Status und Ausblick - Wie wird sich KI technisch weiterentwickeln? Münchner Kreis 2019

Willi Schroll
Willi SchrollForesight Expert, Technology Analyst, Senior Consultant at strategiclabs Willi Schroll
Status und Ausblick
Wie wird sich KI technisch weiterentwickeln?
Willi Schroll , strategiclabs Berlin
Europa Ins:tut Universität Zürich – 21. digital lecture – 27. August 2018
1
Willi Schroll, strategiclabs Berlin
Fachkonferenz Münchner Kreis: Künstliche Intelligenz und die Automa:on des Entscheidens
9. Oktober 2019 – München
Foresight – Strategische Zukun3sforschung
Convergence of
technologies
Digital Culture
Learning from
nature
Ubiquitous
intelligence
New patterns of
consumption
Globalisation 2.0
Knowledge-
based economy
Business
ecosystems
Radical changes
to energy and
resources
Climate change
& environmental
pollution
Urbanisation
A new political
world order
Global risk society
New patterns of
mobility
Transformation of
healthcare systems
Changing gender
roles
New level of
individualisation
Social and cultural
disparities
Demographic change
Endangered
biodiversity &
ecosystems
Cultural
convergence &
divergence
Internet of
Everything
Nanotech &
Biotech
Changes to work
& management
STEEP Dimensionen
Monitoring ▻ Daten ▻ Trendanalysen ▻ Szenarien ▻ strategische Implika:onen
SOCIETY TECHNOLOGY ECOLOGY ECONOMY POLITICS
Bildrechte/Quelle: mapegy.com, Boston Dynamics2
KI-Systema:k: Techniken, Funk:onen, Anwendung, Treiber
3
Bio-inspired approaches
Classifica:on and regression trees
Deep learning
Expert system
Fuzzy logic
Instance-based learning
Latent representa:on
Logic programming
Machine learning
Mul:-task learning
Neural network
Ontology engineering
Probabilis:c graphical models
Probabilis:c reasoning
Reinforcement learning
Rule learning
Supervised learning
Support vector machine
Unsupervised learning
AItechniques
•
•
•
•
•
•
•
•
•
•
Quellen: hdps://www.wipo.int/export/sites/www/tech_trends/en/ar:ficial_intelligence/docs/techtrends_ai_glossary.pdf
KI-Systema:k: Techniken, Funk:onen, Anwendung, Treiber
4
Bio-inspired approaches
Classifica:on and regression trees
Deep learning
Expert system
Fuzzy logic
Instance-based learning
Latent representa:on
Logic programming
Machine learning
Mul:-task learning
Neural network
Ontology engineering
Probabilis:c graphical models
Probabilis:c reasoning
Reinforcement learning
Rule learning
Supervised learning
Support vector machine
Unsupervised learning
Augmented reality
Biometrics
Character recogni:on
Computer vision
Distributed AI
Image and video segmenta:on
Informa:on extrac:on
Knowledge representa:on & reasoning
Natural language processing
Object tracking
Planning/scheduling
Predic:ve analy:cs
Robo:cs Scene understanding
Seman:cs
Sen:ment analysis
Speech processing
Speech recogni:on
Speaker recogni:on
Speech-to-speech applica:on
AItechniques
AIfunc:onalapplica:ons
enabling enabling
•
•
•
•
•
•
•
•
•
•
Quellen: hdps://www.wipo.int/export/sites/www/tech_trends/en/ar:ficial_intelligence/docs/techtrends_ai_glossary.pdf
KI-Systema:k: Techniken, Funk:onen, Anwendung, Treiber
5
Banking and finance
Business
Document management & publishing
Educa:on
Entertainment/Gaming
Healthcare
Home/Service Robots
Industry and manufacturing
Life and medical sciences
Public Safety
Security/Cybersecurity
Telecommunica:ons
Transporta:on/Logis:cs
Bio-inspired approaches
Classifica:on and regression trees
Deep learning
Expert system
Fuzzy logic
Instance-based learning
Latent representa:on
Logic programming
Machine learning
Mul:-task learning
Neural network
Ontology engineering
Probabilis:c graphical models
Probabilis:c reasoning
Reinforcement learning
Rule learning
Supervised learning
Support vector machine
Unsupervised learning
Augmented reality
Biometrics
Character recogni:on
Computer vision
Distributed AI
Image and video segmenta:on
Informa:on extrac:on
Knowledge representa:on & reasoning
Natural language processing
Object tracking
Planning/scheduling
Predic:ve analy:cs
Robo:cs Scene understanding
Seman:cs
Sen:ment analysis
Speech processing
Speech recogni:on
Speaker recogni:on
Speech-to-speech applica:on
AItechniques
AIfunc:onalapplica:ons
AIapplica:onfields
enabling enabling enabling
•
•
•
•
•
•
•
•
•
•
Quellen: hdps://www.wipo.int/export/sites/www/tech_trends/en/ar:ficial_intelligence/docs/techtrends_ai_glossary.pdf - ergänzend für Spalte 3:
hdps://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai100report10032016fnl_singles.pdf (2016)
KI-Systema:k: Techniken, Funk:onen, Anwendung, Treiber
Quellen: hdps://www.wipo.int/export/sites/www/tech_trends/en/ar:ficial_intelligence/docs/techtrends_ai_glossary.pdf - ergänzend für Spalte 3:
hdps://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai100report10032016fnl_singles.pdf
6
Banking and finance
Business
Document management & publishing
Educa:on
Entertainment/Gaming
Healthcare
Home/Service Robots
Industry and manufacturing
Life and medical sciences
Public Safety
Security/Cybersecurity
Telecommunica:ons
Transporta:on/Logis:cs
Smart City
Smart Gov/Admin
Smart Health
Smart Home
Smart Learning & Educa:on
Smart Mobility/MaaS
Smart Produc:on/Industrie 4.0
Smart Work
Smart X …
…
Expected Values
Context adap:on
Personalsa:on
Predic:on
Process Op:miza:on
Targe:ng
…
Bio-inspired approaches
Classifica:on and regression trees
Deep learning
Expert system
Fuzzy logic
Instance-based learning
Latent representa:on
Logic programming
Machine learning
Mul:-task learning
Neural network
Ontology engineering
Probabilis:c graphical models
Probabilis:c reasoning
Reinforcement learning
Rule learning
Supervised learning
Support vector machine
Unsupervised learning
Augmented reality
Biometrics
Character recogni:on
Computer vision
Distributed AI
Image and video segmenta:on
Informa:on extrac:on
Knowledge representa:on & reasoning
Natural language processing
Object tracking
Planning/scheduling
Predic:ve analy:cs
Robo:cs Scene understanding
Seman:cs
Sen:ment analysis
Speech processing
Speech recogni:on
Speaker recogni:on
Speech-to-speech applica:on
AItechniques
AIfunc:onalapplica:ons
AIapplica:onfields
AIintegra:on/guidingvisions
enabling enabling enabling
•
•
•
•
•
•
•
•
•
•
5-Stufen-Modell der Automa:on des Entscheidens
Assistenz, Delega=on, Autonomisierung (Bitkom)
1. Assis:ertes Entscheiden
2. Teilweises Entscheiden
3. Geprüoes Entscheiden
4. Delegiertes Entscheiden
5. Autonomes Entscheiden
7
AI-Matrix nach PWC und Autonomiegrade (Grafik modifiziert)
Bildrechte/Quelle:
hdps://www.pwc.com/gx/en/issues/analy:cs/assets/pwc-ai-analysis-
sizing-the-prize-report.pd (2017)
Quelle: hdps://www.bitkom.org/sites/default/files/file/import/Bitkom-
Leipaden-KI-verstehen-als-Automa:on-des-Entscheidens-2-Mai-2017.pdf
(2017)
Phasenmodell der KI
Übergreifende Trends
• Relevanz von Trainingsdaten
• Umgebungsdimensionen (mehr Sensoren, Datendurchsatz)
• Mensch-Maschinen-Interak:on
• Spezialisierung, enge Nischen
• Autonomisierung
Bildrechte/Quelle: hdps://www.bitkom.org/sites/default/files/file/import/171012-KI-Gipfelpapier-online.pdf (2017), Phasen nach Wahlster (2016)
8
Prozessuale Grundstruktur
KI im Kontext der Innova:onsfelder der digitalen Transforma:on
Bildrechte: Willi Schroll 2018
9
KI im betrieblichen Einsatz. Bildrechte/Quelle:
hdp://cdn.aiindex.org/2018/AI%20Index%202018%20Annua
l%20Report.pdf McKinsey „Capabili:es embedded in at
least one company func:on (2018)“
Research Trends & Challenges
Sustaining AI Research Trends
Large-scale machine learning
Deep learning
Reinforcement learning
Robo:cs
Computer vision
Natural Language Processing
Collabora:ve systems
Crowdsourcing and human computa:on
Algorithmic game theory and
computa:onal social choice
Internet of Things (IoT)
Neuromorphic Compu:ng
Research Trends: Quelle hdps://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai100report10032016fnl_singles.pdf
10
AI Challenges
Data quality, bias in data
Design complexity
Ethical by design vs pluralism
of society
Ethical implica:ons
Fragmenta:on &
specialisa:on
General theory of cogni:ve
process missing
Integra:on of techniques
…
Poli=cs & Society Challenges
AI-enabled deep fakes (truth crisis)
AI impact on job market
AI impact on educa:on (purpose crisis)
„AI Race“, geopoli:cs of AI; e.g. China
AI in targe:ng + persuasion (asymmetry
of power)
AI solu:ons for global ecological crisis?
…
…
Watchlist
PAI: hyper-personalized AI
Vsd. Ansätze sind kombinierbar: personalisierter digitaler
Assistent, Digital Twin der Person, Avatar mit Funk:on der
Stellvertretung, Verhandlungsmandat, Analyse der
Verhaltensmuster, instant Coaching, Verhaltenstherapie,
Security/Cybersecurity/Health
XAI: explainable AI, transparency
Wenn AI-Mechanismen nicht nachvollziehbar sind, leidet die
Vertrauenswürdigkeit. Auch die Gesetzgeber stellen neue
Anforderungen. XAI soll die Transparenz herstellen.
QAI: quantum compu=ng based AI
Bes:mmte Berechnungsprobleme in der KI könnten mit
Quanten Compu:ng gelöst werden. Google-Teams forschen
z. B. an Quantum Neural Networks.
Bildrechte/Quelle: hdps://projectpai.com/ - hdps://www.accenture.com/_acnmedia/pdf-85/accenture-understanding-machines-explainable-ai.pdf -
hdps://phys.org/news/2018-02-quantum-algorithm-ai-faster.html - hdps://ai.google/research/teams/applied-science/quantum/
11
Vielen Dank für Ihre Aufmerksamkeit!
Willi Schroll , strategiclabs Berlin
Europa Ins:tut Universität Zürich – 21. digital lecture – 27. August 2018
12
Willi Schroll, strategiclabs Berlin
schroll@strategiclabs.de
1 of 12

More Related Content

What's hot(12)

2014 Biopharmaceutical Partnering Survey2014 Biopharmaceutical Partnering Survey
2014 Biopharmaceutical Partnering Survey
Boston Consulting Group23K views
BP Energy Outlook 2023BP Energy Outlook 2023
BP Energy Outlook 2023
Energy for One World96 views
Sustainable consumptionSustainable consumption
Sustainable consumption
calvano982K views
UZBEKISTAN 2035UZBEKISTAN 2035
UZBEKISTAN 2035
Shilay Andrew2.3K views
How Companies in Emerging Markets Are Winning at HomeHow Companies in Emerging Markets Are Winning at Home
How Companies in Emerging Markets Are Winning at Home
Boston Consulting Group22.8K views
OverpopulationOverpopulation
Overpopulation
craigcarbonneau10K views
Water-Energy-Food Nexus in Ethiopia: Constraints and OpportunitiesWater-Energy-Food Nexus in Ethiopia: Constraints and Opportunities
Water-Energy-Food Nexus in Ethiopia: Constraints and Opportunities
International Food Policy Research Institute (IFPRI)695 views

Similar to Status und Ausblick - Wie wird sich KI technisch weiterentwickeln? Münchner Kreis 2019

State Of AI 2018State Of AI 2018
State Of AI 2018Karthik Murugesan
286 views156 slides

Similar to Status und Ausblick - Wie wird sich KI technisch weiterentwickeln? Münchner Kreis 2019(20)

More from Willi Schroll(20)

IoT and applied Social Capital TheoryIoT and applied Social Capital Theory
IoT and applied Social Capital Theory
Willi Schroll15.8K views
Future data - Die Zukunft der DatenFuture data - Die Zukunft der Daten
Future data - Die Zukunft der Daten
Willi Schroll2.3K views
Augmented Citizen - C2G im Web 3.0Augmented Citizen - C2G im Web 3.0
Augmented Citizen - C2G im Web 3.0
Willi Schroll1.2K views
Schwarm Socialcamp08 SchrollSchwarm Socialcamp08 Schroll
Schwarm Socialcamp08 Schroll
Willi Schroll1.4K views

Recently uploaded(20)

terms_2.pdfterms_2.pdf
terms_2.pdf
JAWADIQBAL4025 views
Greece opens countless opportunities for techiesGreece opens countless opportunities for techies
Greece opens countless opportunities for techies
Abhinav Immigration Services Pvt. Ltd.16 views
Popup Company ProfilePopup Company Profile
Popup Company Profile
Popup Agency7 views
Problem Solving & Visualization ToolsProblem Solving & Visualization Tools
Problem Solving & Visualization Tools
Operational Excellence Consulting (Singapore)37 views
valuation firm.valuation firm.
valuation firm.
NandniDhyani10 views
Tanishq Tanishq
Tanishq
supiriyakithuva11 views
PROGRAMME.pdfPROGRAMME.pdf
PROGRAMME.pdf
HiNedHaJar65 views

Status und Ausblick - Wie wird sich KI technisch weiterentwickeln? Münchner Kreis 2019

  • 1. Status und Ausblick Wie wird sich KI technisch weiterentwickeln? Willi Schroll , strategiclabs Berlin Europa Ins:tut Universität Zürich – 21. digital lecture – 27. August 2018 1 Willi Schroll, strategiclabs Berlin Fachkonferenz Münchner Kreis: Künstliche Intelligenz und die Automa:on des Entscheidens 9. Oktober 2019 – München
  • 2. Foresight – Strategische Zukun3sforschung Convergence of technologies Digital Culture Learning from nature Ubiquitous intelligence New patterns of consumption Globalisation 2.0 Knowledge- based economy Business ecosystems Radical changes to energy and resources Climate change & environmental pollution Urbanisation A new political world order Global risk society New patterns of mobility Transformation of healthcare systems Changing gender roles New level of individualisation Social and cultural disparities Demographic change Endangered biodiversity & ecosystems Cultural convergence & divergence Internet of Everything Nanotech & Biotech Changes to work & management STEEP Dimensionen Monitoring ▻ Daten ▻ Trendanalysen ▻ Szenarien ▻ strategische Implika:onen SOCIETY TECHNOLOGY ECOLOGY ECONOMY POLITICS Bildrechte/Quelle: mapegy.com, Boston Dynamics2
  • 3. KI-Systema:k: Techniken, Funk:onen, Anwendung, Treiber 3 Bio-inspired approaches Classifica:on and regression trees Deep learning Expert system Fuzzy logic Instance-based learning Latent representa:on Logic programming Machine learning Mul:-task learning Neural network Ontology engineering Probabilis:c graphical models Probabilis:c reasoning Reinforcement learning Rule learning Supervised learning Support vector machine Unsupervised learning AItechniques • • • • • • • • • • Quellen: hdps://www.wipo.int/export/sites/www/tech_trends/en/ar:ficial_intelligence/docs/techtrends_ai_glossary.pdf
  • 4. KI-Systema:k: Techniken, Funk:onen, Anwendung, Treiber 4 Bio-inspired approaches Classifica:on and regression trees Deep learning Expert system Fuzzy logic Instance-based learning Latent representa:on Logic programming Machine learning Mul:-task learning Neural network Ontology engineering Probabilis:c graphical models Probabilis:c reasoning Reinforcement learning Rule learning Supervised learning Support vector machine Unsupervised learning Augmented reality Biometrics Character recogni:on Computer vision Distributed AI Image and video segmenta:on Informa:on extrac:on Knowledge representa:on & reasoning Natural language processing Object tracking Planning/scheduling Predic:ve analy:cs Robo:cs Scene understanding Seman:cs Sen:ment analysis Speech processing Speech recogni:on Speaker recogni:on Speech-to-speech applica:on AItechniques AIfunc:onalapplica:ons enabling enabling • • • • • • • • • • Quellen: hdps://www.wipo.int/export/sites/www/tech_trends/en/ar:ficial_intelligence/docs/techtrends_ai_glossary.pdf
  • 5. KI-Systema:k: Techniken, Funk:onen, Anwendung, Treiber 5 Banking and finance Business Document management & publishing Educa:on Entertainment/Gaming Healthcare Home/Service Robots Industry and manufacturing Life and medical sciences Public Safety Security/Cybersecurity Telecommunica:ons Transporta:on/Logis:cs Bio-inspired approaches Classifica:on and regression trees Deep learning Expert system Fuzzy logic Instance-based learning Latent representa:on Logic programming Machine learning Mul:-task learning Neural network Ontology engineering Probabilis:c graphical models Probabilis:c reasoning Reinforcement learning Rule learning Supervised learning Support vector machine Unsupervised learning Augmented reality Biometrics Character recogni:on Computer vision Distributed AI Image and video segmenta:on Informa:on extrac:on Knowledge representa:on & reasoning Natural language processing Object tracking Planning/scheduling Predic:ve analy:cs Robo:cs Scene understanding Seman:cs Sen:ment analysis Speech processing Speech recogni:on Speaker recogni:on Speech-to-speech applica:on AItechniques AIfunc:onalapplica:ons AIapplica:onfields enabling enabling enabling • • • • • • • • • • Quellen: hdps://www.wipo.int/export/sites/www/tech_trends/en/ar:ficial_intelligence/docs/techtrends_ai_glossary.pdf - ergänzend für Spalte 3: hdps://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai100report10032016fnl_singles.pdf (2016)
  • 6. KI-Systema:k: Techniken, Funk:onen, Anwendung, Treiber Quellen: hdps://www.wipo.int/export/sites/www/tech_trends/en/ar:ficial_intelligence/docs/techtrends_ai_glossary.pdf - ergänzend für Spalte 3: hdps://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai100report10032016fnl_singles.pdf 6 Banking and finance Business Document management & publishing Educa:on Entertainment/Gaming Healthcare Home/Service Robots Industry and manufacturing Life and medical sciences Public Safety Security/Cybersecurity Telecommunica:ons Transporta:on/Logis:cs Smart City Smart Gov/Admin Smart Health Smart Home Smart Learning & Educa:on Smart Mobility/MaaS Smart Produc:on/Industrie 4.0 Smart Work Smart X … … Expected Values Context adap:on Personalsa:on Predic:on Process Op:miza:on Targe:ng … Bio-inspired approaches Classifica:on and regression trees Deep learning Expert system Fuzzy logic Instance-based learning Latent representa:on Logic programming Machine learning Mul:-task learning Neural network Ontology engineering Probabilis:c graphical models Probabilis:c reasoning Reinforcement learning Rule learning Supervised learning Support vector machine Unsupervised learning Augmented reality Biometrics Character recogni:on Computer vision Distributed AI Image and video segmenta:on Informa:on extrac:on Knowledge representa:on & reasoning Natural language processing Object tracking Planning/scheduling Predic:ve analy:cs Robo:cs Scene understanding Seman:cs Sen:ment analysis Speech processing Speech recogni:on Speaker recogni:on Speech-to-speech applica:on AItechniques AIfunc:onalapplica:ons AIapplica:onfields AIintegra:on/guidingvisions enabling enabling enabling • • • • • • • • • •
  • 7. 5-Stufen-Modell der Automa:on des Entscheidens Assistenz, Delega=on, Autonomisierung (Bitkom) 1. Assis:ertes Entscheiden 2. Teilweises Entscheiden 3. Geprüoes Entscheiden 4. Delegiertes Entscheiden 5. Autonomes Entscheiden 7 AI-Matrix nach PWC und Autonomiegrade (Grafik modifiziert) Bildrechte/Quelle: hdps://www.pwc.com/gx/en/issues/analy:cs/assets/pwc-ai-analysis- sizing-the-prize-report.pd (2017) Quelle: hdps://www.bitkom.org/sites/default/files/file/import/Bitkom- Leipaden-KI-verstehen-als-Automa:on-des-Entscheidens-2-Mai-2017.pdf (2017)
  • 8. Phasenmodell der KI Übergreifende Trends • Relevanz von Trainingsdaten • Umgebungsdimensionen (mehr Sensoren, Datendurchsatz) • Mensch-Maschinen-Interak:on • Spezialisierung, enge Nischen • Autonomisierung Bildrechte/Quelle: hdps://www.bitkom.org/sites/default/files/file/import/171012-KI-Gipfelpapier-online.pdf (2017), Phasen nach Wahlster (2016) 8 Prozessuale Grundstruktur
  • 9. KI im Kontext der Innova:onsfelder der digitalen Transforma:on Bildrechte: Willi Schroll 2018 9 KI im betrieblichen Einsatz. Bildrechte/Quelle: hdp://cdn.aiindex.org/2018/AI%20Index%202018%20Annua l%20Report.pdf McKinsey „Capabili:es embedded in at least one company func:on (2018)“
  • 10. Research Trends & Challenges Sustaining AI Research Trends Large-scale machine learning Deep learning Reinforcement learning Robo:cs Computer vision Natural Language Processing Collabora:ve systems Crowdsourcing and human computa:on Algorithmic game theory and computa:onal social choice Internet of Things (IoT) Neuromorphic Compu:ng Research Trends: Quelle hdps://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai100report10032016fnl_singles.pdf 10 AI Challenges Data quality, bias in data Design complexity Ethical by design vs pluralism of society Ethical implica:ons Fragmenta:on & specialisa:on General theory of cogni:ve process missing Integra:on of techniques … Poli=cs & Society Challenges AI-enabled deep fakes (truth crisis) AI impact on job market AI impact on educa:on (purpose crisis) „AI Race“, geopoli:cs of AI; e.g. China AI in targe:ng + persuasion (asymmetry of power) AI solu:ons for global ecological crisis? … …
  • 11. Watchlist PAI: hyper-personalized AI Vsd. Ansätze sind kombinierbar: personalisierter digitaler Assistent, Digital Twin der Person, Avatar mit Funk:on der Stellvertretung, Verhandlungsmandat, Analyse der Verhaltensmuster, instant Coaching, Verhaltenstherapie, Security/Cybersecurity/Health XAI: explainable AI, transparency Wenn AI-Mechanismen nicht nachvollziehbar sind, leidet die Vertrauenswürdigkeit. Auch die Gesetzgeber stellen neue Anforderungen. XAI soll die Transparenz herstellen. QAI: quantum compu=ng based AI Bes:mmte Berechnungsprobleme in der KI könnten mit Quanten Compu:ng gelöst werden. Google-Teams forschen z. B. an Quantum Neural Networks. Bildrechte/Quelle: hdps://projectpai.com/ - hdps://www.accenture.com/_acnmedia/pdf-85/accenture-understanding-machines-explainable-ai.pdf - hdps://phys.org/news/2018-02-quantum-algorithm-ai-faster.html - hdps://ai.google/research/teams/applied-science/quantum/ 11
  • 12. Vielen Dank für Ihre Aufmerksamkeit! Willi Schroll , strategiclabs Berlin Europa Ins:tut Universität Zürich – 21. digital lecture – 27. August 2018 12 Willi Schroll, strategiclabs Berlin schroll@strategiclabs.de