SlideShare a Scribd company logo
R
2020 2 9
1 1
2 ? 2
2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 R 4
3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 —R Studio 4
5 6
5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 8
1
• ?
•
• R ?
• R
• R Studio
•
1
1 R
2 ?
=⇒
2.1
• :::::::::::::::::::::
↓
•
=⇒ 0 1 =
• 0 1 2
• 0 1 =
:::::::::::::::::::::::::::::
↓
•
•
: C C++ Java Objective-C Swift Lisp
Java
2.2
•
=⇒ 1
• ; =⇒
) R JavaScript Python Ruby Perl PHP Lisp
•
I 2
2.3 R 1 R
–
–
–
– OS
–
•
•
2.3 R
• R
• R R OS
• OS R
https://cloud.r-project.org
• PC R
2.4
•
•
•
•
•
•
•
•
I 3
1 R
3 R
R ⇐= R
R > R
> 1 + 1
[1] 2
> 4 * 3
[1] 12
> 3/2
[1] 1.5
> 10 * 3 + 2
[1] 32
> 10 * (3 + 2)
[1] 50
y
n
•
=⇒
•
•
3.1
• R
•
•
4 —R Studio
R
1 RStudio
I 4
1 R
• Integrated Development Environment
=⇒ RStudio— R IDE https://www.rstudio.com
Open Source RStudio Desktop
•
R
•
I 5
1 R
•
• PC USB
5
√
2
(1)
 Windows
Mac Option +
> cat(" 2 = ", sqrt(2), "n")
2 = 1.414214
cat()
1
cat() 3
引数を区切るコンマ
引数 引数 引数
cat() 3
1 3
I 6
5.1 1 R
"1" + 1
cat() 3
1
n R n
newline n
sqrt()
(2) “ch01.R”
File → New File → R Script
UTF-8
.R
(3)
OS
Source
(4) Source Source with Echo
(5) Source
Run
5.1
•
•
I 7
1 R
•
•
• n
• cat()
• sqrt()
6
hello.R
========================
Hello World!
========================
I 8

More Related Content

What's hot

[DL輪読会]Deep Learning 第12章 アプリケーション
[DL輪読会]Deep Learning 第12章 アプリケーション[DL輪読会]Deep Learning 第12章 アプリケーション
[DL輪読会]Deep Learning 第12章 アプリケーション
Deep Learning JP
 
RでGPU使ってみた
RでGPU使ってみたRでGPU使ってみた
RでGPU使ってみた
Kazuya Wada
 
Rユーザのためのspark入門
Rユーザのためのspark入門Rユーザのためのspark入門
Rユーザのためのspark入門Shintaro Fukushima
 
NagoyaStat#7 StanとRでベイズ統計モデリング(アヒル本)4章の発表資料
NagoyaStat#7 StanとRでベイズ統計モデリング(アヒル本)4章の発表資料NagoyaStat#7 StanとRでベイズ統計モデリング(アヒル本)4章の発表資料
NagoyaStat#7 StanとRでベイズ統計モデリング(アヒル本)4章の発表資料
nishioka1
 
統計学の基礎の基礎
統計学の基礎の基礎統計学の基礎の基礎
統計学の基礎の基礎
Ken'ichi Matsui
 
{shiny}と{leaflet}による地図アプリ開発Tips
{shiny}と{leaflet}による地図アプリ開発Tips{shiny}と{leaflet}による地図アプリ開発Tips
{shiny}と{leaflet}による地図アプリ開発Tips
Takashi Kitano
 
数学つまみぐい入門編
数学つまみぐい入門編数学つまみぐい入門編
数学つまみぐい入門編
Akira Yamaguchi
 
DNNのモデル特化ハードウェアを生成するオープンソースコンパイラNNgenのデモ
DNNのモデル特化ハードウェアを生成するオープンソースコンパイラNNgenのデモDNNのモデル特化ハードウェアを生成するオープンソースコンパイラNNgenのデモ
DNNのモデル特化ハードウェアを生成するオープンソースコンパイラNNgenのデモ
Shinya Takamaeda-Y
 
[DL輪読会]Deep Learning 第4章 数値計算
[DL輪読会]Deep Learning 第4章 数値計算[DL輪読会]Deep Learning 第4章 数値計算
[DL輪読会]Deep Learning 第4章 数値計算
Deep Learning JP
 
カーネル法:正定値カーネルの理論
カーネル法:正定値カーネルの理論カーネル法:正定値カーネルの理論
カーネル法:正定値カーネルの理論
Daiki Tanaka
 
Bert(transformer,attention)
Bert(transformer,attention)Bert(transformer,attention)
Bert(transformer,attention)
norimatsu5
 
データ解析8 主成分分析の応用
データ解析8 主成分分析の応用データ解析8 主成分分析の応用
データ解析8 主成分分析の応用
Hirotaka Hachiya
 
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solutionSIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
Koji Asami
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
Ken'ichi Matsui
 
分割時系列解析(ITS)の入門
分割時系列解析(ITS)の入門分割時系列解析(ITS)の入門
分割時系列解析(ITS)の入門
Koichiro Gibo
 
基礎線形代数講座
基礎線形代数講座基礎線形代数講座
基礎線形代数講座
SEGADevTech
 
Rust で RTOS を考える
Rust で RTOS を考えるRust で RTOS を考える
Rust で RTOS を考える
ryuz88
 
これから Haskell を書くにあたって
これから Haskell を書くにあたってこれから Haskell を書くにあたって
これから Haskell を書くにあたって
Tsuyoshi Matsudate
 
Rで実験計画法 前編
Rで実験計画法 前編Rで実験計画法 前編
Rで実験計画法 前編
itoyan110
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門Norishige Fukushima
 

What's hot (20)

[DL輪読会]Deep Learning 第12章 アプリケーション
[DL輪読会]Deep Learning 第12章 アプリケーション[DL輪読会]Deep Learning 第12章 アプリケーション
[DL輪読会]Deep Learning 第12章 アプリケーション
 
RでGPU使ってみた
RでGPU使ってみたRでGPU使ってみた
RでGPU使ってみた
 
Rユーザのためのspark入門
Rユーザのためのspark入門Rユーザのためのspark入門
Rユーザのためのspark入門
 
NagoyaStat#7 StanとRでベイズ統計モデリング(アヒル本)4章の発表資料
NagoyaStat#7 StanとRでベイズ統計モデリング(アヒル本)4章の発表資料NagoyaStat#7 StanとRでベイズ統計モデリング(アヒル本)4章の発表資料
NagoyaStat#7 StanとRでベイズ統計モデリング(アヒル本)4章の発表資料
 
統計学の基礎の基礎
統計学の基礎の基礎統計学の基礎の基礎
統計学の基礎の基礎
 
{shiny}と{leaflet}による地図アプリ開発Tips
{shiny}と{leaflet}による地図アプリ開発Tips{shiny}と{leaflet}による地図アプリ開発Tips
{shiny}と{leaflet}による地図アプリ開発Tips
 
数学つまみぐい入門編
数学つまみぐい入門編数学つまみぐい入門編
数学つまみぐい入門編
 
DNNのモデル特化ハードウェアを生成するオープンソースコンパイラNNgenのデモ
DNNのモデル特化ハードウェアを生成するオープンソースコンパイラNNgenのデモDNNのモデル特化ハードウェアを生成するオープンソースコンパイラNNgenのデモ
DNNのモデル特化ハードウェアを生成するオープンソースコンパイラNNgenのデモ
 
[DL輪読会]Deep Learning 第4章 数値計算
[DL輪読会]Deep Learning 第4章 数値計算[DL輪読会]Deep Learning 第4章 数値計算
[DL輪読会]Deep Learning 第4章 数値計算
 
カーネル法:正定値カーネルの理論
カーネル法:正定値カーネルの理論カーネル法:正定値カーネルの理論
カーネル法:正定値カーネルの理論
 
Bert(transformer,attention)
Bert(transformer,attention)Bert(transformer,attention)
Bert(transformer,attention)
 
データ解析8 主成分分析の応用
データ解析8 主成分分析の応用データ解析8 主成分分析の応用
データ解析8 主成分分析の応用
 
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solutionSIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
 
分割時系列解析(ITS)の入門
分割時系列解析(ITS)の入門分割時系列解析(ITS)の入門
分割時系列解析(ITS)の入門
 
基礎線形代数講座
基礎線形代数講座基礎線形代数講座
基礎線形代数講座
 
Rust で RTOS を考える
Rust で RTOS を考えるRust で RTOS を考える
Rust で RTOS を考える
 
これから Haskell を書くにあたって
これから Haskell を書くにあたってこれから Haskell を書くにあたって
これから Haskell を書くにあたって
 
Rで実験計画法 前編
Rで実験計画法 前編Rで実験計画法 前編
Rで実験計画法 前編
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門
 

More from Wataru Shito

第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類
Wataru Shito
 
統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定
Wataru Shito
 
統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
Wataru Shito
 
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
Wataru Shito
 
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
Wataru Shito
 
経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」
Wataru Shito
 
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
Wataru Shito
 
第9回 大規模データを用いたデータフレーム操作実習(3)
第9回 大規模データを用いたデータフレーム操作実習(3)第9回 大規模データを用いたデータフレーム操作実習(3)
第9回 大規模データを用いたデータフレーム操作実習(3)
Wataru Shito
 
経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」
Wataru Shito
 
マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」
Wataru Shito
 
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
Wataru Shito
 
マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」
Wataru Shito
 
経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」
Wataru Shito
 
マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」
Wataru Shito
 
マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」
Wataru Shito
 
経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」
Wataru Shito
 

More from Wataru Shito (20)

第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類第3章 遅延学習---最近傍法を使った分類
第3章 遅延学習---最近傍法を使った分類
 
統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定統計的推定の基礎 2 -- 分散の推定
統計的推定の基礎 2 -- 分散の推定
 
統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定統計的推定の基礎 1 -- 期待値の推定
統計的推定の基礎 1 -- 期待値の推定
 
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 3.講義ノート
 
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド演習II.第1章 ベイズ推論の考え方 Part 3.スライド
演習II.第1章 ベイズ推論の考え方 Part 3.スライド
 
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 2.講義ノート
 
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド演習II.第1章 ベイズ推論の考え方 Part 2.スライド
演習II.第1章 ベイズ推論の考え方 Part 2.スライド
 
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
演習II.第1章 ベイズ推論の考え方 Part 1.講義ノート
 
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
マクロ経済学I 「第8章 総需要・総供給分析(AD-AS分析)」
 
経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」経済数学II 「第9章 最適化(Optimization)」
経済数学II 「第9章 最適化(Optimization)」
 
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
マクロ経済学I 「第10章 総需要 II.IS-LM分析とAD曲線」
 
第9回 大規模データを用いたデータフレーム操作実習(3)
第9回 大規模データを用いたデータフレーム操作実習(3)第9回 大規模データを用いたデータフレーム操作実習(3)
第9回 大規模データを用いたデータフレーム操作実習(3)
 
経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」経済数学II 「第12章 制約つき最適化」
経済数学II 「第12章 制約つき最適化」
 
マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」マクロ経済学I 「第9章 総需要 I」
マクロ経済学I 「第9章 総需要 I」
 
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」経済数学II 「第11章 選択変数が2個以上の場合の最適化」
経済数学II 「第11章 選択変数が2個以上の場合の最適化」
 
マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」マクロ経済学I 「第6章 開放経済の長期分析」
マクロ経済学I 「第6章 開放経済の長期分析」
 
経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」経済数学II 「第8章 一般関数型モデルの比較静学」
経済数学II 「第8章 一般関数型モデルの比較静学」
 
マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」マクロ経済学I 「第4,5章 貨幣とインフレーション」
マクロ経済学I 「第4,5章 貨幣とインフレーション」
 
マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」マクロ経済学I 「第3章 長期閉鎖経済モデル」
マクロ経済学I 「第3章 長期閉鎖経済モデル」
 
経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」経済数学II 「第7章 微分法とその比較静学への応用」
経済数学II 「第7章 微分法とその比較静学への応用」
 

Recently uploaded

Les Français et les élections législatives
Les Français et les élections législativesLes Français et les élections législatives
Les Français et les élections législatives
contact Elabe
 
Sondage ELABE pour Les Echos et l'Institut Montaigne -Les Français et la guer...
Sondage ELABE pour Les Echos et l'Institut Montaigne -Les Français et la guer...Sondage ELABE pour Les Echos et l'Institut Montaigne -Les Français et la guer...
Sondage ELABE pour Les Echos et l'Institut Montaigne -Les Français et la guer...
contact Elabe
 
Webinaire_les aides aux investissements.pptx
Webinaire_les aides aux investissements.pptxWebinaire_les aides aux investissements.pptx
Webinaire_les aides aux investissements.pptx
Institut de l'Elevage - Idele
 
L'Observatoire politique ELABE pour Les Echos - Juin 2024
L'Observatoire politique ELABE pour Les Echos - Juin 2024L'Observatoire politique ELABE pour Les Echos - Juin 2024
L'Observatoire politique ELABE pour Les Echos - Juin 2024
contact Elabe
 
Rapport annuel de Max Havelaar France 2023
Rapport annuel de Max Havelaar France 2023Rapport annuel de Max Havelaar France 2023
Rapport annuel de Max Havelaar France 2023
bonanniromane89
 
Etat de l’opinion - Journée CCR CAT « Protégeons l’assurabilité »
Etat de l’opinion - Journée CCR CAT « Protégeons l’assurabilité »Etat de l’opinion - Journée CCR CAT « Protégeons l’assurabilité »
Etat de l’opinion - Journée CCR CAT « Protégeons l’assurabilité »
contact Elabe
 

Recently uploaded (6)

Les Français et les élections législatives
Les Français et les élections législativesLes Français et les élections législatives
Les Français et les élections législatives
 
Sondage ELABE pour Les Echos et l'Institut Montaigne -Les Français et la guer...
Sondage ELABE pour Les Echos et l'Institut Montaigne -Les Français et la guer...Sondage ELABE pour Les Echos et l'Institut Montaigne -Les Français et la guer...
Sondage ELABE pour Les Echos et l'Institut Montaigne -Les Français et la guer...
 
Webinaire_les aides aux investissements.pptx
Webinaire_les aides aux investissements.pptxWebinaire_les aides aux investissements.pptx
Webinaire_les aides aux investissements.pptx
 
L'Observatoire politique ELABE pour Les Echos - Juin 2024
L'Observatoire politique ELABE pour Les Echos - Juin 2024L'Observatoire politique ELABE pour Les Echos - Juin 2024
L'Observatoire politique ELABE pour Les Echos - Juin 2024
 
Rapport annuel de Max Havelaar France 2023
Rapport annuel de Max Havelaar France 2023Rapport annuel de Max Havelaar France 2023
Rapport annuel de Max Havelaar France 2023
 
Etat de l’opinion - Journée CCR CAT « Protégeons l’assurabilité »
Etat de l’opinion - Journée CCR CAT « Protégeons l’assurabilité »Etat de l’opinion - Journée CCR CAT « Protégeons l’assurabilité »
Etat de l’opinion - Journée CCR CAT « Protégeons l’assurabilité »
 

第1回 Rプログラミングを始めよう

  • 1. R 2020 2 9 1 1 2 ? 2 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.3 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 R 4 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 —R Studio 4 5 6 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 8 1 • ? • • R ? • R • R Studio • 1
  • 2. 1 R 2 ? =⇒ 2.1 • ::::::::::::::::::::: ↓ • =⇒ 0 1 = • 0 1 2 • 0 1 = ::::::::::::::::::::::::::::: ↓ • • : C C++ Java Objective-C Swift Lisp Java 2.2 • =⇒ 1 • ; =⇒ ) R JavaScript Python Ruby Perl PHP Lisp • I 2
  • 3. 2.3 R 1 R – – – – OS – • • 2.3 R • R • R R OS • OS R https://cloud.r-project.org • PC R 2.4 • • • • • • • • I 3
  • 4. 1 R 3 R R ⇐= R R > R > 1 + 1 [1] 2 > 4 * 3 [1] 12 > 3/2 [1] 1.5 > 10 * 3 + 2 [1] 32 > 10 * (3 + 2) [1] 50 y n • =⇒ • • 3.1 • R • • 4 —R Studio R 1 RStudio I 4
  • 5. 1 R • Integrated Development Environment =⇒ RStudio— R IDE https://www.rstudio.com Open Source RStudio Desktop • R • I 5
  • 6. 1 R • • PC USB 5 √ 2 (1) Windows Mac Option + > cat(" 2 = ", sqrt(2), "n") 2 = 1.414214 cat() 1 cat() 3 引数を区切るコンマ 引数 引数 引数 cat() 3 1 3 I 6
  • 7. 5.1 1 R "1" + 1 cat() 3 1 n R n newline n sqrt() (2) “ch01.R” File → New File → R Script UTF-8 .R (3) OS Source (4) Source Source with Echo (5) Source Run 5.1 • • I 7
  • 8. 1 R • • • n • cat() • sqrt() 6 hello.R ======================== Hello World! ======================== I 8