Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Determining Highly Suitable/Critical Open Water Habitat for the Eastern Arctic Bowhead Whale  Benjamin Wheeler, Marianne G...
Outline <ul><li>Introduction  </li></ul><ul><ul><li>Background </li></ul></ul><ul><ul><li>Research objectives </li></ul></...
Background <ul><li>Bowhead whales </li></ul><ul><ul><li>Large, slow moving, slow growing baleen whale </li></ul></ul><ul><...
Objectives <ul><li>Address information gap in Bowhead Conservation Strategy </li></ul><ul><li>Address  Species at Risk  ma...
Study Area: Eastern Canadian Arctic [ECA]
Approach <ul><li>What have others done? </li></ul><ul><ul><li>Gregr & Trites 2001 </li></ul></ul><ul><ul><li>Mandleberg 20...
METHODS: Eco-geographical Variables (EGVs) <ul><li>Sea Surface Temperature </li></ul><ul><li>Chlorophyll Concentration </l...
Sea Surface Temperature Chlorophyll Concentration Depth Ice Concentration
METHODS: Available Whale Location Data <ul><li>Inuit Knowledge (NWMB) </li></ul><ul><li>Historical Whaling Data </li></ul>...
Inuit Knowledge
Historic Whaling Kills ~2100 total sighting locations
Private Sector Sightings ~400 total sighting locations
DFO Sightings August 2002-2003 118 total sighting locations
Methods: Modeling & Analyses <ul><li>Needed a model that could handle data that weren’t associated with ‘absence’ informat...
ENFA Theory <ul><li>Ecological niche: how an organism or population responds to the distribution of resources and competit...
<ul><li>Def’n : The location of bowheads as it relates to an EGV; relative to the </li></ul><ul><li>average EGV condition ...
Average conditions Range of EGV condition Count Tolerance/Specialization EGV values at whale locations (niche) Def’n : Nic...
Key Assumptions <ul><ul><li>Open-water whale distribution related to resource availability </li></ul></ul><ul><ul><li>Dist...
Technical Methods <ul><ul><ul><li>Monthly datasets for whale location information </li></ul></ul></ul><ul><ul><ul><li>Norm...
Model Execution, Validation <ul><li>Model execution </li></ul><ul><ul><li>Ran all EGV datasets with bowhead location datas...
RESULTS: Models Produced Using ENFA and Monthly Data Used
Black = Unsuitable Habitat Blue = Marginal Red = Suitable  Yellow = Highly Suitable Grey = land or no data RESULTS: Habita...
JUNE -  High Suitability Combined Models
JULY  -  High Suitability Combined Models
AUGUST  -  High Suitability Combined Models
SEPTEMBER  -  High Suitability Combined Models
OCTOBER  -  High Suitability Combined Models
Definition of Critical Open-Water Bowhead Habitat <ul><li>Premise : habitat more regularly used is more important to bowhe...
Cells Modeled as Highly Suitable for 1 or more Months
Delineation of Critical Open-Water Bowhead Habitat (3+ months High Suitability)
 
Validation using Inuit Traditional Knowledge (late spring to early fall)
<ul><ul><li>Values for 11 models (June to October) ranged from 0.447 to 0.926 </li></ul></ul><ul><ul><li>Suitable bowhead ...
<ul><ul><li>Ice and chlorophyll main EGVs governing specialization (not always consistently) </li></ul></ul><ul><ul><li>Su...
<ul><li>Majority of  the 11 models validated as good </li></ul><ul><li>Missing EGV data, due to ice coverage,  under-repre...
Summary <ul><li>Most models validated as good – therefore good confidence in results </li></ul><ul><li>Practical definitio...
Acknowledgements Alooloo Kautaq , Dr. Gill Ross, Bill Koski (LGL), Dr. Sue Cosens (DFO), Larry Dueck, Holly Cleator (DFO),...
Upcoming SlideShare
Loading in …5
×

Smm Bowhead Critical Habitat V2

715 views

Published on

a presentation I have at Quebec recently (18th biennial SMM)

  • Be the first to comment

  • Be the first to like this

Smm Bowhead Critical Habitat V2

  1. 1. Determining Highly Suitable/Critical Open Water Habitat for the Eastern Arctic Bowhead Whale Benjamin Wheeler, Marianne Gilbert and Stephen Rowe 18 th Biennial Conference Society of Marine Mammalogy Québec City, QC October 16 th , 2009
  2. 2. Outline <ul><li>Introduction </li></ul><ul><ul><li>Background </li></ul></ul><ul><ul><li>Research objectives </li></ul></ul><ul><ul><li>Approach </li></ul></ul><ul><li>Methods </li></ul><ul><ul><li>Available information </li></ul></ul><ul><ul><li>Model, concepts, tools/GIS </li></ul></ul><ul><ul><li>Assumptions </li></ul></ul><ul><li>Results </li></ul><ul><ul><li>Mapping </li></ul></ul><ul><ul><li>Definition of Critical Habitat </li></ul></ul><ul><ul><li>Habitat relationships </li></ul></ul><ul><li>Discussion </li></ul><ul><li>Future Work </li></ul><ul><li>Summary </li></ul>
  3. 3. Background <ul><li>Bowhead whales </li></ul><ul><ul><li>Large, slow moving, slow growing baleen whale </li></ul></ul><ul><ul><li>Circumpolar </li></ul></ul><ul><ul><li>Highly migratory (fasts in winter, feeds in summer) </li></ul></ul><ul><ul><li>Pagophilic (ice loving) </li></ul></ul><ul><ul><li>Historically heavily exploited </li></ul></ul><ul><ul><li>1 vs 2 groups in eastern Canada? </li></ul></ul><ul><ul><li>Conservation status </li></ul></ul><ul><ul><ul><li>1 group endangered ; 1 threatened 2004 </li></ul></ul></ul><ul><ul><ul><li>1 group special concern (COSEWIC 2009) </li></ul></ul></ul><ul><li>Recovery Planning </li></ul><ul><ul><li>Inuit Traditional Bowhead Study (1995-2000) </li></ul></ul><ul><ul><li>Bowhead Conservation Strategy (NWMB, DFO, WWF) (~1999 – 2003) </li></ul></ul><ul><ul><li>National Eastern Arctic Bowhead Recovery Team (2005 - ?) </li></ul></ul>
  4. 4. Objectives <ul><li>Address information gap in Bowhead Conservation Strategy </li></ul><ul><li>Address Species at Risk mandate of critical habitat </li></ul>Main Goals: <ul><ul><li>produce map(s) of coastal areas that are Critical Habitat ( patterns ) </li></ul></ul><ul><ul><li>describing relationships between known bowhead locations and environmental variables ( processes ) </li></ul></ul>Sub Goals:
  5. 5. Study Area: Eastern Canadian Arctic [ECA]
  6. 6. Approach <ul><li>What have others done? </li></ul><ul><ul><li>Gregr & Trites 2001 </li></ul></ul><ul><ul><li>Mandleberg 2004 </li></ul></ul><ul><ul><li>Compton 2004 </li></ul></ul><ul><ul><li>Cañadas et al. 2005 </li></ul></ul><ul><li>Consulted expert panel (SMM San Diego, 2006) </li></ul><ul><ul><li>“ look to your data for answers” </li></ul></ul><ul><li>Obtained eco-geographical variable [EGV] and whale location datasets </li></ul><ul><li>Looked to our data for answers </li></ul><ul><li>Selected suitable modeling method based on available data </li></ul><ul><li>Produced models and conducted statistical analyses </li></ul><ul><li>Validated results and developed synthesized map of high suitability habitat </li></ul>
  7. 7. METHODS: Eco-geographical Variables (EGVs) <ul><li>Sea Surface Temperature </li></ul><ul><li>Chlorophyll Concentration </li></ul><ul><li>Ice </li></ul><ul><li>Water Depth </li></ul><ul><li>Slope </li></ul><ul><li>Distance to Shore </li></ul>
  8. 8. Sea Surface Temperature Chlorophyll Concentration Depth Ice Concentration
  9. 9. METHODS: Available Whale Location Data <ul><li>Inuit Knowledge (NWMB) </li></ul><ul><li>Historical Whaling Data </li></ul><ul><li>Industry Sector Survey Data </li></ul><ul><li>DFO Aerial Survey Data </li></ul>
  10. 10. Inuit Knowledge
  11. 11. Historic Whaling Kills ~2100 total sighting locations
  12. 12. Private Sector Sightings ~400 total sighting locations
  13. 13. DFO Sightings August 2002-2003 118 total sighting locations
  14. 14. Methods: Modeling & Analyses <ul><li>Needed a model that could handle data that weren’t associated with ‘absence’ information </li></ul><ul><li>Chose ENFA (Ecological Niche Factor Analysis): Biomapper v. 3.2 (Hirzel et al. 2006a): </li></ul><ul><ul><li>Doesn’t require presence & absence data – only presence </li></ul></ul><ul><ul><li>Has been used with datasets similar to the historic whaling </li></ul></ul><ul><ul><li>Is GIS based and includes statistical tools to build habitat suitability models and maps </li></ul></ul><ul><ul><li>Downside: can only predict Highly Suitable Habitat within the general study area in which whale locations were collected </li></ul></ul>
  15. 15. ENFA Theory <ul><li>Ecological niche: how an organism or population responds to the distribution of resources and competitors </li></ul><ul><li>Habitat Suitability maps computed by fitting some statistical or numerical model on environmental data and species distribution data </li></ul><ul><li>ENFA’s principle is to compare EGV distribution for the presence data set ( bowhead distributions ) to that of the whole area </li></ul><ul><li>Like Principal Component Analysis, the ENFA summarises many EGV into a few uncorrelated factors retaining most of the information. But here, the factors have an ecological meaning . </li></ul><ul><ul><li>Marginality </li></ul></ul><ul><ul><li>Tolerance/Specialization </li></ul></ul>
  16. 16. <ul><li>Def’n : The location of bowheads as it relates to an EGV; relative to the </li></ul><ul><li>average EGV condition [0 = low marginality; 1 = high marginality] </li></ul>Marginality Average conditions Range of EGV condition Count EGV values at whale locations (niche)
  17. 17. Average conditions Range of EGV condition Count Tolerance/Specialization EGV values at whale locations (niche) Def’n : Niche breadth More picky Not too picky
  18. 18. Key Assumptions <ul><ul><li>Open-water whale distribution related to resource availability </li></ul></ul><ul><ul><li>Distribution of bowhead prey governed by oceanographic processes </li></ul></ul><ul><ul><li>Bowheads not typically found in heavy ice during open water period </li></ul></ul><ul><ul><li>Available whale positions of sufficient accuracy to reflect large-scale trends </li></ul></ul><ul><ul><li>Spatial patterns of whale positions not artifacts of whaling or survey effort </li></ul></ul><ul><ul><li>Recent environmental conditions were the same for the entire timeframe of whale locations used </li></ul></ul>
  19. 19. Technical Methods <ul><ul><ul><li>Monthly datasets for whale location information </li></ul></ul></ul><ul><ul><ul><li>Normalized environmental data using Box-Cox algorithm (Hirzel and Arlettaz 2003) where possible </li></ul></ul></ul><ul><ul><ul><li>IDRISI raster, 10-km grid </li></ul></ul></ul><ul><ul><ul><li>Assigned values of each EGV to grid cells in study areas using ArcGIS </li></ul></ul></ul><ul><ul><ul><li>Biomapper distance geometric mean algorithm </li></ul></ul></ul><ul><ul><ul><li>4 bins used in Biomapper for definition of HS habitat </li></ul></ul></ul><ul><ul><ul><ul><li>0-25% = unsuitable habitat </li></ul></ul></ul></ul><ul><ul><ul><ul><li>25-50% = marginal habitat </li></ul></ul></ul></ul><ul><ul><ul><ul><li>50-75% = suitable habitat </li></ul></ul></ul></ul><ul><ul><ul><ul><li>75-100% = highly suitable habitat </li></ul></ul></ul></ul>
  20. 20. Model Execution, Validation <ul><li>Model execution </li></ul><ul><ul><li>Ran all EGV datasets with bowhead location datasets </li></ul></ul><ul><ul><li>June, July, August, September & October </li></ul></ul><ul><li>Cross-validation </li></ul><ul><ul><li>Jack-knife procedure; used bowhead locations, Spearman rank coefficient/Boyce Index </li></ul></ul><ul><ul><li>Visual validation with Inuit Traditional Knowledge </li></ul></ul>
  21. 21. RESULTS: Models Produced Using ENFA and Monthly Data Used
  22. 22. Black = Unsuitable Habitat Blue = Marginal Red = Suitable Yellow = Highly Suitable Grey = land or no data RESULTS: Habitat Suitability Maps e.g. July Habitat Suitability Map for Historical Whaling Data Model
  23. 23. JUNE - High Suitability Combined Models
  24. 24. JULY - High Suitability Combined Models
  25. 25. AUGUST - High Suitability Combined Models
  26. 26. SEPTEMBER - High Suitability Combined Models
  27. 27. OCTOBER - High Suitability Combined Models
  28. 28. Definition of Critical Open-Water Bowhead Habitat <ul><li>Premise : habitat more regularly used is more important to bowheads </li></ul><ul><li>Each 10x10km grid cell coded per month noted as highly suitable (of 5 months) </li></ul><ul><li>Areas denoted as Highly Suitable for 3+ months of open-water period are Critical Habitat </li></ul>Number of Months cell coded as Highly Suitable Relative Value of Highly Suitable Habitat 0 1 2 3 4 5
  29. 29. Cells Modeled as Highly Suitable for 1 or more Months
  30. 30. Delineation of Critical Open-Water Bowhead Habitat (3+ months High Suitability)
  31. 32. Validation using Inuit Traditional Knowledge (late spring to early fall)
  32. 33. <ul><ul><li>Values for 11 models (June to October) ranged from 0.447 to 0.926 </li></ul></ul><ul><ul><li>Suitable bowhead habitat differs considerably from average conditions </li></ul></ul><ul><ul><li>Primary variable governing marginality: </li></ul></ul><ul><ul><ul><li>Distance from shore </li></ul></ul></ul>Results: Marginality Trends
  33. 34. <ul><ul><li>Ice and chlorophyll main EGVs governing specialization (not always consistently) </li></ul></ul><ul><ul><li>Suitable bowhead habitat potentially within narrower ranges of ice and chlorophyll conditions than for other EGVs </li></ul></ul>Results: Tolerance Trends
  34. 35. <ul><li>Majority of the 11 models validated as good </li></ul><ul><li>Missing EGV data, due to ice coverage, under-represents HS habitat (i.e., Foxe Basin, PR Inlet) </li></ul><ul><li>Distance to shore identified as key EGV - may be biased by survey/whaling effort </li></ul><ul><li>Critical Habitat likely under-represented : 1 or 2 months </li></ul><ul><li>Scientific literature supports several areas identified as critical habitat </li></ul><ul><li>Critical habitat identified in south of the ECA not supported by recent observations of bowheads or literature (may over-represent Critical Habitat) </li></ul>Discussion
  35. 36. Summary <ul><li>Most models validated as good – therefore good confidence in results </li></ul><ul><li>Practical definition of Critical Habitat based on ecological theory </li></ul><ul><li>Useful approach and tool for management and planning </li></ul>Future Work <ul><li>Integrate satellite tagging results & future sources of bowhead location data </li></ul><ul><li>Integrate oceanography (tides, currents) </li></ul><ul><li>Use to predict effects of climate change (i.e., change SST based on GCMs) </li></ul><ul><li>“ zoom in” resolution and use to understand finer scale ecological and oceanographic processes </li></ul><ul><li>Weight whale location datasets </li></ul>
  36. 37. Acknowledgements Alooloo Kautaq , Dr. Gill Ross, Bill Koski (LGL), Dr. Sue Cosens (DFO), Larry Dueck, Holly Cleator (DFO), Mads Peter Heide-Jorgensen, John Iacozza (UofW), Jeff Higdon (DFO) members of the Eastern Arctic Bowhead Recovery Team, and the many Inuit that contributed bowhead IQ. Pete Ewins and WWF Canada are thanked for their support and funding.

×