Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Talking glasses first seminar

426 views

Published on

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

Talking glasses first seminar

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6. <ul><li>Theoretical Areas
  7. 7. Project Domain</li></ul>Problem Definition<br />Motivations<br />Project Objective<br /><ul><li>Main Objective
  8. 8. Other Objectives</li></ul>Project Methodology<br />Survey<br /><ul><li>Related works
  9. 9. Asking Experts</li></ul>Project Architecture<br />Challenges<br />Tools<br />Time plan <br />References<br />
  10. 10.
  11. 11. Computer Vision<br />
  12. 12. Machine Learning<br />
  13. 13.
  14. 14. Object Classification<br />
  15. 15. Stereo Vision<br />
  16. 16.
  17. 17.
  18. 18.
  19. 19. The primary motivation for our work is helping blind people<br />
  20. 20. Interested<br />In Computer Vision<br />
  21. 21. Interested<br />In Machine Learning<br />
  22. 22.
  23. 23.
  24. 24. Developing object classification system that may be useful for a large scale of applications.<br />Medical systems<br />Surveillancesystems<br />
  25. 25.
  26. 26. Using stereo vision techniques and narration to develop an object recognition system that help blind to independently navigate the surrounding. <br />
  27. 27. Improve segmentation accuracy using depth information.<br />
  28. 28.
  29. 29. “Object Categorization by Learned Universal Visual Dictionary” by Microsoft Research<br />
  30. 30. <ul><li>“This field of research is very interesting, but it needs a lot of work to reach to the goals.” Prof. Dr. Mostafa Gadal-Haqq
  31. 31. “I think your project is somewhat ambitious for a senior project.” Prof. David G. Stork</li></li></ul><li>
  32. 32. Data Acquisition(Stereo Camera)<br />Segmentation<br />Classification<br />Feature Extraction<br />Learned Models<br />Classification<br />Post Processing<br />Depth Estimation<br />Narrator(Text To Speech Engine)<br />
  33. 33.
  34. 34. Partial Occlusion <br />
  35. 35. Segmentation Accuracy<br />
  36. 36. Complex Scene<br />
  37. 37. Scale<br />Illumination<br />Rotation<br />
  38. 38.
  39. 39. Languages<br />C++<br />Open Source<br />OpenCV Library<br />Software<br />Visual Studio 2010 Professional Edition<br />Matlab 2010<br />Hardware<br />Stereo Camera<br />
  40. 40.
  41. 41.
  42. 42.
  43. 43. Books<br />Pattern Classification (2nd Edition) by Richard O. Duda,Peter E. Hart,David G. Stork.<br />Digital Image Processing3rd Ed by Gonzalez and Woods.<br />Computer Vision: Algorithms and Applications by Richard Szeliski, Microsoft Research.<br />Papers<br />Peter Carbonetto, Nando de Freitas, Paul Gustafson and Natalie Thompson. Bayesian feature weighting for unsupervised learning, with application to object recognition.<br />Scott Helmer and David G.Lowe, “Using Stereo for Object Recognition,” International Conference on Robotics and Automation(ICRA), Anchorage, Alaska (May 2010).<br />D. Hoiem, A. Efros, and M. Heber, “Putting Objects In Perspective, ” in CVPR, 2006<br />

×