SlideShare a Scribd company logo

階層ベイズでプロ野球各球団の「本当の強さ」を推定してみる

階層ベイズでプロ野球各球団の「本当の強さ」を推定してみる

1 of 34
Download to read offline
階層ベイズで
プロ野球各球団の
「本当の強さ」を
推定してみる
@who_you_me
2016年
いろいろなことがありました
ショッキングな出来事
http://www.nikkansports.com/baseball/news/1730991.html
(2017年1月8日閲覧)
ちょっと待ってほしい
日本シリーズ勝者 = 一番強いチーム
なのか?

Recommended

StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章
StanとRでベイズ統計モデリング読書会(Osaka.stan) 第6章Shushi Namba
 
順序データでもベイズモデリング
順序データでもベイズモデリング順序データでもベイズモデリング
順序データでもベイズモデリング. .
 
ベイズモデリングで見る因子分析
ベイズモデリングで見る因子分析ベイズモデリングで見る因子分析
ベイズモデリングで見る因子分析Shushi Namba
 
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章nocchi_airport
 
ベイズファクターとモデル選択
ベイズファクターとモデル選択ベイズファクターとモデル選択
ベイズファクターとモデル選択kazutantan
 
Chapter9 一歩進んだ文法(前半)
Chapter9 一歩進んだ文法(前半)Chapter9 一歩進んだ文法(前半)
Chapter9 一歩進んだ文法(前半)itoyan110
 
GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論Koichiro Gibo
 

More Related Content

What's hot

Rで階層ベイズモデル
Rで階層ベイズモデルRで階層ベイズモデル
Rで階層ベイズモデルYohei Sato
 
これからの仮説検証・モデル評価
これからの仮説検証・モデル評価これからの仮説検証・モデル評価
これからの仮説検証・モデル評価daiki hojo
 
階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布についてhoxo_m
 
SEMを用いた縦断データの解析 潜在曲線モデル
SEMを用いた縦断データの解析 潜在曲線モデルSEMを用いた縦断データの解析 潜在曲線モデル
SEMを用いた縦断データの解析 潜在曲線モデルMasaru Tokuoka
 
【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル
【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル
【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデルMasashi Komori
 
Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Takashi J OZAKI
 
あなたの心にBridgeSampling
あなたの心にBridgeSamplingあなたの心にBridgeSampling
あなたの心にBridgeSamplingdaiki hojo
 
重回帰分析で交互作用効果
重回帰分析で交互作用効果重回帰分析で交互作用効果
重回帰分析で交互作用効果Makoto Hirakawa
 
MCMCでマルチレベルモデル
MCMCでマルチレベルモデルMCMCでマルチレベルモデル
MCMCでマルチレベルモデルHiroshi Shimizu
 
Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説Hiroshi Shimizu
 
Stanコードの書き方 中級編
Stanコードの書き方 中級編Stanコードの書き方 中級編
Stanコードの書き方 中級編Hiroshi Shimizu
 
pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話Classi.corp
 
比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!takehikoihayashi
 
心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理する心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理するHiroshi Shimizu
 
階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門shima o
 
一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門Yu Tamura
 
心理学者のためのJASP入門(操作編)[説明文をよんでください]
心理学者のためのJASP入門(操作編)[説明文をよんでください]心理学者のためのJASP入門(操作編)[説明文をよんでください]
心理学者のためのJASP入門(操作編)[説明文をよんでください]daiki hojo
 

What's hot (20)

Rで階層ベイズモデル
Rで階層ベイズモデルRで階層ベイズモデル
Rで階層ベイズモデル
 
これからの仮説検証・モデル評価
これからの仮説検証・モデル評価これからの仮説検証・モデル評価
これからの仮説検証・モデル評価
 
階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について
 
SEMを用いた縦断データの解析 潜在曲線モデル
SEMを用いた縦断データの解析 潜在曲線モデルSEMを用いた縦断データの解析 潜在曲線モデル
SEMを用いた縦断データの解析 潜在曲線モデル
 
【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル
【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル
【読書会資料】『StanとRでベイズ統計モデリング』Chapter12:時間や空間を扱うモデル
 
Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~ Rで計量時系列分析~CRANパッケージ総ざらい~
Rで計量時系列分析~CRANパッケージ総ざらい~
 
あなたの心にBridgeSampling
あなたの心にBridgeSamplingあなたの心にBridgeSampling
あなたの心にBridgeSampling
 
重回帰分析で交互作用効果
重回帰分析で交互作用効果重回帰分析で交互作用効果
重回帰分析で交互作用効果
 
MCMCでマルチレベルモデル
MCMCでマルチレベルモデルMCMCでマルチレベルモデル
MCMCでマルチレベルモデル
 
Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説
 
Stanコードの書き方 中級編
Stanコードの書き方 中級編Stanコードの書き方 中級編
Stanコードの書き方 中級編
 
pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話pymcとpystanでベイズ推定してみた話
pymcとpystanでベイズ推定してみた話
 
比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!
 
心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理する心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理する
 
Stanでガウス過程
Stanでガウス過程Stanでガウス過程
Stanでガウス過程
 
階層ベイズとWAIC
階層ベイズとWAIC階層ベイズとWAIC
階層ベイズとWAIC
 
階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門
 
一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門
 
2 3.GLMの基礎
2 3.GLMの基礎2 3.GLMの基礎
2 3.GLMの基礎
 
心理学者のためのJASP入門(操作編)[説明文をよんでください]
心理学者のためのJASP入門(操作編)[説明文をよんでください]心理学者のためのJASP入門(操作編)[説明文をよんでください]
心理学者のためのJASP入門(操作編)[説明文をよんでください]
 

Viewers also liked

本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~Hisao Soyama
 
『アジャイルデータサイエンス』2章 データ
『アジャイルデータサイエンス』2章 データ『アジャイルデータサイエンス』2章 データ
『アジャイルデータサイエンス』2章 データHisao Soyama
 
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―Hisao Soyama
 
10分でわかるPythonの開発環境
10分でわかるPythonの開発環境10分でわかるPythonの開発環境
10分でわかるPythonの開発環境Hisao Soyama
 
『アジャイルデータサイエンス』1章 理論
『アジャイルデータサイエンス』1章 理論 『アジャイルデータサイエンス』1章 理論
『アジャイルデータサイエンス』1章 理論 Hisao Soyama
 
大学生のTwitter利用に関する定量分析―利用目的とサービス設計の関係―
大学生のTwitter利用に関する定量分析―利用目的とサービス設計の関係―大学生のTwitter利用に関する定量分析―利用目的とサービス設計の関係―
大学生のTwitter利用に関する定量分析―利用目的とサービス設計の関係―Hisao Soyama
 
『オープンソースで学ぶ社会ネットワーク分析』1章 イントロダクション
『オープンソースで学ぶ社会ネットワーク分析』1章 イントロダクション『オープンソースで学ぶ社会ネットワーク分析』1章 イントロダクション
『オープンソースで学ぶ社会ネットワーク分析』1章 イントロダクションHisao Soyama
 
グラフデータベース「Neo4j」の 導入の導入(続き)-Cypherの基本のキ-
 グラフデータベース「Neo4j」の 導入の導入(続き)-Cypherの基本のキ- グラフデータベース「Neo4j」の 導入の導入(続き)-Cypherの基本のキ-
グラフデータベース「Neo4j」の 導入の導入(続き)-Cypherの基本のキ-Hisao Soyama
 
SQL Developerって必要ですか? 株式会社コーソル 河野 敏彦
SQL Developerって必要ですか? 株式会社コーソル 河野 敏彦SQL Developerって必要ですか? 株式会社コーソル 河野 敏彦
SQL Developerって必要ですか? 株式会社コーソル 河野 敏彦CO-Sol for Community
 
グラフデータベース「Neo4j」の 導入の導入
グラフデータベース「Neo4j」の 導入の導入グラフデータベース「Neo4j」の 導入の導入
グラフデータベース「Neo4j」の 導入の導入Hisao Soyama
 
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないPyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないToshihiro Kamishima
 
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Yasutomo Kawanishi
 
学部生向けベイズ統計イントロ(公開版)
学部生向けベイズ統計イントロ(公開版)学部生向けベイズ統計イントロ(公開版)
学部生向けベイズ統計イントロ(公開版)考司 小杉
 
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjpShinichi Nakagawa
 

Viewers also liked (17)

本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
本当に知ってる!? リアルなデータ分析の世界~サイカのエンジニアが語る、話題の技術の「いま」と「未来」~
 
『アジャイルデータサイエンス』2章 データ
『アジャイルデータサイエンス』2章 データ『アジャイルデータサイエンス』2章 データ
『アジャイルデータサイエンス』2章 データ
 
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
Pythonによるソーシャルデータ分析―わたしはこうやって修士号を取得しました―
 
10分でわかるPythonの開発環境
10分でわかるPythonの開発環境10分でわかるPythonの開発環境
10分でわかるPythonの開発環境
 
『アジャイルデータサイエンス』1章 理論
『アジャイルデータサイエンス』1章 理論 『アジャイルデータサイエンス』1章 理論
『アジャイルデータサイエンス』1章 理論
 
大学生のTwitter利用に関する定量分析―利用目的とサービス設計の関係―
大学生のTwitter利用に関する定量分析―利用目的とサービス設計の関係―大学生のTwitter利用に関する定量分析―利用目的とサービス設計の関係―
大学生のTwitter利用に関する定量分析―利用目的とサービス設計の関係―
 
みんなで使おう京都データストア・ワークショップ
みんなで使おう京都データストア・ワークショップみんなで使おう京都データストア・ワークショップ
みんなで使おう京都データストア・ワークショップ
 
Matrix
MatrixMatrix
Matrix
 
『オープンソースで学ぶ社会ネットワーク分析』1章 イントロダクション
『オープンソースで学ぶ社会ネットワーク分析』1章 イントロダクション『オープンソースで学ぶ社会ネットワーク分析』1章 イントロダクション
『オープンソースで学ぶ社会ネットワーク分析』1章 イントロダクション
 
グラフデータベース「Neo4j」の 導入の導入(続き)-Cypherの基本のキ-
 グラフデータベース「Neo4j」の 導入の導入(続き)-Cypherの基本のキ- グラフデータベース「Neo4j」の 導入の導入(続き)-Cypherの基本のキ-
グラフデータベース「Neo4j」の 導入の導入(続き)-Cypherの基本のキ-
 
SQL Developerって必要ですか? 株式会社コーソル 河野 敏彦
SQL Developerって必要ですか? 株式会社コーソル 河野 敏彦SQL Developerって必要ですか? 株式会社コーソル 河野 敏彦
SQL Developerって必要ですか? 株式会社コーソル 河野 敏彦
 
グラフデータベース「Neo4j」の 導入の導入
グラフデータベース「Neo4j」の 導入の導入グラフデータベース「Neo4j」の 導入の導入
グラフデータベース「Neo4j」の 導入の導入
 
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないPyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
 
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
 
学部生向けベイズ統計イントロ(公開版)
学部生向けベイズ統計イントロ(公開版)学部生向けベイズ統計イントロ(公開版)
学部生向けベイズ統計イントロ(公開版)
 
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
野球Hack!~Pythonを用いたデータ分析と可視化 #pyconjp
 
PyMC mcmc
PyMC mcmcPyMC mcmc
PyMC mcmc
 

階層ベイズでプロ野球各球団の「本当の強さ」を推定してみる