
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on December 1, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
Passive sensing of the 3D geometric posture of the human hand has been studied extensively over the past decade. However, these research efforts have been hampered by the computational complexity caused by inverse kinematics and 3D reconstruction. In this paper, our objective focuses on 3D hand posture estimation based on a single 2D image with aim of robotic applications. We introduce the human hand model with 27 degrees of freedom (DOFs) and analyze some of its constraints to reduce the DOFs without any significant degradation of performance. A novel algorithm to estimate the 3D hand posture from eight 2D projected feature points is proposed. Experimental results using real images confirm that our algorithm gives good estimates of the 3D hand pose. Keywords: 3D hand posture estimation; Modelbased approach; Gesture recognition; human computer interface; machine vision.
Be the first to like this