Published on

1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide


  1. 1. Gray Morris
  2. 2. Unit One: Chapter 5
  3. 3. <ul><li>Define percentage </li></ul><ul><li>Convert percentages to fractions </li></ul><ul><li>Convert percentages to decimals </li></ul><ul><li>Convert percentages to ratios </li></ul><ul><li>Convert decimals to percentages </li></ul><ul><li>Convert fractions to percentages </li></ul><ul><li>Convert ratios to percentages </li></ul><ul><li>Determine percentages from numbers </li></ul>After reviewing this chapter, you should be able to:
  4. 4. <ul><li>Used in sales tax, mortgage interest, savings earned </li></ul><ul><li>Used in names of medications </li></ul><ul><ul><li>Magnesium sulfate 50% </li></ul></ul><ul><ul><li>Hydrocortisone 1% </li></ul></ul><ul><ul><li>IV solution of D5W (Dextrose 5% in Water) </li></ul></ul><ul><li>Used to assess level of burns </li></ul><ul><ul><li>Rule of Nines—Figure 5-1 </li></ul></ul>
  5. 5. <ul><li>Percentage refers to how many parts are related to the whole (100 parts) </li></ul><ul><li>Written with the percent symbol “%” means “of 100” </li></ul><ul><li>5% = 5 parts of 100 parts or or </li></ul><ul><li> 5 per 100 </li></ul>
  6. 6. Figure 5-1 The rule of nines for estimating burn percentage. (From Ignatavicius D, Winkelman C, Workman M, Hausman K: Medical-surgical nursing: critical thinking for collaborative care, ed. 6, St. Louis, 2009, Saunders.)
  7. 7. <ul><li>Intravenous (IV) solutions </li></ul><ul><li>Percentage = number of grams (g) of solute (powder) in 100 mL of diluent </li></ul><ul><li>1,000 mL of D5W (Dextrose 5% in water) </li></ul><ul><ul><li>5% = 5 g in 100 mL so… </li></ul></ul><ul><ul><li> 5 g in 100 mL = (x) g in 1,000 mL </li></ul></ul><ul><ul><li> 100(x) = 5(1,000) </li></ul></ul><ul><ul><li> x = 50 g </li></ul></ul>
  8. 8. <ul><li>Safety Point: The higher the percentage, the stronger the solution </li></ul><ul><ul><li>Examples: </li></ul></ul><ul><ul><li>A 10% solution is STRONGER than a 5% solution </li></ul></ul><ul><ul><li>A 0.99% solution is WEAKER than a 1% solution </li></ul></ul>
  9. 9. <ul><li>% symbol may be used with whole numbers (15%), mixed numbers (3½%), fractions (¾%), or decimals (0.6%) </li></ul><ul><li>Drop % sign, place number over 100 and reduce </li></ul><ul><ul><li>Examples: </li></ul></ul>
  10. 10. <ul><li>Drop % sign and move decimal two places to the left (add zeros if needed) </li></ul><ul><ul><li>Examples: 25% = 0.25 </li></ul></ul><ul><ul><li>1.4% = 0.014 </li></ul></ul><ul><li>Alternative Method: write as a fraction with 100 as the denominator and divide numerator by denominator </li></ul>
  11. 11. <ul><li>Change percentage to fraction and reduce, then place the numerator on the left and the denominator on the right – separate by colon </li></ul><ul><ul><li>Example: </li></ul></ul>
  12. 12. <ul><li>Multiply the fraction by 100, reduce, add % </li></ul><ul><ul><li>Example: </li></ul></ul><ul><li>Alternative Method: change the fraction to a decimal, multiply by 100, add % </li></ul><ul><ul><li>Example: </li></ul></ul>
  13. 13. <ul><li>Move the decimal two places to the right (add zeros if needed), add % </li></ul><ul><ul><li>Example: </li></ul></ul>
  14. 14. <ul><li>Change the ratio to a fraction, then change the fraction to a percentage as described previously </li></ul><ul><ul><li>Example: </li></ul></ul>
  15. 15. <ul><li>Change the given percentage to a decimal or fraction, then multiply the decimal or fraction by the number </li></ul><ul><ul><li>Example: A client reports he drank 25% of his 8-ounce cup of tea. Determine how much tea the client drank. </li></ul></ul>
  16. 16. <ul><li>Make a fraction with the numbers—the denominator is the number after the word “of” and the other number is the numerator </li></ul><ul><li>Convert to a decimal, then to a percentage </li></ul><ul><ul><li>Example: 12 is what percentage of 60? </li></ul></ul>