www.ecn.nl
Where very small meets very large:
nanotechnology for efficient solar energy
conversion
Wim Sinke
ECN Solar Ene...
Thank you:
Albert Polman (AMOLF)
Bonna Newman (AMOLF)
Pierpaolo Spinelli (AMOLF)
Tom Gregorkiewicz (UvA)
Katerina Dohnalov...
Content
• Photovoltaic solar energy (PV): the challenge quantified
• The building blocks: solar cells in fab and lab
• Whe...
Content
• Photovoltaic solar energy (PV): the challenge quantified
• The building blocks: solar cells in fab and lab
• Whe...
Solar energy contribution
Solar Energy Perspectives – Testing the Limits (IEA, 2011)
5
(13% of final energy)
= 40.000 km2 ...
Solar energy contribution
Shell Lens Scenarios – Oceans (2013)
7
Multi-terawatt use
Quantifying the challenge
• Competitive generation costs (from 0.10 €/kWh to 0.05 €/kWh
– 0.5  1 €/W...
Content
• Photovoltaic solar energy (PV): the challenge quantified
• The building blocks: solar cells in fab and lab
• Whe...
First SolarHyET SolarWürth Solar
Cell & module technologies:
commercial
11
Flat plate: wafer-based silicon (90%)
- monocry...
First SolarHelianthosWürth Solar
Cell & module technologies:
commercial
12
Flat plate: wafer-based silicon (90%)
- monocry...
Concepts & technologies
Lab and pilot production
• super-high-efficiency concepts
– full use of all light colors (optimize...
Concepts & technologies
Lab and pilot production
• super-high-efficiency concepts
– full use of all light colors (optimize...
www.nrel.gov/ncpv/images/efficiency_chart.jpgwww.nrel.gov/ncpv/images/efficiency_chart.jpg
www.nrel.gov/ncpv/images/efficiency_chart.jpgwww.nrel.gov/ncpv/images/efficiency_chart.jpg
nanotechnology as driver
Ideal single-gap cells
Loss factor Selected remedies
recombination light management incl. concentration
and curve loss 30%...
Ideal single-gap cells
Loss factor Selected remedies
recombination light management incl. concentration
and curve loss 30%...
Ideal single-gap cells
Loss factor Selected remedies
recombination light management incl. concentration
and curve loss 30%...
Ideal single-gap cells
Loss factor Selected remedies
recombination light management incl. concentration
(and curve loss) 3...
Ideal single-gap cells
Loss factor Selected remedies
recombination light management incl. concentration
(and curve loss) 3...
Ideal single-gap cells
Loss factor Selected remedies
recombination light management incl. concentration
(and curve loss) 3...
Ideal single-gap cells
Loss factor Selected remedies
recombination light management incl. concentration
(and curve loss) 3...
Ideal single-gap cells
Loss factor Selected remedies
recombination light management incl. concentration
(and curve loss) 3...
Content
• Photovoltaic solar energy (PV): the challenge quantified
• The building blocks: solar cells in fab and lab
• Whe...
Nanopatterning for high-efficiency PV:
finding the way in a jungle of options
27
Challenge: combine the best of two
worlds for a record efficiency
28
Example: advanced light management
to cross the 25% efficiency barrier for silicon
29
Example: advanced light
management for ultra-thin solar cells (1)
30
Example: advanced light
management for ultra-thin solar cells (2)
31
Example: enhanced spectrum
utilisation using QDs
32Courtesy: Tom Gregorkiewicz (UvA)
Example: spectrum shaping to boost
efficiency (“add-on” to solar cells)
33Courtesy: Tom Gregorkiewicz (UvA)
Example: spectrum shaping by Space-
Separated Quantum Cutting using QDs (1)
34Courtesy: Tom Gregorkiewicz (UvA)
Eexc ≥ 2Eg...
Example: spectrum shaping by Space-
Separated Quantum Cutting using QDs (2)
35Courtesy: Tom Gregorkiewicz (UvA)
The Holy Grail?
All-silicon tandem solar cell
36http://iopscience.iop.org/0957-4484/labtalk-article/34339
Content
• Photovoltaic solar energy (PV): the challenge quantified
• The building blocks: solar cells in fab and lab
• Whe...
Commercial module efficiencies
History & projections (simplified estimates)
Commercial module efficiencies
History & projections (simplified estimates)
The future at a glance
40
Current 2020
Long-term
potential
Commercial module efficiency flat
plate/concentrator (%)
722 /...
The future at a glance
Current 2020
Long-term
potential
Commercial module efficiency flat
plate/concentrator (%)
722 / 25...
A view on the future
42
City of the Sun,
Municipality of
Heerhugowaard.
Photo:
KuiperCompagnons
Thank you for your attention!
MicroNano 12 12 2013 Sinke
Upcoming SlideShare
Loading in …5
×

MicroNano 12 12 2013 Sinke

436 views

Published on

Nanotechnology for photovoltaics (PV)

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
436
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
18
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

MicroNano 12 12 2013 Sinke

  1. 1. www.ecn.nl Where very small meets very large: nanotechnology for efficient solar energy conversion Wim Sinke ECN Solar Energy, University of Amsterdam & FOM Institute AMOLF
  2. 2. Thank you: Albert Polman (AMOLF) Bonna Newman (AMOLF) Pierpaolo Spinelli (AMOLF) Tom Gregorkiewicz (UvA) Katerina Dohnalová (UvA) Patrick de Jager (ASML) Michel van de Moosdijk (ASML) Frank Lenzmann (ECN) Stefan Luxembourg (ECN) Arthur Weeber (ECN) for providing input and inspiration for this presentation!
  3. 3. Content • Photovoltaic solar energy (PV): the challenge quantified • The building blocks: solar cells in fab and lab • Where nanotechnology comes in: to and beyond current performance and cost limits • Outlook: mature yet young 3
  4. 4. Content • Photovoltaic solar energy (PV): the challenge quantified • The building blocks: solar cells in fab and lab • Where nanotechnology comes in: to and beyond current performance and cost limits • Outlook: mature yet young 4
  5. 5. Solar energy contribution Solar Energy Perspectives – Testing the Limits (IEA, 2011) 5 (13% of final energy) = 40.000 km2 module area @ 30% efficiency = area The Netherlands
  6. 6. Solar energy contribution Shell Lens Scenarios – Oceans (2013) 7
  7. 7. Multi-terawatt use Quantifying the challenge • Competitive generation costs (from 0.10 €/kWh to 0.05 €/kWh – 0.5  1 €/Wp system price (dependent on region and market) • High module efficiencies (from 10  20% to 20  40%+) – cost reduction lever at all levels – facilitates large-scale use • From renewable to fully sustainable (earth-abundant materials?) – Materials & processes – Design for sustainability • Total quality (at very low cost)
  8. 8. Content • Photovoltaic solar energy (PV): the challenge quantified • The building blocks: solar cells in fab and lab • Where nanotechnology comes in: to and beyond current performance and cost limits • The third dimension: sustainability • Outlook: mature yet young 10
  9. 9. First SolarHyET SolarWürth Solar Cell & module technologies: commercial 11 Flat plate: wafer-based silicon (90%) - monocrystalline - multicrystalline (& quasi mono) Module efficiencies 14  22% ToyotaCity of the Sun (NL) Concentrator (<1%) - multi-junction III-V semiconductors - silicon Module efficiencies 25  30% Abengoa/ConcentrixFhG-ISE Flat plate: thin films (10%) - silicon - copper-indium/gallium-diselenide/sulphide (CIGSS) - cadmium telluride (CdTe) Module efficiencies 7  13% ECN’s Black Beauty
  10. 10. First SolarHelianthosWürth Solar Cell & module technologies: commercial 12 Flat plate: wafer-based silicon (90%) - monocrystalline - multicrystalline (& quasi mono) Module efficiencies 14  22% ToyotaCity of the Sun (NL) Trends: • new cell and module architectures • high(er) efficiencies – closing lab/fab gap Trends: • increasing scale • differentiation according to application Concentrator (<1%) - multi-junction III-V semiconductors - silicon Module efficiencies 25  30% Abengoa/ConcentrixFhG-ISE Trends: • commercial applications taking off • race to 50% lab cell efficiencies Flat plate: thin films (10%) - silicon - copper-indium/gallium-diselenide/sulphide (CIGSS) - cadmium telluride (CdTe) Module efficiencies 7  13%
  11. 11. Concepts & technologies Lab and pilot production • super-high-efficiency concepts – full use of all light colors (optimize cell or optimize spectrum) – advanced light management & concentration • super-low-cost concepts (& technologies for new applications) – very fast and non-vacuum processing – low-cost materials & low material use 13 Example: spectrum conversion using quantum dots (Univ. of Amsterdam) Example: polymer solar cell (Solliance)
  12. 12. Concepts & technologies Lab and pilot production • super-high-efficiency concepts – full use of all light colors (optimize cell or optimize spectrum) – advanced light management & concentration • super-low-cost concepts (& technologies for new applications) – very fast and non-vacuum processing – low-cost materials & low material use 14 Example: spectrum conversion using quantum dots (Univ. of Amsterdam) Example: polymer solar cell (Solliance)
  13. 13. www.nrel.gov/ncpv/images/efficiency_chart.jpgwww.nrel.gov/ncpv/images/efficiency_chart.jpg
  14. 14. www.nrel.gov/ncpv/images/efficiency_chart.jpgwww.nrel.gov/ncpv/images/efficiency_chart.jpg nanotechnology as driver
  15. 15. Ideal single-gap cells Loss factor Selected remedies recombination light management incl. concentration and curve loss 30%  40% spectral losses multi-gap & multi-band cells hot carrier cells multi-carrier generation spectrum shaping 40%  70%+ `   30% Routes to (very) high efficiency Potential & limits (rounded numbers)
  16. 16. Ideal single-gap cells Loss factor Selected remedies recombination light management incl. concentration and curve loss 30%  40% spectral losses multi-gap & multi-band cells hot carrier cells multi-carrier generation spectrum shaping 40%  70%+ `   30% Routes to (very) high efficiency Potential & limits (rounded numbers) qVoc < Egap (JV)max < JmaxVmax Eph > Eg Eph < Eg
  17. 17. Ideal single-gap cells Loss factor Selected remedies recombination light management incl. concentration and curve loss 30%  40% spectral losses multi-gap & multi-band cells hot carrier cells multi-carrier generation spectrum shaping 40%  70%+ `   30% Routes to (very) high efficiency Potential & limits (rounded numbers) qVoc < Egap (JV)max < JmaxVmax Eph > Eg Eph < Eg
  18. 18. Ideal single-gap cells Loss factor Selected remedies recombination light management incl. concentration (and curve loss) 30%  40% spectral losses multi-gap & multi-band cells hot carrier cells multi-carrier generation spectrum shaping 40%  70%+ ` Routes to (very) high efficiency Potential & limits (rounded numbers) FhG-ISE   30%
  19. 19. Ideal single-gap cells Loss factor Selected remedies recombination light management incl. concentration (and curve loss) 30%  40% spectral losses multi-gap & multi-band cells hot carrier cells multi-carrier generation spectrum shaping 40%  70%+ ` Routes to (very) high efficiency Potential & limits (rounded numbers) 500 1000 1500 2000 2500 0 200 400 600 800 1000 1200 1400 1600 AM15 GaInP GaInAs Ge   30%
  20. 20. Ideal single-gap cells Loss factor Selected remedies recombination light management incl. concentration (and curve loss) 30%  40% spectral losses multi-gap & multi-band cells hot carrier cells multi-carrier generation spectrum shaping 40%  70%+ ` Routes to (very) high efficiency Potential & limits (rounded numbers)   30%
  21. 21. Ideal single-gap cells Loss factor Selected remedies recombination light management incl. concentration (and curve loss) 30%  40% spectral losses multi-gap & multi-band cells hot carrier cells multi-carrier generation spectrum shaping 40%  70%+ ` Routes to (very) high efficiency Potential & limits (rounded numbers)   30%
  22. 22. Ideal single-gap cells Loss factor Selected remedies recombination light management incl. concentration (and curve loss) 30%  40% spectral losses multi-gap & multi-band cells hot carrier cells multi-carrier generation spectrum shaping 40%  70%+ ` Routes to (very) high efficiency Potential & limits (rounded numbers)   30%
  23. 23. Content • Photovoltaic solar energy (PV): the challenge quantified • The building blocks: solar cells in fab and lab • Where nanotechnology comes in: to and beyond current performance and cost limits • Outlook: mature yet young 25
  24. 24. Nanopatterning for high-efficiency PV: finding the way in a jungle of options 27
  25. 25. Challenge: combine the best of two worlds for a record efficiency 28
  26. 26. Example: advanced light management to cross the 25% efficiency barrier for silicon 29
  27. 27. Example: advanced light management for ultra-thin solar cells (1) 30
  28. 28. Example: advanced light management for ultra-thin solar cells (2) 31
  29. 29. Example: enhanced spectrum utilisation using QDs 32Courtesy: Tom Gregorkiewicz (UvA)
  30. 30. Example: spectrum shaping to boost efficiency (“add-on” to solar cells) 33Courtesy: Tom Gregorkiewicz (UvA)
  31. 31. Example: spectrum shaping by Space- Separated Quantum Cutting using QDs (1) 34Courtesy: Tom Gregorkiewicz (UvA) Eexc ≥ 2Egap
  32. 32. Example: spectrum shaping by Space- Separated Quantum Cutting using QDs (2) 35Courtesy: Tom Gregorkiewicz (UvA)
  33. 33. The Holy Grail? All-silicon tandem solar cell 36http://iopscience.iop.org/0957-4484/labtalk-article/34339
  34. 34. Content • Photovoltaic solar energy (PV): the challenge quantified • The building blocks: solar cells in fab and lab • Where nanotechnology comes in: to and beyond current performance and cost limits • Outlook: mature yet young 37
  35. 35. Commercial module efficiencies History & projections (simplified estimates)
  36. 36. Commercial module efficiencies History & projections (simplified estimates)
  37. 37. The future at a glance 40 Current 2020 Long-term potential Commercial module efficiency flat plate/concentrator (%) 722 / 2530 1025 / 3035 2050 Turn-key system price (flat plate) (€/Wp) 13 0.82 (with sustainable margins) 0.51 Cost of electricity (LCoE, €/kWh) 0.050.30 0.040.20 0.030.10 Energy pay-back time (yrs) 0.52 0.251 0.250.5 Installed capacity (TWp) 0.1 0.51 10-50
  38. 38. The future at a glance Current 2020 Long-term potential Commercial module efficiency flat plate/concentrator (%) 722 / 2530 1025 / 3035 2050 Turn-key system price (flat plate) (€/Wp) 13 0.82 (with sustainable margins) 0.51 Cost of electricity (LCoE, €/kWh) 0.050.30 0.040.20 0.030.10 Energy pay-back time (yrs) 0.52 0.251 0.250.5 Installed capacity (TWp) 0.1 0.51 10-50 x 23 x ½⅓ x 100+
  39. 39. A view on the future 42 City of the Sun, Municipality of Heerhugowaard. Photo: KuiperCompagnons
  40. 40. Thank you for your attention!

×