Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Molbiol 2011-04-metabolism

279 views

Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Molbiol 2011-04-metabolism

  1. 1. ЛЕКЦИЯ 3-2 <ul><li>Метаболизм </li></ul>
  2. 2. <ul><li>Metabolism: The sum of the chemical reactions in an organism </li></ul><ul><li>Catabolism: The energy-releasing processes </li></ul><ul><li>Anabolism: The energy-using processes </li></ul>Microbial Metabolism
  3. 3. Microbial Metabolism <ul><li>Catabolism provides the building blocks and energy for anabolism. </li></ul>Figure 5.1
  4. 4. <ul><li>A metabolic pathway is a sequence of enzymatically catalyzed chemical reactions in a cell. </li></ul><ul><li>Metabolic pathways are determined by enzymes. </li></ul><ul><li>Enzymes are encoded by genes. </li></ul>PLAY Animation: Metabolic Pathways (Overview)
  5. 5. <ul><li>The collision theory states that chemical reactions can occur when atoms, ions, and molecules collide. </li></ul><ul><li>Activation energy is needed to disrupt electronic configurations. </li></ul><ul><li>Reaction rate is the frequency of collisions with enough energy to bring about a reaction. </li></ul><ul><li>Reaction rate can be increased by enzymes or by increasing temperature or pressure. </li></ul>
  6. 6. Enzymes Figure 5.2
  7. 7. Enzymes <ul><li>Biological catalysts </li></ul><ul><ul><li>Specific for a chemical reaction; not used up in that reaction </li></ul></ul><ul><li>Apoenzyme: Protein </li></ul><ul><li>Cofactor: Nonprotein component </li></ul><ul><ul><li>Coenzyme: Organic cofactor </li></ul></ul><ul><li>Holoenzyme: Apoenzyme plus cofactor </li></ul>
  8. 8. Enzymes Figure 5.3
  9. 9. Important Coenzymes <ul><li>NAD + </li></ul><ul><li>NADP + </li></ul><ul><li>FAD </li></ul><ul><li>Coenzyme A </li></ul>
  10. 10. Enzymes <ul><li>The turnover number is generally 1-10,000 molecules per second. </li></ul>PLAY Animation: Enzyme–Substrate Interactions Figure 5.4
  11. 11. Enzyme Classification <ul><li>Oxidoreductase: Oxidation-reduction reactions </li></ul><ul><li>Transferase: Transfer functional groups </li></ul><ul><li>Hydrolase: Hydrolysis </li></ul><ul><li>Lyase: Removal of atoms without hydrolysis </li></ul><ul><li>Isomerase: Rearrangement of atoms </li></ul><ul><li>Ligase: Joining of molecules, uses ATP </li></ul>
  12. 12. Factors Influencing Enzyme Activity <ul><li>Enzymes can be denatured by temperature and pH </li></ul>Figure 5.6
  13. 13. Factors Influencing Enzyme Activity <ul><li>Temperature </li></ul>Figure 5.5a
  14. 14. Factors Influencing Enzyme Activity <ul><li>pH </li></ul>Figure 5.5b
  15. 15. Factors Influencing Enzyme Activity <ul><li>Substrate concentration </li></ul>Figure 5.5c
  16. 16. Factors Influencing Enzyme Activity <ul><li>Competitive inhibition </li></ul>Figure 5.7a–b
  17. 17. Factors Influencing Enzyme Activity
  18. 18. Factors Influencing Enzyme Activity <ul><li>Noncompetitive inhibition </li></ul>Figure 5.7a, c
  19. 19. Factors Influencing Enzyme Activity <ul><li>Feedback inhibition </li></ul>Figure 5.8
  20. 20. Ribozymes <ul><li>RNA that cuts and splices RNA </li></ul>
  21. 21. Oxidation-Reduction <ul><li>Oxidation is the removal of electrons. </li></ul><ul><li>Reduction is the gain of electrons. </li></ul><ul><li>Redox reaction is an oxidation reaction paired with a reduction reaction. </li></ul>Figure 5.9
  22. 22. Oxidation-Reduction <ul><li>In biological systems, the electrons are often associated with hydrogen atoms. Biological oxidations are often dehydrogenations. </li></ul>Figure 5.10
  23. 23. The Generation of ATP <ul><li>ATP is generated by the phosphorylation of ADP. </li></ul>
  24. 24. The Generation of ATP <ul><li>Substrate-level phosphorylation is the transfer of a high-energy PO 4 – to ADP. </li></ul>
  25. 25. The Generation of ATP <ul><li>Energy released from the transfer of electrons (oxidation) of one compound to another (reduction) is used to generate ATP by chemiosmosis. </li></ul>
  26. 26. The Generation of ATP <ul><li>Light causes chlorophyll to give up electrons. Energy released from the transfer of electrons (oxidation) of chlorophyll through a system of carrier molecules is used to generate ATP. </li></ul>
  27. 27. Metabolic Pathways
  28. 28. Carbohydrate Catabolism <ul><li>The breakdown of carbohydrates to release energy </li></ul><ul><ul><li>Glycolysis </li></ul></ul><ul><ul><li>Krebs cycle </li></ul></ul><ul><ul><li>Electron transport chain </li></ul></ul>
  29. 29. Glycolysis <ul><li>The oxidation of glucose to pyruvic acid produces ATP and NADH. </li></ul>Figure 5.11, step 1
  30. 30. Preparatory Stage <ul><li>Two ATPs are used </li></ul><ul><li>Glucose is split to form two Glucose-3-phosphate </li></ul>1 3 4 5 Figure 5.12, step 1
  31. 31. Energy-Conserving Stage <ul><li>Two Glucose-3-phosphate oxidized to two Pyruvic acid </li></ul><ul><li>Four ATP produced </li></ul><ul><li>Two NADH produced </li></ul>9 Figure 5.12, step 2
  32. 32. Glycolysis <ul><li>Glucose + 2 ATP + 2 ADP + 2 PO 4 – + 2 NAD +  2 pyruvic acid + 4 ATP + 2 NADH + 2H + </li></ul>PLAY Animation: Glycolysis
  33. 33. Alternatives to Glycolysis <ul><li>Pentose phosphate pathway </li></ul><ul><ul><li>Uses pentoses and NADPH </li></ul></ul><ul><ul><li>Operates with glycolysis </li></ul></ul><ul><li>Entner-Doudoroff pathway </li></ul><ul><ul><li>Produces NADPH and ATP </li></ul></ul><ul><ul><li>Does not involve glycolysis </li></ul></ul><ul><ul><li>Pseudomonas, Rhizobium, Agrobacterium </li></ul></ul>
  34. 34. Cellular Respiration <ul><li>Oxidation of molecules liberates electrons for an electron transport chain. </li></ul><ul><li>ATP is generated by oxidative phosphorylation. </li></ul>
  35. 35. Intermediate Step <ul><li>Pyruvic acid (from glycolysis) is oxidized and decarboyxlated. </li></ul>Figure 5.13 (1 of 2)
  36. 36. Krebs Cycle <ul><li>Oxidation of acetyl CoA produces NADH and FADH 2 . </li></ul>PLAY Animation: Krebs Cycle
  37. 37. Krebs Cycle Figure 5.13 (2 of 2)
  38. 38. The Electron Transport Chain <ul><li>A series of carrier molecules that are, in turn, oxidized and reduced as electrons are passed down the chain. </li></ul><ul><li>Energy released can be used to produce ATP by chemiosmosis. </li></ul>PLAY Animation: Electron Transport Chains and Chemiosmosis
  39. 39. Figure 5.11
  40. 40. Chemiosmosis Figure 5.16
  41. 41. Chemiosmosis Figure 5.15
  42. 42. Respiration <ul><li>Aerobic respiration: The final electron acceptor in the electron transport chain is molecular oxygen (O 2 ). </li></ul><ul><li>Anaerobic respiration: The final electron acceptor in the electron transport chain is not O 2 . Yields less energy than aerobic respiration because only part of the Krebs cycles operations under anaerobic conditions. </li></ul>
  43. 43. Anaerobic Respiration CH 4 + H 2 O CO 3 2 – H 2 S + H 2 O SO 4 – NO 2 – , N 2 + H 2 O NO 3 – Products Electron acceptor
  44. 44. Plasma membrane Mitochondrial inner membrane ETC Cytoplasm Cytoplasm Cytoplasm Prokaryote Mitochondrial matrix Krebs cycle Cytoplasm Intermediate step Cytoplasm Glycolysis Eukaryote Pathway
  45. 45. <ul><li>Energy produced from complete oxidation of one glucose using aerobic respiration. </li></ul>2 2 0 FADH 2 produced 10 4 Total 6 2 2 NADH produced 2 Krebs cycle 0 Intermediate step 2 Glycolysis ATP produced Pathway
  46. 46. <ul><li>ATP produced from complete oxidation of one glucose using aerobic respiration. </li></ul><ul><li>36 ATPs are produced in eukaryotes. </li></ul>4 30 4 Total 4 0 From FADH 18 2 Krebs cycle 6 6 From NADH By oxidative phosphorylation 0 Intermediate step 2 Glycolysis By substrate-level phosphorylation Pathway

×