Chemistry - Chp 5 - Electrons In Atoms - Powerpoint


Published on

Published in: Education, Technology
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Chemistry - Chp 5 - Electrons In Atoms - Powerpoint

  1. 1. Chapter 5 “Electrons in Atoms”
  2. 2. Section 5.1 Models of the Atom <ul><li>OBJECTIVES: </li></ul><ul><ul><li>Identify the inadequacies in the Rutherford atomic model. </li></ul></ul>
  3. 3. Section 5.1 Models of the Atom <ul><li>OBJECTIVES: </li></ul><ul><ul><li>Identify the new proposal in the Bohr model of the atom. </li></ul></ul>
  4. 4. Section 5.1 Models of the Atom <ul><li>OBJECTIVES: </li></ul><ul><ul><li>Describe the energies and positions of electrons according to the quantum mechanical model. </li></ul></ul>
  5. 5. Section 5.1 Models of the Atom <ul><li>OBJECTIVES: </li></ul><ul><ul><li>Describe how the shapes of orbitals related to different sublevels differ. </li></ul></ul>
  6. 6. Ernest Rutherford’s Model <ul><li>Discovered dense positive piece at the center of the atom- “nucleus” </li></ul><ul><li>Electrons would surround and move around it, like planets around the sun </li></ul><ul><li>Atom is mostly empty space </li></ul><ul><li>It did not explain the chemical properties of the elements – a better description of the electron behavior was needed </li></ul>
  7. 7. Niels Bohr’s Model <ul><li>Why don’t the electrons fall into the nucleus? </li></ul><ul><li>Move like planets around the sun. </li></ul><ul><ul><li>In specific circular paths, or orbits, at different levels. </li></ul></ul><ul><ul><li>An amount of fixed energy separates one level from another. </li></ul></ul>
  8. 8. The Bohr Model of the Atom Niels Bohr I pictured the electrons orbiting the nucleus much like planets orbiting the sun. However, electrons are found in specific circular paths around the nucleus, and can jump from one level to another .
  9. 9. Bohr’s model <ul><li>Energy level of an electron </li></ul><ul><ul><li>analogous to the rungs of a ladder </li></ul></ul><ul><li>The electron cannot exist between energy levels, just like you can’t stand between rungs on a ladder </li></ul><ul><li>A quantum of energy is the amount of energy required to move an electron from one energy level to another </li></ul>
  10. 10. The Quantum Mechanical Model <ul><li>Energy is “quantized” - It comes in chunks. </li></ul><ul><li>A quantum is the amount of energy needed to move from one energy level to another. </li></ul><ul><li>Since the energy of an atom is never “in between” there must be a quantum leap in energy. </li></ul><ul><li>In 1926, Erwin Schrodinger derived an equation that described the energy and position of the electrons in an atom </li></ul>
  11. 11. Schrodinger’s Wave Equation Equation for the probability of a single electron being found along a single axis (x-axis) Erwin Schrodinger Erwin Schrodinger
  12. 12. <ul><li>Things that are very small behave differently from things big enough to see. </li></ul><ul><li>The quantum mechanical model is a mathematical solution </li></ul><ul><li>It is not like anything you can see (like plum pudding!) </li></ul>The Quantum Mechanical Model
  13. 13. <ul><li>Has energy levels for electrons. </li></ul><ul><li>Orbits are not circular. </li></ul><ul><li>It can only tell us the probability of finding an electron a certain distance from the nucleus. </li></ul>The Quantum Mechanical Model
  14. 14. <ul><li>The atom is found inside a blurry “electron cloud” </li></ul><ul><li>An area where there is a chance of finding an electron. </li></ul><ul><li>Think of fan blades </li></ul>The Quantum Mechanical Model
  15. 15. Atomic Orbitals <ul><li>Principal Quantum Number (n) = the energy level of the electron: 1, 2, 3, etc. </li></ul><ul><li>Within each energy level, the complex math of Schrodinger’s equation describes several shapes. </li></ul><ul><li>These are called atomic orbitals (coined by scientists in 1932) - regions where there is a high probability of finding an electron. </li></ul><ul><li>Sublevels- like theater seats arranged in sections: letters s, p, d, and f </li></ul>
  16. 16. Principal Quantum Number Generally symbolized by “n”, it denotes the shell (energy level) in which the electron is located. Maximum number of electrons that can fit in an energy level is: 2n 2 How many e - in level 2? 3?
  17. 17. Summary s p d f # of shapes (orbitals) Maximum electrons Starts at energy level 1 2 1 3 6 2 5 10 3 7 14 4
  18. 18. By Energy Level <ul><li>First Energy Level </li></ul><ul><li>Has only s orbital </li></ul><ul><li>only 2 electrons </li></ul><ul><li>1s 2 </li></ul><ul><li>Second Energy Level </li></ul><ul><li>Has s and p orbitals available </li></ul><ul><li>2 in s, 6 in p </li></ul><ul><li>2s 2 2p 6 </li></ul><ul><li>8 total electrons </li></ul>
  19. 19. By Energy Level <ul><li>Third energy level </li></ul><ul><li>Has s, p, and d orbitals </li></ul><ul><li>2 in s, 6 in p, and 10 in d </li></ul><ul><li>3s 2 3p 6 3d 10 </li></ul><ul><li>18 total electrons </li></ul><ul><li>Fourth energy level </li></ul><ul><li>Has s, p, d, and f orbitals </li></ul><ul><li>2 in s, 6 in p, 10 in d, and 14 in f </li></ul><ul><li>4s 2 4p 6 4d 10 4f 14 </li></ul><ul><li>32 total electrons </li></ul>
  20. 20. By Energy Level <ul><li>Any more than the fourth and not all the orbitals will fill up. </li></ul><ul><li>You simply run out of electrons </li></ul><ul><li>The orbitals do not fill up in a neat order. </li></ul><ul><li>The energy levels overlap </li></ul><ul><li>Lowest energy fill first. </li></ul>
  21. 21. Section 5.2 Electron Arrangement in Atoms <ul><li>OBJECTIVES: </li></ul><ul><ul><li>Describe how to write the electron configuration for an atom. </li></ul></ul>
  22. 22. Section 5.2 Electron Arrangement in Atoms <ul><li>OBJECTIVES: </li></ul><ul><ul><li>Explain why the actual electron configurations for some elements differ from those predicted by the aufbau principle. </li></ul></ul>
  23. 23. aufbau diagram - page 133 Aufbau is German for “building up” Increasing energy 1s 2s 3s 4s 5s 6s 7s 2p 3p 4p 5p 6p 3d 4d 5d 7p 6d 4f 5f
  24. 24. Electron Configurations… <ul><li>… are the way electrons are arranged in various orbitals around the nuclei of atoms. Three rules tell us how: </li></ul><ul><li>Aufbau principle - electrons enter the lowest energy first. </li></ul><ul><ul><li>This causes difficulties because of the overlap of orbitals of different energies – follow the diagram! </li></ul></ul><ul><li>Pauli Exclusion Principle - at most 2 electrons per orbital - different spins </li></ul>
  25. 25. Pauli Exclusion Principle No two electrons in an atom can have the same four quantum numbers. Wolfgang Pauli To show the different direction of spin, a pair in the same orbital is written as:
  26. 26. Quantum Numbers Each electron in an atom has a unique set of 4 quantum numbers which describe it. <ul><li>Principal quantum number </li></ul><ul><li>Angular momentum quantum number </li></ul><ul><li>Magnetic quantum number </li></ul><ul><li>Spin quantum number </li></ul>
  27. 27. Electron Configurations <ul><li>Hund’s Rule- When electrons occupy orbitals of equal energy, they don’t pair up until they have to. </li></ul><ul><li>Let’s write the electron configuration for Phosphorus </li></ul><ul><ul><li>We need to account for all 15 electrons in phosphorus </li></ul></ul>
  28. 28. <ul><li>The first two electrons go into the 1s orbital </li></ul><ul><li>Notice the opposite direction of the spins </li></ul><ul><li>only 13 more to go... </li></ul>Increasing energy 1s 2s 3s 4s 5s 6s 7s 2p 3p 4p 5p 6p 3d 4d 5d 7p 6d 4f 5f
  29. 29. <ul><li>The next electrons go into the 2s orbital </li></ul><ul><li>only 11 more... </li></ul>Increasing energy 1s 2s 3s 4s 5s 6s 7s 2p 3p 4p 5p 6p 3d 4d 5d 7p 6d 4f 5f
  30. 30. <ul><li>The next electrons go into the 2p orbital </li></ul><ul><li>only 5 more... </li></ul>Increasing energy 1s 2s 3s 4s 5s 6s 7s 2p 3p 4p 5p 6p 3d 4d 5d 7p 6d 4f 5f
  31. 31. <ul><li>The next electrons go into the 3s orbital </li></ul><ul><li>only 3 more... </li></ul>Increasing energy 1s 2s 3s 4s 5s 6s 7s 2p 3p 4p 5p 6p 3d 4d 5d 7p 6d 4f 5f
  32. 32. <ul><li>The last three electrons go into the 3p orbitals. </li></ul><ul><li>They each go into separate shapes (Hund’s) </li></ul><ul><li>3 unpaired electrons </li></ul><ul><li>= 1s 2 2s 2 2p 6 3s 2 3p 3 </li></ul>Orbital notation Increasing energy 1s 2s 3s 4s 5s 6s 7s 2p 3p 4p 5p 6p 3d 4d 5d 7p 6d 4f 5f
  33. 33. <ul><li>An internet program about electron configurations is: </li></ul><ul><li>Electron Configurations </li></ul><ul><li>(Just click on the above link) </li></ul>
  34. 34. Orbitals fill in an order <ul><li>Lowest energy to higher energy. </li></ul><ul><li>Adding electrons can change the energy of the orbital. Full orbitals are the absolute best situation. </li></ul><ul><li>However, half filled orbitals have a lower energy, and are next best </li></ul><ul><ul><li>Makes them more stable. </li></ul></ul><ul><ul><li>Changes the filling order </li></ul></ul>
  35. 35. Write the electron configurations for these elements: <ul><li>Titanium - 22 electrons </li></ul><ul><ul><li>1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2 </li></ul></ul><ul><li>Vanadium - 23 electrons </li></ul><ul><ul><li>1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3 </li></ul></ul><ul><li>Chromium - 24 electrons </li></ul><ul><ul><li>1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 4 (expected) </li></ul></ul><ul><ul><li>But this is not what happens!! </li></ul></ul>
  36. 36. Chromium is actually: <ul><li>1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 </li></ul><ul><li>Why? </li></ul><ul><li>This gives us two half filled orbitals (the others are all still full) </li></ul><ul><li>Half full is slightly lower in energy. </li></ul><ul><li>The same principal applies to copper. </li></ul>
  37. 37. Copper’s electron configuration <ul><li>Copper has 29 electrons so we expect: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 9 </li></ul><ul><li>But the actual configuration is: </li></ul><ul><li>1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 </li></ul><ul><li>This change gives one more filled orbital and one that is half filled. </li></ul><ul><li>Remember these exceptions: d 4 , d 9 </li></ul>
  38. 38. Irregular configurations of Cr and Cu Chromium steals a 4s electron to make its 3d sublevel HALF FULL Copper steals a 4s electron to FILL its 3d sublevel
  39. 39. Valence Electrons <ul><li>Only certain electrons, called valence electrons , determine the chemical properties of an element </li></ul><ul><li>Valence Electrons – electrons in in the atom’s outermost orbitals – generally those orbitals associated with the atom’s highest principal energy level </li></ul>
  40. 40. Valence Electrons <ul><li>For example sulfur contains 16 electrons, only six of which occupy the outermost 3s and 3p orbitals </li></ul><ul><li>S = 1s 2 2s 2 2p 6 3s 2 3p 4 </li></ul><ul><li>S [Ne] 3s 2 3p 4 </li></ul>
  41. 41. Valence Electrons <ul><li>Although a Cesium atom contains 55 electrons, it has only one valence electron </li></ul><ul><li>Cs [Xe]6s 1 </li></ul><ul><li>Francium, which belongs to the same group also has one valence electron </li></ul><ul><li>Fr [Rn]7s 1 </li></ul>
  42. 42. Electron-dot structures aka – Lewis Dot Structures <ul><li>Because valaence electrons are involved with forming bonds, chemists represent them visually using an electron-dot structure diagram </li></ul><ul><li>Electron-dot structure – consists of the element’s symbol, which represents the atomic nucleus and inner-level electrons surrounded by dots representing the atom’s valence electrons </li></ul>
  43. 43. How to write an electron-dot structure <ul><li>Place dots representing valence electrons one at a time on the four sides of the symbol (they may be placed in any sequence) </li></ul><ul><li>Then pair up electrons until all are used </li></ul>
  44. 44. Ne F O N C B Be Li e - Dot-diagram 1s 2 2s 2 2p 6 1s 2 2s 2 2p 5 1s 2 2s 2 2p 4 1s 2 2s 2 2p 3 1s 2 2s 2 2p 2 1s 2 2s 2 2p 1 1s 2 2s 2 1s 2 2s 1 Electron Config. 10 9 8 7 6 5 4 3 Atomic # Lithium Neon Flourine Oxygen Nitrogen Carbon Boron Berylium Element
  45. 45. Practice <ul><li>Draw electron-dot structures for atoms of the following elements. </li></ul><ul><li>Magnesium </li></ul><ul><li>Sulfur </li></ul><ul><li>Bromine </li></ul><ul><li>Rubidium </li></ul><ul><li>Thallium </li></ul><ul><li>Xenon </li></ul><ul><li>Tin </li></ul>
  46. 46. Section 5.3 Physics and the Quantum Mechanical Model <ul><li>OBJECTIVES: </li></ul><ul><ul><li>Describe the relationship between the wavelength and frequency of light. </li></ul></ul>
  47. 47. Section 5.3 Physics and the Quantum Mechanical Model <ul><li>OBJECTIVES: </li></ul><ul><ul><li>Identify the source of atomic emission spectra. </li></ul></ul>
  48. 48. Section 5.3 Physics and the Quantum Mechanical Model <ul><li>OBJECTIVES: </li></ul><ul><ul><li>Explain how the frequencies of emitted light are related to changes in electron energies. </li></ul></ul>
  49. 49. Section 5.3 Physics and the Quantum Mechanical Model <ul><li>OBJECTIVES: </li></ul><ul><ul><li>Distinguish between quantum mechanics and classical mechanics. </li></ul></ul>
  50. 50. Light <ul><li>The study of light led to the development of the quantum mechanical model. </li></ul><ul><li>Light is a kind of electromagnetic radiation. </li></ul><ul><li>Electromagnetic radiation includes many types: gamma rays, x-rays, radio waves… </li></ul><ul><li>Speed of light = 2.998 x 10 8 m/s, and is abbreviated “c” </li></ul><ul><li>All electromagnetic radiation travels at this same rate when measured in a vacuum </li></ul>
  51. 51. - Page 139 “ R O Y G B I V” Frequency Increases Wavelength Longer
  52. 52. Parts of a wave Origin Wavelength Amplitude Crest Trough
  53. 53. Electromagnetic radiation propagates through space as a wave moving at the speed of light. Equation: c =  c = speed of light, a constant (2.998 x 10 8 m/s)  (nu) = frequency, in units of hertz (hz or sec -1 )  (lambda) = wavelength, in meters
  54. 54. Wavelength and Frequency <ul><li>Are inversely related </li></ul><ul><ul><li>As one goes up the other goes down. </li></ul></ul><ul><li>Different frequencies of light are different colors of light. </li></ul><ul><li>There is a wide variety of frequencies </li></ul><ul><li>The whole range is called a spectrum </li></ul>
  55. 55. - Page 140 Use Equation: c = 
  56. 56. Radiowaves Microwaves Infrared . Ultra-violet X-Rays GammaRays Long Wavelength Short Wavelength Visible Light Low Energy High Energy Low Frequency High Frequency
  57. 57. Wavelength Table Long Wavelength = Low Frequency = Low ENERGY Short Wavelength = High Frequency = High ENERGY
  58. 58. Atomic Spectra <ul><li>White light is made up of all the colors of the visible spectrum. </li></ul><ul><li>Passing it through a prism separates it. </li></ul>
  59. 59. If the light is not white <ul><li>By heating a gas with electricity we can get it to give off colors. </li></ul><ul><li>Passing this light through a prism does something different. </li></ul>
  60. 60. Atomic Spectrum <ul><li>Each element gives off its own characteristic colors. </li></ul><ul><li>Can be used to identify the atom. </li></ul><ul><li>This is how we know what stars are made of. </li></ul>
  61. 61. <ul><li>These are called the atomic emission spectrum </li></ul><ul><li>Unique to each element, like fingerprints! </li></ul><ul><li>Very useful for identifying elements </li></ul>
  62. 62. Light is a Particle? <ul><li>Energy is quantized. </li></ul><ul><li>Light is a form of energy. </li></ul><ul><li>Therefore, light must be quantized </li></ul><ul><li>These smallest pieces of light are called photons . </li></ul><ul><li>Photoelectric effect? Albert Einstein </li></ul><ul><li>Energy & frequency: directly related. </li></ul>
  63. 63. The energy ( E ) of electromagnetic radiation is directly proportional to the frequency (  ) of the radiation. Equation: E = h  E = Energy, in units of Joules (kg·m 2 /s 2 ) (Joule is the metric unit of energy) h = Planck’s constant (6.626 x 10 -34 J·s)  = frequency, in units of hertz (hz, sec -1 )
  64. 64. The Math in Chapter 5 <ul><li>There are 2 equations: </li></ul><ul><li>c =  </li></ul><ul><li>E = h  </li></ul><ul><li>Know these! </li></ul>
  65. 65. Examples <ul><li>What is the wavelength of blue light with a frequency of 8.3 x 10 15 hz? </li></ul><ul><li>What is the frequency of red light with a wavelength of 4.2 x 10 -5 m? </li></ul><ul><li>What is the energy of a photon of each of the above? </li></ul>
  66. 66. Explanation of atomic spectra <ul><li>When we write electron configurations, we are writing the lowest energy. </li></ul><ul><li>The energy level, and where the electron starts from, is called it’s ground state - the lowest energy level. </li></ul>
  67. 67. Changing the energy <ul><li>Let’s look at a hydrogen atom, with only one electron , and in the first energy level. </li></ul>
  68. 68. <ul><li>Heat, electricity, or light can move the electron up to different energy levels. The electron is now said to be “ excited ” </li></ul>Changing the energy
  69. 69. <ul><li>As the electron falls back to the ground state, it gives the energy back as light </li></ul>Changing the energy
  70. 70. Experiment #6, page 49-
  71. 71. <ul><li>They may fall down in specific steps </li></ul><ul><li>Each step has a different energy </li></ul>Changing the energy
  72. 72. { { {
  73. 73. <ul><li>The further they fall, more energy is released and the higher the frequency. </li></ul><ul><li>This is a simplified explanation! </li></ul><ul><li>The orbitals also have different energies inside energy levels </li></ul><ul><li>All the electrons can move around. </li></ul>Ultraviolet Visible Infrared
  74. 74. What is light? <ul><li>Light is a particle - it comes in chunks. </li></ul><ul><li>Light is a wave - we can measure its wavelength and it behaves as a wave </li></ul><ul><li>If we combine E=mc 2 , c=  , E = 1/2 mv 2 and E = h   then we can get:  </li></ul><ul><ul><li> = h/mv (from Louis de Broglie) </li></ul></ul><ul><li>called de Broglie’s equation </li></ul><ul><li>Calculates the wavelength of a particle. </li></ul>
  75. 75. Wave-Particle Duality J.J. Thomson won the Nobel prize for describing the electron as a particle . His son, George Thomson won the Nobel prize for describing the wave-like nature of the electron. The electron is a particle! The electron is an energy wave!
  76. 76. Confused? You’ve Got Company! “ No familiar conceptions can be woven around the electron; something unknown is doing we don’t know what .” Physicist Sir Arthur Eddington The Nature of the Physical World 1934
  77. 77. The physics of the very small <ul><li>Quantum mechanics explains how very small particles behave </li></ul><ul><ul><li>Quantum mechanics is an explanation for subatomic particles and atoms as waves </li></ul></ul><ul><li>Classical mechanics describes the motions of bodies much larger than atoms </li></ul>
  78. 78. Heisenberg Uncertainty Principle <ul><li>It is impossible to know exactly the location and velocity of a particle. </li></ul><ul><li>The better we know one, the less we know the other. </li></ul><ul><li>Measuring changes the properties. </li></ul><ul><li>True in quantum mechanics, but not classical mechanics </li></ul>
  79. 79. Heisenberg Uncertainty Principle You can find out where the electron is, but not where it is going. OR… You can find out where the electron is going, but not where it is! “ One cannot simultaneously determine both the position and momentum of an electron.” Werner Heisenberg
  80. 80. It is more obvious with the very small objects <ul><li>To measure where a electron is, we use light. </li></ul><ul><li>But the light energy moves the electron </li></ul><ul><li>And hitting the electron changes the frequency of the light. </li></ul>
  81. 81. Moving Electron Photon Before Electron velocity changes Photon wavelength changes After Fig. 5.16, p. 145
  82. 82. End of Chapter 5