Home
Explore
Submit Search
Upload
Login
Signup
Advertisement
第3回 データフレームの基本操作 その1(解答付き)
Report
Wataru Shito
Follow
Jan. 30, 2020
•
0 likes
1 likes
×
Be the first to like this
Show More
•
362 views
views
×
Total views
0
On Slideshare
0
From embeds
0
Number of embeds
0
Advertisement
Upcoming SlideShare
第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)
Loading in ... 3
1
of
9
Top clipped slide
第3回 データフレームの基本操作 その1(解答付き)
Jan. 30, 2020
•
0 likes
1 likes
×
Be the first to like this
Show More
•
362 views
views
×
Total views
0
On Slideshare
0
From embeds
0
Number of embeds
0
Download Now
Download to read offline
Report
Data & Analytics
西南学院大学経済学部 演習1 解答付き講義ノート 講義ページ: http://courses.wshito.com/semi1/2020-datascience/index.html
Wataru Shito
Follow
Advertisement
Advertisement
Advertisement
Recommended
第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)
Wataru Shito
342 views
•
12 slides
第4回 データフレームの基本操作 その2(解答付き)
Wataru Shito
211 views
•
13 slides
第2回 基本演算,データ型の基礎,ベクトルの操作方法
Wataru Shito
208 views
•
11 slides
第6回 関数とフロー制御
Wataru Shito
352 views
•
10 slides
第3回 データフレームの基本操作 その1
Wataru Shito
148 views
•
8 slides
第5回 様々なファイル形式の読み込みとデータの書き出し
Wataru Shito
152 views
•
18 slides
More Related Content
Slideshows for you
(20)
五次方程式は解けない - 第12回 #日曜数学会
Junpei Tsuji
•
1.5K views
ΛΥΣΕΙΣ - 11o Φ.Α. 8.1.pdf
Anthimos Misailidis
•
563 views
The Ring programming language version 1.8 book - Part 66 of 202
Mahmoud Samir Fayed
•
17 views
HSK 2 Chinese Grammar 2021 Edition 汉语水平考试规范性语法 - The latest and most complete...
LEGOO MANDARIN
•
141 views
11o Φ.Α. 8.1.pdf
Anthimos Misailidis
•
373 views
1024+ Seconds of JS Wizardry - JSConf.eu 2013
Martin Kleppe
•
7.1K views
ข้อสอบMetrix
Noir Black
•
604 views
Dipôles linéaires, régime transitoire
Achraf Ourti
•
924 views
Market Basket Analysis in R
Rsquared Academy
•
671 views
เฉลยMetrix1
Noir Black
•
13K views
ゲーム理論NEXT 線形計画問題第7回 -シンプレックス法2-
ssusere0a682
•
156 views
Practical Introduction to Web scraping using R
Rsquared Academy
•
439 views
とちぎRuby会議01(原)
Shin-ichiro HARA
•
3.2K views
3. Обекти и класове
Stefan Kanev
•
271 views
Dmxchart
Patrick Snel
•
2.2K views
เลขยกกำลังชุด3
kanjana2536
•
3.1K views
Gg chat
Wi'ne Abareles
•
534 views
Functional Gradient Boosting based on Residual Network Perception
Atsushi Nitanda
•
141 views
Mat fin
Ellen0101
•
413 views
E1 f1 bộ binh
Thế Giới Tinh Hoa
•
713 views
Similar to 第3回 データフレームの基本操作 その1(解答付き)
(20)
Regression and Classification with R
Yanchang Zhao
•
3.8K views
R programming language
Alberto Minetti
•
879 views
Getting started with R when analysing GitHub commits
Barbara Fusinska
•
619 views
Python for High School Programmers
Siva Arunachalam
•
1.9K views
R Programming: Export/Output Data In R
Rsquared Academy
•
1.7K views
سلسلة الليالى العشر فى الرياضيات للصف الثانى الابتدائى ترم اول
أمنية وجدى
•
9K views
(KO) 온라인 뉴스 댓글 플랫폼을 흐리는 어뷰저 분석기 / (EN) Online ...
Ji Hyung Moon
•
1K views
Vcs16
Malikireddy Bramhananda Reddy
•
295 views
Credit Risk Assessment using Machine Learning Techniques with WEKA
Mehnaz Newaz
•
150 views
Python 1
Ramin Najjarbashi
•
686 views
Data manipulation and visualization in r 20190711 myanmarucsy
SmartHinJ
•
192 views
6. Vectors – Data Frames
FAO
•
261 views
Datamining r 1st
sesejun
•
400 views
Useful javascript
Lei Kang
•
285 views
R Programming Homework Help
Statistics Homework Helper
•
10 views
PRE: Datamining 2nd R
sesejun
•
395 views
Datamining R 1st
sesejun
•
417 views
Slides ads ia
Arthur Charpentier
•
20.7K views
제 6회 엑셈 수요 세미나 자료 연구컨텐츠팀
EXEM
•
407 views
Python 내장 함수
용 최
•
2.4K views
Advertisement
More from Wataru Shito
(20)
統計的推定の基礎 2 -- 分散の推定
Wataru Shito
•
359 views
統計的推定の基礎 1 -- 期待値の推定
Wataru Shito
•
176 views
第4章 確率的学習---単純ベイズを使った分類
Wataru Shito
•
468 views
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
Wataru Shito
•
93 views
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
Wataru Shito
•
80 views
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
Wataru Shito
•
106 views
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
Wataru Shito
•
203 views
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
Wataru Shito
•
201 views
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
Wataru Shito
•
382 views
経済数学II 「第9章 最適化(Optimization)」
Wataru Shito
•
231 views
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
Wataru Shito
•
431 views
第9回 大規模データを用いたデータフレーム操作実習(3)
Wataru Shito
•
283 views
第8回 大規模データを用いたデータフレーム操作実習(2)
Wataru Shito
•
278 views
経済数学II 「第12章 制約つき最適化」
Wataru Shito
•
374 views
マクロ経済学I 「第9章 総需要 I」
Wataru Shito
•
578 views
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
Wataru Shito
•
267 views
マクロ経済学I 「第6章 開放経済の長期分析」
Wataru Shito
•
776 views
経済数学II 「第8章 一般関数型モデルの比較静学」
Wataru Shito
•
287 views
マクロ経済学I 「第4,5章 貨幣とインフレーション」
Wataru Shito
•
615 views
マクロ経済学I 「第3章 長期閉鎖経済モデル」
Wataru Shito
•
769 views
Recently uploaded
(20)
군자휴게텔〔dalpocha8。Net〕ꔬ군자오피 군자스파 달림포차?
puvmkhuyt
•
0 views
METALLIC BONDING FIX.pptx
ahmadaliansyah1
•
0 views
crime statistic Bangladesh.pdf
Sajid Hasan Sifat
•
0 views
Five Things to Consider When Choosing a Data Backup Solution for Salesforce
DataArchiva
•
0 views
on the spot job creation.pptx
Sovereign Solutions
•
0 views
CONTEMPORARY PHILIPINES MUSIC COMPOSERS.pdf
juannafith
•
0 views
bro_geoslam-introduction.pdf
YoussefZghari
•
0 views
美国雪城大学毕业证文凭成绩单制作指南
onewnm
•
0 views
Top Five Ways to Protect Your Salesforce Data
DataArchiva
•
0 views
在哪里可以办英国大学文凭《皇家兽医学院毕业证成绩单仿制》
efagvah
•
0 views
Boosting Personalization In SaaS Using Machine Learning.pdf
Reza Rahimi
•
0 views
IAFD 3.pdf
Juan C Díaz Herrera
•
0 views
세종키스방달림포차〔dalpocha8。Net〕세종오피ꗱ세종스파?
puvmkhuyt
•
0 views
India Equity Strategy and Economics
Rahul Pandey
•
0 views
3-Localising-the-SDGs.pptx
ThePostivist
•
0 views
美国:伦斯勒理工学院毕业证办理流程
hmekseq
•
0 views
송파오피 달림포차〔dalpocha8。net〕송파건마【송파스파?
puvmkhuyt
•
0 views
Module 3.1.pptx
ANSHVAJPAI
•
0 views
爱尔兰布兰察斯镇理工学院毕业证文凭成绩单制作指南
nahej99297
•
0 views
분당마사지〔dalPochA12.컴〕분당건마━분당오피【달포차】?
puvmkhuyt
•
0 views
Advertisement
第3回 データフレームの基本操作 その1(解答付き)
3 2020 1 30 1
1 2 data.frame 1 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 3 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 5 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 6 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 : 7 7 8 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 • 2 data.frame row column 1 R mode Numeric Character 1
2.1 3 173.5 66
19 166.4 58 20 168 NA 18 170.3 81 20 1: 山田太郎 西南花子 市東治子 三宅信二 リスト要素 [[1]] Character 型 ベクトル 173.5 166.4 168 170.3 リスト要素 [[2]] Numeric 型 ベクトル 男 女 女 男 リスト要素 [[5]] Character 型 ベクトル 福岡県 鹿児島県 千葉県 岡山県 リスト要素 [[6]] Character 型 ベクトル 66 58 NA 20 リスト要素 [[3]] Numeric 型 ベクトル 19 20 18 20 リスト要素 [[4]] Numeric 型 ベクトル 1: R data.frame 1 data.frame 1 1 2 NA Not Available missing values R NA logical NA 2.1 • • • row column 1 2 1 R I 2
3 • • NA missing
values 3 data.frame() > name <- c(" ", " ", " ", " ") # > height <- c(173.5, 166.4, 168, 170.3) # > weight <- c(66, 58, NA, 81) # NA > age <- c(19, 20, 18, 20) # > personal <- data.frame(name, height, weight, age) # > personal name height weight age 1 173.5 66 19 2 166.4 58 20 3 168.0 NA 18 4 170.3 81 20 3.1 cbind() column bind cbind() personal personal personal cbind() > =c(" ", " ", " ", " ") # > personal <- cbind(personal, ) # > personal name height weight age 1 173.5 66 19 2 166.4 58 20 3 168.0 NA 18 4 170.3 81 20 I 3
3.2 3 > personal
<- cbind(personal, =c(" ", " ", " ", " ")) > personal name height weight age 1 173.5 66 19 2 166.4 58 20 3 168.0 NA 18 4 170.3 81 20 3.2 rbind() row bind 2 > extra <- data.frame( =c(" ", " "), + =c(169, 159), + =c(61, 63), + =c(23, 20), + =c(" ", " "), + =c(" ", " ")) > extra 1 169 61 23 2 159 63 20 rbind() > rbind(personal, extra) # personal colnames() > colnames(personal) # column names [1] "name" "height" "weight" "age" " " " " > colnames(personal) <- c(" ", " ", " ", " ", " ", " ") > personal 1 173.5 66 19 2 166.4 58 20 3 168.0 NA 18 4 170.3 81 20 extra personal I 4
3.3 3 > colnames(personal)
<- colnames(extra) # extra personal > personal 1 173.5 66 19 2 166.4 58 20 3 168.0 NA 18 4 170.3 81 20 rbind() rbind() personal > personal <- rbind(personal, extra) > personal 1 173.5 66 19 2 166.4 58 20 3 168.0 NA 18 4 170.3 81 20 5 169.0 61 23 6 159.0 63 20 3.3 • • • • • 4 attributes 3 attributes() > attributes(personal) $names [1] " " " " " " " " " " " " 3 I 5
4.1 3 $row.names [1] 1
2 3 4 5 6 $class [1] "data.frame" personal names row.names class 3 names row.names class colnames() names row.names rownames() > rownames(personal) # [1] "1" "2" "3" "4" "5" "6" > dim(personal) # dimension [1] 6 6 > dim(personal)[1] # [1] 6 > dim(personal)[2] # [1] 6 4.1 • • attributes() • rownames() • 5 personal 1 ID1 ID2 · · · ID > personal ID1 173.5 66 19 ID2 166.4 58 20 ID3 168.0 NA 18 ID4 170.3 81 20 ID5 169.0 61 23 ID6 159.0 63 20 I 6
5.1 3 5.1 > rownames(personal)
<- c("ID1", "ID2", "ID3", "ID4", "ID5", "ID6") > # paste() > rownames(personal) <- paste("ID", 1:dim(personal)[1], sep="") 6 : ID paste() paste() > help(paste) Description concatenate Usage Usage: paste (..., sep = " ", collapse = NULL) paste0(..., collapse = NULL) pasge() ... Usage Arguments 1 R R R paste() 2 sep = " " ... separate sep=" " sep 1 > paste("A", "B", "C", "D") # sep 1 [1] "A B C D" > paste("A", "B", "C", "D", sep="-+-") # sep -+- [1] "A-+-B-+-C-+-D" > paste("A", "B", "C", "D", sep="") # sep [1] "ABCD" 4 1 R 1 "A" "B" 1 paste() 4 paste() I 7
3 > letters <-
c("A", "B", "C", "D") > paste(letters, 1:length(letters), sep="") [1] "A1" "B2" "C3" "D4" 1 letters 4 2 1:length(letters) 1 4 paste() :::::::: ID > paste("ID", 1:15, sep="") [1] "ID1" "ID2" "ID3" "ID4" "ID5" "ID6" "ID7" "ID8" "ID9" "ID10" "ID11" [12] "ID12" "ID13" "ID14" "ID15" > paste("ID", 1:dim(personal)[1], sep="") # [1] "ID1" "ID2" "ID3" "ID4" "ID5" "ID6" 2017 1 12 > paste(2017, "/", 1:12, sep="") [1] "2017/1" "2017/2" "2017/3" "2017/4" "2017/5" "2017/6" "2017/7" "2017/8" [9] "2017/9" "2017/10" "2017/11" "2017/12" 1 2 1 3 12 1 2 3 > paste(rep(2017, 12), rep("/", 12), 1:12, sep="") # ! [1] "2017/1" "2017/2" "2017/3" "2017/4" "2017/5" "2017/6" "2017/7" "2017/8" [9] "2017/9" "2017/10" "2017/11" "2017/12" 7 paste() > results [1] "2014 1 " "2014 2 " "2014 3 " "2014 4 " "2014 5 " "2014 6 " [7] "2014 7 " "2014 8 " "2014 9 " "2014 10 " "2014 11 " "2014 12 " [13] "2015 1 " "2015 2 " "2015 3 " "2015 4 " "2015 5 " "2015 6 " [19] "2015 7 " "2015 8 " "2015 9 " "2015 10 " "2015 11 " "2015 12 " [25] "2016 1 " "2016 2 " "2016 3 " "2016 4 " "2016 5 " "2016 6 " [31] "2016 7 " "2016 8 " "2016 9 " "2016 10 " "2016 11 " "2016 12 " I 8
7.1 3 7.1 > paste(c(rep(2014,
12), rep(2015, 12), rep(2016, 12)), + " ", 1:12, " ", sep="") [1] "2014 1 " "2014 2 " "2014 3 " "2014 4 " "2014 5 " "2014 6 " [7] "2014 7 " "2014 8 " "2014 9 " "2014 10 " "2014 11 " "2014 12 " [13] "2015 1 " "2015 2 " "2015 3 " "2015 4 " "2015 5 " "2015 6 " [19] "2015 7 " "2015 8 " "2015 9 " "2015 10 " "2015 11 " "2015 12 " [25] "2016 1 " "2016 2 " "2016 3 " "2016 4 " "2016 5 " "2016 6 " [31] "2016 7 " "2016 8 " "2016 9 " "2016 10 " "2016 11 " "2016 12 " I 9
Advertisement