Home
Explore
Submit Search
Upload
Login
Signup
Advertisement
Advertisement
Advertisement
Upcoming SlideShare
第1回 Rプログラミングを始めよう(解答付き)
Loading in ... 3
1
of
12
Top clipped slide
第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)
Jan. 30, 2020
•
0 likes
1 likes
×
Be the first to like this
Show More
•
342 views
views
×
Total views
0
On Slideshare
0
From embeds
0
Number of embeds
0
Download Now
Download to read offline
Report
Data & Analytics
西南学院大学経済学部 演習1 解答付き講義ノート 講義ページ: http://courses.wshito.com/semi1/2020-datascience/index.html
Wataru Shito
Follow
Advertisement
Advertisement
Advertisement
Recommended
第1回 Rプログラミングを始めよう(解答付き)
Wataru Shito
413 views
•
8 slides
第5回 様々なファイル形式の読み込みとデータの書き出し(解答付き)
Wataru Shito
413 views
•
21 slides
第7回 大規模データを用いたデータフレーム操作実習(1)
Wataru Shito
390 views
•
9 slides
第4回 データフレームの基本操作 その2(解答付き)
Wataru Shito
211 views
•
13 slides
第6回 関数とフロー制御
Wataru Shito
355 views
•
10 slides
Dongaata 01-03
venkatesha9
11.9K views
•
28 slides
More Related Content
Slideshows for you
(20)
【個股產業分析】觸控模組產業分析
Collaborator
•
1.2K views
【個股產業分析】電源供應器產業分析
Collaborator
•
2.5K views
7-Eleven OPEN POINT APP設計
NTUST
•
2.1K views
Sietmas de 4x4
Edgar Mata
•
8.7K views
Triste y vacia piano
Marcos Burbano
•
3.7K views
Dog Man BINGO Boards
Annamarie Carlson
•
5.7K views
Tabla chi cuadrado, ESTADISTICA UPLA
Ronald Mayhuasca Salgado
•
7.4K views
Tabel t
ERNING KAROMAH
•
2K views
QM-083-田口法
handbook
•
5.4K views
Geom lab1 第六組
Wan Chi lee
•
1.3K views
Copy of t table
Pimsat University
•
15.2K views
Apostila lotofacil
marleyslideshare
•
25.2K views
Graphics in R
Kamal Gupta Roy
•
305 views
Lluvia con nieve trompeta
Marcos Burbano
•
1.9K views
Safely Protect PostgreSQL Passwords - Tell Others to SCRAM
Jonathan Katz
•
1.7K views
Presentazione Moncler.pdf
Alessandro Livraghi
•
570 views
Bhaarya akkato
venkatesha9
•
3.9K views
Horniman Horticulture, FIL 349 ( Advanced Financial Theory and Problems)
CameronMcintosh8
•
947 views
70012166 fk pump manual
Kalyan Halder
•
2.2K views
Data togel hongkong hk 2005
Robby Kurniawan
•
40.1K views
Similar to 第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)
(20)
第2回 基本演算,データ型の基礎,ベクトルの操作方法
Wataru Shito
•
209 views
PRE: Datamining 2nd R
sesejun
•
395 views
Datamining R 1st
sesejun
•
417 views
Datamining r 1st
sesejun
•
400 views
第5回 様々なファイル形式の読み込みとデータの書き出し
Wataru Shito
•
152 views
第3回 データフレームの基本操作 その1(解答付き)
Wataru Shito
•
362 views
第4回 データフレームの基本操作 その2
Wataru Shito
•
105 views
第3回 データフレームの基本操作 その1
Wataru Shito
•
148 views
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
MasanoriSuganuma
•
1K views
11o Φ.Α. 8.1.pdf
Anthimos Misailidis
•
373 views
ΛΥΣΕΙΣ - 11o Φ.Α. 8.1.pdf
Anthimos Misailidis
•
565 views
Visual art 1
pironchit
•
220 views
R programming language
Alberto Minetti
•
879 views
Introduction to machine learning algorithms
bigdata trunk
•
177 views
Sol mat haeussler_by_priale
Jeff Chasi
•
215 views
Solucionario de matemáticas para administación y economia
Luis Perez Anampa
•
2.5K views
Ernest f. haeussler, richard s. paul y richard j. wood. matemáticas para admi...
Jhonatan Minchán
•
1.7K views
31350052 introductory-mathematical-analysis-textbook-solution-manual
Mahrukh Khalid
•
195.7K views
MATLAB ARRAYS
Aditya Choudhury
•
144 views
01_introduction_lab.pdf
zehiwot hone
•
28 views
Advertisement
More from Wataru Shito
(20)
統計的推定の基礎 2 -- 分散の推定
Wataru Shito
•
360 views
統計的推定の基礎 1 -- 期待値の推定
Wataru Shito
•
179 views
第4章 確率的学習---単純ベイズを使った分類
Wataru Shito
•
470 views
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
Wataru Shito
•
93 views
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
Wataru Shito
•
82 views
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
Wataru Shito
•
107 views
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
Wataru Shito
•
204 views
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
Wataru Shito
•
207 views
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
Wataru Shito
•
388 views
経済数学II 「第9章 最適化(Optimization)」
Wataru Shito
•
231 views
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
Wataru Shito
•
433 views
第9回 大規模データを用いたデータフレーム操作実習(3)
Wataru Shito
•
290 views
第8回 大規模データを用いたデータフレーム操作実習(2)
Wataru Shito
•
292 views
経済数学II 「第12章 制約つき最適化」
Wataru Shito
•
374 views
マクロ経済学I 「第9章 総需要 I」
Wataru Shito
•
579 views
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
Wataru Shito
•
268 views
マクロ経済学I 「第6章 開放経済の長期分析」
Wataru Shito
•
776 views
経済数学II 「第8章 一般関数型モデルの比較静学」
Wataru Shito
•
289 views
マクロ経済学I 「第4,5章 貨幣とインフレーション」
Wataru Shito
•
617 views
マクロ経済学I 「第3章 長期閉鎖経済モデル」
Wataru Shito
•
772 views
Recently uploaded
(20)
AWS Summit London 2023 - Migrating 600 Databases To AWS
Matt Houghton
•
0 views
PROJECT_REPORT_on_employee_retention.doc
SoumyajitKarmakar7
•
0 views
21PGDM-BHU102,Approval.pdf
SoumyajitKarmakar7
•
0 views
성북휴게텔☴【opss07ㆍ컴】오피쓰ꗭ성북OP ✬성북최근 성북오피ꐕ성북건마 ✬성북오피
pieliedie89
•
0 views
07-UDP.pptx
ShajiThomas67
•
1 view
텍사스홀덤TOP7588닷COM【추천인: AAKK】
yqwggcy3463
•
0 views
【OpSS07。cØm】천안오피ノ천안휴게텔 오피쓰⊊천안오피 천안오피⊊천안마사지
pieliedie89
•
0 views
AI Temp.pptx
nyomans1
•
1 view
Moduel 2 _KPMG.pptx
JehanzebXheikh
•
0 views
top7588⬤comꖏ홀덤【추천인: AAKK】
yqwggcy3463
•
0 views
홀덤사이트top7588⬤com【추천인: AAKK】
yqwggcy3463
•
0 views
김포오피 ❄오피쓰【ØPSS07쩜CØM】╌김포휴게텔 김포건마 ❄김포오피 ❄김포오피
pieliedie89
•
2 views
Google Cloud and Neo4j: Solving Industry Challenges with Graph Data Analytics...
Neo4j
•
0 views
분당안마【ØPSS07쩜CØM】분당오피⎞오피쓰⍊분당스파☵분당오피꘥분당오피
pieliedie89
•
0 views
Keynote Presentation at GraphTalk Oslo 2023
Neo4j
•
0 views
*추천인: AAKK* 홀덤게임ꗣ Top7588`c0m
yqwggcy3463
•
2 views
부산oP 오피쓰【opss07ㆍ컴】부산오피☢부산스파ꘘ부산안마 ⎌부산오피ꗨ부산오피
pieliedie89
•
2 views
【추천인: AAKK】top7588⬤com홀덤사이트
yqwggcy3463
•
0 views
청주휴게텔╽【OpSS07。cØm】오피쓰ꔚ청주oPノ청주리얼돌 청주오피⥠청주건마ノ청주오피
pieliedie89
•
2 views
청주안마【OPSS07。COM】청주오피ノ오피쓰⊳청주스파ꖏ청주오피ꖁ청주오피
pieliedie88
•
0 views
Advertisement
第2回 基本演算,データ型の基礎,ベクトルの操作方法(解答付き)
2020 1 30 1
2 2 2 3 2 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 4 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.2 R mode . . . . . . . . . . . . . . . . . . . . . . . . 4 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.4 NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 6 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 7 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7 11 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 8 11 1
2 1 • • • logical, numeric,
complex, character • • • 2 R # # > ################# > ## > ################# > cat("ABC") # ABC 3 > 3 * 4 [1] 12 > 3 * 4 + 2 [1] 14 > 3 * (4 + 2) [1] 18 > 3/4 [1] 0.75 > -5 / -6 [1] 0.8333333 > (-5)/(-6) [1] 0.8333333 2 I 2
3.1 2 > 2^3
# ^ [1] 8 > 2**3 # * 2 [1] 8 > 2^3*4 # [1] 32 > 2^(3*4) [1] 4096 > 2**3*4 # ** * [1] 32 > 2**(3*4) [1] 4096 > sqrt(2) [1] 1.414214 > 2^(1/2) [1] 1.414214 log(2) log(2)= loge 2 = ln 2 log(100,10)= log10 100 > log(2) [1] 0.6931472 > log(100, 10) [1] 2 > exp(1) [1] 2.718282 > exp(0.6931472) [1] 2 absolute values > abs(-0.2) [1] 0.2 > abs(0.2) [1] 0.2 3.1 • • • I 3
2 • 4 4.1 • • 0 1
0 1 • =⇒ • R mode 4.2 R mode • logical : TRUE FALSE T F • numeric : R numeric • complex : i • character : mode() mode mode() > mode(TRUE) [1] "logical" > mode(FALSE) [1] "logical" > mode(pi) # pi [1] "numeric" > mode(2.0) [1] "numeric" > mode(2) [1] "numeric" > mode(2+2i) [1] "complex" > mode(" ") [1] "character" I 4
4.3 2 is. () >
is.character(" ") [1] TRUE > is.numeric(" ") [1] FALSE > is.numeric(3.14) [1] TRUE > is.numeric(pi) [1] TRUE > is.logical(FALSE) [1] TRUE > is.logical(1) [1] FALSE 4.3 ’<-’ > x <- 3 # x 3 > x # [1] 3 > is.numeric(x) # x [1] TRUE > y <- " " > y [1] " " > is.character(y) [1] TRUE > is.numeric(x) [1] TRUE > mode(y) [1] "character" 4.4 NULL • 0 1 0 NULL • R NULL > x <- NULL # NULL > x # x NULL NULL I 5
4.5 2 > is.numeric(x) [1]
FALSE > is.null(x) # NULL [1] TRUE > mode(x) # NULL mode "NULL" [1] "NULL" > x <- FALSE # x > is.null(x) # NULL [1] FALSE > is.logical(x) [1] TRUE > mode(x) [1] "logical" 4.5 • • mode • • logical numeric complex character • mode() • is. () • • NULL 5 1 R • vector : mode 1 1 • matrix : mode 2 • array : mode n I 6
5.1 2 • list
: • data.frame : 2 mode 3 5.1 • • • vector, matrix, array, list • 6 6.1 c() c() combine 1 > c(1, 2, 3, 4) # [1] 1 2 3 4 > c(1, 2, c(3, 4)) # [1] 1 2 3 4 > v <- c("a", "b", "c") # > v # v [1] "a" "b" "c" > c(v, v, c(1, 2, 3)) # [1] "a" "b" "c" "a" "b" "c" "1" "2" "3" 6.2 replicate rep(x, times) x times I 7
6.3 2 > rep(1,
5) [1] 1 1 1 1 1 > rep(" ", 3) [1] " " " " " " > rep(TRUE, 3) [1] TRUE TRUE TRUE > rep(c(1, 2), 3) # [1] 1 2 1 2 1 2 rep() sequence seq(from, to, by) from to by by 1 > seq(1, 10) [1] 1 2 3 4 5 6 7 8 9 10 > seq(1, 10, 2) # 2 [1] 1 3 5 7 9 > seq(10, 1) [1] 10 9 8 7 6 5 4 3 2 1 > seq(10, 1, -2) [1] 10 8 6 4 2 6.3 [1] > seq(1, 50) [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 [28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > 1 [1] 1 1 1 [] > x <- 1:10 > x [1] 1 2 3 4 5 6 7 8 9 10 > x[1] [1] 1 > x[2] [1] 2 I 8
6.4 2 > x[10] [1]
10 [] > days <- c(" ", " ", " ", " ", " ", " ", " ") > days [1] " " " " " " " " " " " " " " > days[3] [1] " " > days[c(1, 2, 3)] [1] " " " " " " > days[1:3] [1] " " " " " " > days[seq(2, 7, 2)] # 2 1 1 [1] " " " " " " > days[-3] # 3 [1] " " " " " " " " " " " " > days[-1:-3] # 1 3 [1] " " " " " " " " > days[-seq(2, 7, 2)] # seq(2,7,2) c(2,4,6) [1] " " " " " " " " length() > length(days) [1] 7 > length(x) [1] 10 6.4 1 1 R 1 50 : 1:50 seq(1,50) 1 > x <- 1:50 # seq(1, 50) > x [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 I 9
6.5 2 [28] 28
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > y <- 50:1 # seq(50, 1) > y [1] 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 [28] 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 > x * 2 # 2 [1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 [21] 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 [41] 82 84 86 88 90 92 94 96 98 100 > x / 2 # 2 [1] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 [17] 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 [33] 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 [49] 24.5 25.0 > x + 100 # 100 [1] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 [21] 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 [41] 141 142 143 144 145 146 147 148 149 150 > x + y # x y [1] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 [28] 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 > log(1:5) # log(c(1, 2, 3, 4, 5)) log [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 > (1:5)^2 # c(1, 2, 3, 4, 5)^2 [1] 1 4 9 16 25 (1:5)^2 1:5 2 1:5^2 1 52 = 25 > 1:5^2 # 1:25 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 6.5 • : • c() rep() seq() • • length() I 10
2 7 rep() > help(rep) standard deviation
help.search() > help.serach("standard deviation") stats::sd stats sd() help(sd) R source R source help.search() 7.1 • help() • help.search() • • sd() 8 (1) 2, 4, 6, 8, 10 10 [1] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 [26] 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 > rep(seq(2, 10, 2), 10) (2) 2, 4, 6, 8, 10 100 I 11
2 > rep(seq(2, 10,
2), 100) (3) sd() 2 > sd(rep(seq(2, 10, 2), 10)) [1] 2.857143 > sd(rep(seq(2, 10, 2), 100)) [1] 2.83126 I 12
Advertisement