenders: the Shallow and the Deep of it! Crafting Recommenders: the Shallow and the Deep of it!
Crafting Recommenders: the Shallow and the Deep of it!
Sudeep Das, Ph.D.1.8K views
Making Netflix Machine Learning Algorithms Reliable by Justin Basilico
Making Netflix Machine Learning Algorithms ReliableMaking Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms Reliable
Justin Basilico11.8K views
Recent advances in deep recommender systems by NAVER Engineering
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systems
NAVER Engineering1.9K views
Deep Learning for Recommender Systems RecSys2017 Tutorial by Alexandros Karatzoglou
Deep Learning for Recommender Systems RecSys2017 Tutorial Deep Learning for Recommender Systems RecSys2017 Tutorial
Deep Learning for Recommender Systems RecSys2017 Tutorial

Similar to Past, present, and future of Recommender Systems: an industry perspective

Recommender Systems In Industry by
Recommender Systems In IndustryRecommender Systems In Industry
Recommender Systems In IndustryXavier Amatriain
5K views128 slides
BIG2016- Lessons Learned from building real-life user-focused Big Data systems by
BIG2016- Lessons Learned from building real-life user-focused Big Data systemsBIG2016- Lessons Learned from building real-life user-focused Big Data systems
BIG2016- Lessons Learned from building real-life user-focused Big Data systemsXavier Amatriain
3.4K views48 slides
Recommender Systems by
Recommender SystemsRecommender Systems
Recommender SystemsFrancesco Casalegno
2.3K views35 slides
Big & Personal: the data and the models behind Netflix recommendations by Xa... by
 Big & Personal: the data and the models behind Netflix recommendations by Xa... Big & Personal: the data and the models behind Netflix recommendations by Xa...
Big & Personal: the data and the models behind Netflix recommendations by Xa...BigMine
6.2K views45 slides
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems by
Strata 2016 -  Lessons Learned from building real-life Machine Learning SystemsStrata 2016 -  Lessons Learned from building real-life Machine Learning Systems
Strata 2016 - Lessons Learned from building real-life Machine Learning SystemsXavier Amatriain
5.9K views51 slides
Recommender systems by
Recommender systemsRecommender systems
Recommender systemsVivek Murugesan
176 views18 slides

Similar to Past, present, and future of Recommender Systems: an industry perspective(20)

BIG2016- Lessons Learned from building real-life user-focused Big Data systems by Xavier Amatriain
BIG2016- Lessons Learned from building real-life user-focused Big Data systemsBIG2016- Lessons Learned from building real-life user-focused Big Data systems
BIG2016- Lessons Learned from building real-life user-focused Big Data systems
Xavier Amatriain3.4K views
Big & Personal: the data and the models behind Netflix recommendations by Xa... by BigMine
 Big & Personal: the data and the models behind Netflix recommendations by Xa... Big & Personal: the data and the models behind Netflix recommendations by Xa...
Big & Personal: the data and the models behind Netflix recommendations by Xa...
BigMine6.2K views
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems by Xavier Amatriain
Strata 2016 -  Lessons Learned from building real-life Machine Learning SystemsStrata 2016 -  Lessons Learned from building real-life Machine Learning Systems
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
Xavier Amatriain5.9K views
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr... by Rajasekar Nonburaj
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...
Rajasekar Nonburaj233 views
PyData SF 2016 --- Moving forward through the darkness by Chia-Chi Chang
PyData SF 2016 --- Moving forward through the darknessPyData SF 2016 --- Moving forward through the darkness
PyData SF 2016 --- Moving forward through the darkness
Chia-Chi Chang553 views
Machine Learning for Q&A Sites: The Quora Example by Xavier Amatriain
Machine Learning for Q&A Sites: The Quora ExampleMachine Learning for Q&A Sites: The Quora Example
Machine Learning for Q&A Sites: The Quora Example
Xavier Amatriain6.2K views
Scaling Quality on Quora Using Machine Learning by Vo Viet Anh
Scaling Quality on Quora Using Machine LearningScaling Quality on Quora Using Machine Learning
Scaling Quality on Quora Using Machine Learning
Vo Viet Anh152 views
Recommender systems by Tamer Rezk
Recommender systemsRecommender systems
Recommender systems
Tamer Rezk998 views
Recommandation systems - by Yousef Fadila
Recommandation systems - Recommandation systems -
Recommandation systems -
Yousef Fadila207 views
H2O World - Quora: Machine Learning Algorithms to Grow the World's Knowledge ... by Sri Ambati
H2O World - Quora: Machine Learning Algorithms to Grow the World's Knowledge ...H2O World - Quora: Machine Learning Algorithms to Grow the World's Knowledge ...
H2O World - Quora: Machine Learning Algorithms to Grow the World's Knowledge ...
Sri Ambati2.6K views
Step Up Your Survey Research - Dawn of the Data Age Lecture Series by Luciano Pesci, PhD
Step Up Your Survey Research - Dawn of the Data Age Lecture SeriesStep Up Your Survey Research - Dawn of the Data Age Lecture Series
Step Up Your Survey Research - Dawn of the Data Age Lecture Series
Luciano Pesci, PhD232 views
Overview of recommender system by Stanley Wang
Overview of recommender systemOverview of recommender system
Overview of recommender system
Stanley Wang6.9K views
Search, Discovery and Questions at Quora by Nikhil Dandekar
Search, Discovery and Questions at QuoraSearch, Discovery and Questions at Quora
Search, Discovery and Questions at Quora
Nikhil Dandekar803 views
Rahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptx by RahulKirtoniya
Rahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptxRahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptx
Rahul_Kirtoniya_11800121032_CSE_Machine_Learning.pptx
RahulKirtoniya8 views

More from Xavier Amatriain

Data/AI driven product development: from video streaming to telehealth by
Data/AI driven product development: from video streaming to telehealthData/AI driven product development: from video streaming to telehealth
Data/AI driven product development: from video streaming to telehealthXavier Amatriain
434 views50 slides
AI-driven product innovation: from Recommender Systems to COVID-19 by
AI-driven product innovation: from Recommender Systems to COVID-19AI-driven product innovation: from Recommender Systems to COVID-19
AI-driven product innovation: from Recommender Systems to COVID-19Xavier Amatriain
864 views77 slides
AI for COVID-19 - Q42020 update by
AI for COVID-19 - Q42020 updateAI for COVID-19 - Q42020 update
AI for COVID-19 - Q42020 updateXavier Amatriain
1.3K views29 slides
AI for COVID-19: An online virtual care approach by
AI for COVID-19: An online virtual care approachAI for COVID-19: An online virtual care approach
AI for COVID-19: An online virtual care approachXavier Amatriain
1.8K views15 slides
Lessons learned from building practical deep learning systems by
Lessons learned from building practical deep learning systemsLessons learned from building practical deep learning systems
Lessons learned from building practical deep learning systemsXavier Amatriain
71.8K views61 slides
AI for healthcare: Scaling Access and Quality of Care for Everyone by
AI for healthcare: Scaling Access and Quality of Care for EveryoneAI for healthcare: Scaling Access and Quality of Care for Everyone
AI for healthcare: Scaling Access and Quality of Care for EveryoneXavier Amatriain
2.5K views29 slides

More from Xavier Amatriain(20)

Data/AI driven product development: from video streaming to telehealth by Xavier Amatriain
Data/AI driven product development: from video streaming to telehealthData/AI driven product development: from video streaming to telehealth
Data/AI driven product development: from video streaming to telehealth
Xavier Amatriain434 views
AI-driven product innovation: from Recommender Systems to COVID-19 by Xavier Amatriain
AI-driven product innovation: from Recommender Systems to COVID-19AI-driven product innovation: from Recommender Systems to COVID-19
AI-driven product innovation: from Recommender Systems to COVID-19
Xavier Amatriain864 views
AI for COVID-19: An online virtual care approach by Xavier Amatriain
AI for COVID-19: An online virtual care approachAI for COVID-19: An online virtual care approach
AI for COVID-19: An online virtual care approach
Xavier Amatriain1.8K views
Lessons learned from building practical deep learning systems by Xavier Amatriain
Lessons learned from building practical deep learning systemsLessons learned from building practical deep learning systems
Lessons learned from building practical deep learning systems
Xavier Amatriain71.8K views
AI for healthcare: Scaling Access and Quality of Care for Everyone by Xavier Amatriain
AI for healthcare: Scaling Access and Quality of Care for EveryoneAI for healthcare: Scaling Access and Quality of Care for Everyone
AI for healthcare: Scaling Access and Quality of Care for Everyone
Xavier Amatriain2.5K views
Towards online universal quality healthcare through AI by Xavier Amatriain
Towards online universal quality healthcare through AITowards online universal quality healthcare through AI
Towards online universal quality healthcare through AI
Xavier Amatriain1.7K views
From one to zero: Going smaller as a growth strategy by Xavier Amatriain
From one to zero: Going smaller as a growth strategyFrom one to zero: Going smaller as a growth strategy
From one to zero: Going smaller as a growth strategy
Xavier Amatriain1.8K views
Medical advice as a Recommender System by Xavier Amatriain
Medical advice as a Recommender SystemMedical advice as a Recommender System
Medical advice as a Recommender System
Xavier Amatriain5.6K views
Past present and future of Recommender Systems: an Industry Perspective by Xavier Amatriain
Past present and future of Recommender Systems: an Industry PerspectivePast present and future of Recommender Systems: an Industry Perspective
Past present and future of Recommender Systems: an Industry Perspective
Xavier Amatriain7.2K views
Staying Shallow & Lean in a Deep Learning World by Xavier Amatriain
Staying Shallow & Lean in a Deep Learning WorldStaying Shallow & Lean in a Deep Learning World
Staying Shallow & Lean in a Deep Learning World
Xavier Amatriain7.6K views
Barcelona ML Meetup - Lessons Learned by Xavier Amatriain
Barcelona ML Meetup - Lessons LearnedBarcelona ML Meetup - Lessons Learned
Barcelona ML Meetup - Lessons Learned
Xavier Amatriain3.2K views
10 more lessons learned from building Machine Learning systems - MLConf by Xavier Amatriain
10 more lessons learned from building Machine Learning systems - MLConf10 more lessons learned from building Machine Learning systems - MLConf
10 more lessons learned from building Machine Learning systems - MLConf
Xavier Amatriain375.2K views
10 more lessons learned from building Machine Learning systems by Xavier Amatriain
10 more lessons learned from building Machine Learning systems10 more lessons learned from building Machine Learning systems
10 more lessons learned from building Machine Learning systems
Xavier Amatriain180.1K views
Machine Learning to Grow the World's Knowledge by Xavier Amatriain
Machine Learning to Grow  the World's KnowledgeMachine Learning to Grow  the World's Knowledge
Machine Learning to Grow the World's Knowledge
Xavier Amatriain29.6K views
Lean DevOps - Lessons Learned from Innovation-driven Companies by Xavier Amatriain
Lean DevOps - Lessons Learned from Innovation-driven CompaniesLean DevOps - Lessons Learned from Innovation-driven Companies
Lean DevOps - Lessons Learned from Innovation-driven Companies
Xavier Amatriain15.4K views
10 Lessons Learned from Building Machine Learning Systems by Xavier Amatriain
10 Lessons Learned from Building Machine Learning Systems10 Lessons Learned from Building Machine Learning Systems
10 Lessons Learned from Building Machine Learning Systems
Xavier Amatriain378K views

Recently uploaded

How the World's Leading Independent Automotive Distributor is Reinventing Its... by
How the World's Leading Independent Automotive Distributor is Reinventing Its...How the World's Leading Independent Automotive Distributor is Reinventing Its...
How the World's Leading Independent Automotive Distributor is Reinventing Its...NUS-ISS
15 views25 slides
Tunable Laser (1).pptx by
Tunable Laser (1).pptxTunable Laser (1).pptx
Tunable Laser (1).pptxHajira Mahmood
23 views37 slides
STPI OctaNE CoE Brochure.pdf by
STPI OctaNE CoE Brochure.pdfSTPI OctaNE CoE Brochure.pdf
STPI OctaNE CoE Brochure.pdfmadhurjyapb
12 views1 slide
Spesifikasi Lengkap ASUS Vivobook Go 14 by
Spesifikasi Lengkap ASUS Vivobook Go 14Spesifikasi Lengkap ASUS Vivobook Go 14
Spesifikasi Lengkap ASUS Vivobook Go 14Dot Semarang
35 views1 slide
AMAZON PRODUCT RESEARCH.pdf by
AMAZON PRODUCT RESEARCH.pdfAMAZON PRODUCT RESEARCH.pdf
AMAZON PRODUCT RESEARCH.pdfJerikkLaureta
15 views13 slides
Black and White Modern Science Presentation.pptx by
Black and White Modern Science Presentation.pptxBlack and White Modern Science Presentation.pptx
Black and White Modern Science Presentation.pptxmaryamkhalid2916
14 views21 slides

Recently uploaded(20)

How the World's Leading Independent Automotive Distributor is Reinventing Its... by NUS-ISS
How the World's Leading Independent Automotive Distributor is Reinventing Its...How the World's Leading Independent Automotive Distributor is Reinventing Its...
How the World's Leading Independent Automotive Distributor is Reinventing Its...
NUS-ISS15 views
STPI OctaNE CoE Brochure.pdf by madhurjyapb
STPI OctaNE CoE Brochure.pdfSTPI OctaNE CoE Brochure.pdf
STPI OctaNE CoE Brochure.pdf
madhurjyapb12 views
Spesifikasi Lengkap ASUS Vivobook Go 14 by Dot Semarang
Spesifikasi Lengkap ASUS Vivobook Go 14Spesifikasi Lengkap ASUS Vivobook Go 14
Spesifikasi Lengkap ASUS Vivobook Go 14
Dot Semarang35 views
AMAZON PRODUCT RESEARCH.pdf by JerikkLaureta
AMAZON PRODUCT RESEARCH.pdfAMAZON PRODUCT RESEARCH.pdf
AMAZON PRODUCT RESEARCH.pdf
JerikkLaureta15 views
Black and White Modern Science Presentation.pptx by maryamkhalid2916
Black and White Modern Science Presentation.pptxBlack and White Modern Science Presentation.pptx
Black and White Modern Science Presentation.pptx
maryamkhalid291614 views
Perth MeetUp November 2023 by Michael Price
Perth MeetUp November 2023 Perth MeetUp November 2023
Perth MeetUp November 2023
Michael Price15 views
Future of Learning - Khoong Chan Meng by NUS-ISS
Future of Learning - Khoong Chan MengFuture of Learning - Khoong Chan Meng
Future of Learning - Khoong Chan Meng
NUS-ISS33 views
Five Things You SHOULD Know About Postman by Postman
Five Things You SHOULD Know About PostmanFive Things You SHOULD Know About Postman
Five Things You SHOULD Know About Postman
Postman27 views
The Importance of Cybersecurity for Digital Transformation by NUS-ISS
The Importance of Cybersecurity for Digital TransformationThe Importance of Cybersecurity for Digital Transformation
The Importance of Cybersecurity for Digital Transformation
NUS-ISS27 views
Transcript: The Details of Description Techniques tips and tangents on altern... by BookNet Canada
Transcript: The Details of Description Techniques tips and tangents on altern...Transcript: The Details of Description Techniques tips and tangents on altern...
Transcript: The Details of Description Techniques tips and tangents on altern...
BookNet Canada130 views
Voice Logger - Telephony Integration Solution at Aegis by Nirmal Sharma
Voice Logger - Telephony Integration Solution at AegisVoice Logger - Telephony Integration Solution at Aegis
Voice Logger - Telephony Integration Solution at Aegis
Nirmal Sharma17 views
The details of description: Techniques, tips, and tangents on alternative tex... by BookNet Canada
The details of description: Techniques, tips, and tangents on alternative tex...The details of description: Techniques, tips, and tangents on alternative tex...
The details of description: Techniques, tips, and tangents on alternative tex...
BookNet Canada121 views
Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica... by NUS-ISS
Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica...Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica...
Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica...
NUS-ISS16 views
Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen... by NUS-ISS
Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen...Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen...
Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen...
NUS-ISS28 views
[2023] Putting the R! in R&D.pdf by Eleanor McHugh
[2023] Putting the R! in R&D.pdf[2023] Putting the R! in R&D.pdf
[2023] Putting the R! in R&D.pdf
Eleanor McHugh38 views

Past, present, and future of Recommender Systems: an industry perspective

  • 1. Past, Present, and Future of Recommender Systems Xavier Amatriain (@xamat)
  • 2. A bit about me...
  • 3. A bit about me...
  • 4. A bit about me...
  • 5. A bit about me...
  • 6. A bit about me...
  • 7. A bit about me...
  • 9. Our Mission “To share and grow the world’s knowledge” • Millions of questions & answers • Millions of users • Thousands of topics • ...
  • 10. Demand What we care about Quality Relevance
  • 11. 1. The Recommender Problem 2. The Netflix Prize 3. Beyond Rating Prediction 4. Lessons Learned Index
  • 13. The “Recommender problem” ● Traditional definition: Estimate a utility function that automatically predicts how much a user will like an item. ● Based on: o Past behavior o Relations to other users o Item similarity o Context o …
  • 14. Recommendation as data mining The core of the Recommendation Engine can be assimilated to a general data mining problem (Amatriain et al. Data Mining Methods for Recommender Systems in Recommender Systems Handbook)
  • 15. Data Mining + all those other things ● User Interface ● System requirements (efficiency, scalability, privacy....) ● Serendipity ● Diversity ● Awareness ● Explanations ● …
  • 16. 2. The Netflix Prize
  • 17. What we were interested in: ▪ High quality recommendations Proxy question: ▪ Accuracy in predicted rating ▪ Improve by 10% = $1million!
  • 18. 2007 Progress Prize ▪ Top 2 algorithms ▪ SVD - Prize RMSE: 0.8914 ▪ RBM - Prize RMSE: 0.8990 ▪ Linear blend Prize RMSE: 0.88 ▪ Currently in use as part of Netflix’ rating prediction component ▪ Limitations ▪ Designed for 100M ratings, not XB ratings ▪ Not adaptable as users add ratings ▪ Performance issues
  • 19. What about the final prize ensembles? ● Offline studies showed they were too computationally intensive to scale ● Expected improvement not worth engineering effort ● Plus…. Focus had already shifted to other issues that had more impact than rating prediction.
  • 21. Everything is a recommendation
  • 22. Evolution of the Recommender Problem Rating Ranking Page Optimization 4.7 Context-aware Recommendations Context
  • 24. Ranking ● Most recommendations are presented in a sorted list ● Recommendation can be understood as a ranking problem ● Popularity is the obvious baseline ● What about rating predictions?
  • 25. Ranking by ratings 4.7 4.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Niche titles High average ratings… by those who would watch it
  • 26. RMSE
  • 27. Popularity PredictedRating 1 2 3 4 5 Linear Model: frank (u,v) = w1 p(v) + w2 r(u,v) + b FinalRanking Example: Two features, linear model
  • 29. Learning to rank ● Machine learning problem: goal is to construct ranking model from training data ● Training data can be a partial order or binary judgments (relevant/not relevant). ● Resulting order of the items typically induced from a numerical score ● Learning to rank is a key element for personalization ● You can treat the problem as a standard supervised classification problem
  • 30. Learning to rank - Metrics ● Quality of ranking measured using metrics as o Normalized Discounted Cumulative Gain o Mean Reciprocal Rank (MRR) o Fraction of Concordant Pairs (FCP) o Others… ● But, it is hard to optimize machine-learned models directly on these measures (e.g. non-differentiable) ● Recent research on models that directly optimize ranking measures
  • 31. Ranking - Quora Feed ● Goal: Present most interesting stories for a user at a given time ○ Interesting = topical relevance + social relevance + timeliness ○ Stories = questions + answers ● ML: Personalized learning-to-rank approach ● Relevance-ordered vs time-ordered = big gains in engagement
  • 33. ● Displayed in many different contexts ○ In response to user actions/context (search, queue add…) ○ More like… rows Similars
  • 34. Similars: Related Questions ● Given interest in question A (source) what other questions will be interesting? ● Not only about similarity, but also “interestingness” ● Features such as: ○ Textual ○ Co-visit ○ Topics ○ … ● Important for logged-out use case
  • 36. Example of graph-based similarity: SimRank ● SimRank (Jeh & Widom, 02): “two objects are similar if they are referenced by similar objects.”
  • 37. Similarity ensembles ● Similarity can refer to different dimensions ○ Similar in metadata/tags ○ Similar in user play behavior ○ Similar in user rating behavior ○ … ● Combine them using an ensemble ○ Weights are learned using regression over existing response ○ Or… some MAB explore/exploit approach ● The final concept of “similarity” responds to what users vote as similar
  • 39. Recommendations - Users Goal: Recommend new users to follow ● Based on: ○ Other users followed ○ Topics followed ○ User interactions ○ User-related features ○ ...
  • 40. User Trust/Expertise Inference Goal: Infer user’s trustworthiness in relation to a given topic ● We take into account: ○ Answers written on topic ○ Upvotes/downvotes received ○ Endorsements ○ ... ● Trust/expertise propagates through the network ● Must be taken into account by other algorithms
  • 41. Social and Trust-based recommenders ● A social recommender system recommends items that are “popular” in the social proximity of the user. ● Social proximity = trust (can also be topic-specific) ● Given two individuals - the source (node A) and sink (node C) - derive how much the source should trust the sink. ● Algorithms o Advogato (Levien) o Appleseed (Ziegler and Lausen) o MoleTrust (Massa and Avesani) o TidalTrust (Golbeck)
  • 42. Other ways to use Social ● Social connections can be used in combination with other approaches ● In particular, “friendships” can be fed into collaborative filtering methods in different ways ○ replace or modify user-user “similarity” by using social network information ○ use social connection as a part of the ML objective function as regularizer ○ ...
  • 44. ● One of the key issues when building any kind of personalization algorithm is how to trade off: ○ Exploitation: Cashing in on what we know about the user right now ○ Exploration: Using the interaction as an opportunity to learn more about the user ● We need to have informed and optimal strategies to drive that tradeoff ○ Solution: pick a reasonable set of candidates and show users only “enough” to gather information on them Explore/Exploit
  • 45. ● Given possible strategies/candidates (slot machines) pick the arm that has the maximum potential of being good (minimize regret) ● Naive strategy: ε-greedy ○ Explore with a small probability ε (e.g. 5%) -> choose an arm at random ○ Exploit with a high probability (1 - ε ) (e.g. 95%) -> choose the best-known arm so far ● Translation to recommender systems ○ Choose an arm = choose an item/choose an algorithm (MAB testing) ● Thompson Sampling ○ Given a posterior distribution, sample on each iteration and choose the action that maximizes the expected reward Multi-armed Bandits
  • 48. 10,000s of possible rows … 10-40 rows Variable number of possible videos per row (up to thousands) 1 personalized page per device Page Composition
  • 49. Page Composition From “Modeling User Attention and Interaction on the Web” 2014 - PhD Thesis by Dmitry Lagun (Emory U.)
  • 50. User Attention Modeling From “Modeling User Attention and Interaction on the Web” 2014 - PhD Thesis by Dmitry Lagun (Emory U.)
  • 51. vs.Accurate Diverse vs.Discovery Continuation vs.Depth Coverage vs.Freshness Stability vs.Recommendations Tasks Page Composition ● To put things together we need to combine different elements o Navigational/Attention Model o Personalized Relevance Model o Diversity Model
  • 54. Implicit vs. Explicit ● Many have acknowledged that implicit feedback is more useful ● Is implicit feedback really always more useful? ● If so, why?
  • 55. ● Implicit data is (usually): ○ More dense, and available for all users ○ Better representative of user behavior vs. user reflection ○ More related to final objective function ○ Better correlated with AB test results ● E.g. Rating vs watching Implicit vs. Explicit
  • 56. ● However ○ It is not always the case that direct implicit feedback correlates well with long-term retention ○ E.g. clickbait ● Solution: ○ Combine different forms of implicit + explicit to better represent long-term goal Implicit vs. Explicit
  • 58. Defining training/testing data ● Training a simple binary classifier for good/bad answer ○ Defining positive and negative labels -> Non-trivial task ○ Is this a positive or a negative? ■ funny uninformative answer with many upvotes ■ short uninformative answer by a well-known expert in the field ■ very long informative answer that nobody reads/upvotes ■ informative answer with grammar/spelling mistakes ■ ...
  • 60. Training a model ● Model will learn according to: ○ Training data (e.g. implicit and explicit) ○ Target function (e.g. probability of user reading an answer) ○ Metric (e.g. precision vs. recall) ● Example 1 (made up): ○ Optimize probability of a user going to the cinema to watch a movie and rate it “highly” by using purchase history and previous ratings. Use NDCG of the ranking as final metric using only movies rated 4 or higher as positives.
  • 61. Example 2 - Quora’s feed ● Training data = implicit + explicit ● Target function: Value of showing a story to a user ~ weighted sum of actions: v = ∑a va 1{ya = 1} ○ predict probabilities for each action, then compute expected value: v_pred = E[ V | x ] = ∑a va p(a | x) ● Metric: any ranking metric
  • 65. 2D Navigational modeling More likely to see Less likely
  • 66. The curse of presentation bias ● User can only click on what you decide to show ○ But, what you decide to show is the result of what your model predicted is good ● Simply treating things you show as negatives is not likely to work ● Better options ○ Correcting for the probability a user will click on a position -> Attention models ○ Explore/exploit approaches such as MAB
  • 68. UI->Algorithm->UI ● The UI generates the user feedback that we will input into the algorithms ● The UI is also where the results of our algorithms will be shown ● A change in the UI might require a change in algorithms and viceversa
  • 70. ● Recommendation is about much more than just predicting a rating ● All forms of recommendation require of a tight connection with the UI ○ Capture the right kind of feedback ■ Explicit/implicit feedback ■ Correct for presentation bias ■ ... ○ Present the recommendations correctly ■ Explanations ■ Diversity ■ Exploration/Exploitation ■ ….