Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Successfully reported this slideshow.

Like this presentation? Why not share!

- Graph theory concepts complex net... by nabati 1458 views
- Big data 43 (guardian) final by Keisha Taylor 2545 views
- Complex contagion of campaign donat... by Vincent Traag 255 views
- Networks .ppt by brisso99 2579 views
- Boekhouden - Introductie by Jurroen Cluitmans 2490 views
- Mind the Graph! A Discussion on the... by Paolo Ciuccarelli 2708 views

1,131 views

Published on

Published in:
Science

No Downloads

Total views

1,131

On SlideShare

0

From Embeds

0

Number of Embeds

5

Shares

0

Downloads

45

Comments

0

Likes

1

No embeds

No notes for slide

- 1. Introduction to Complex Networks V.A. Traag KITLV, Leiden, the Netherlands e-Humanities, KNAW, Amsterdam, the Netherlands March 30, 2014 eRoyal Netherlands Academy of Arts and Sciences Humanities
- 2. Overview 1 What are networks? 2 Classics: scale free & small worlds. 3 Percolation: giant components, failure & attack and epidemics. Probability generating functions.
- 3. Examples • Neural networks • Power grids • Gas networks • Internet router network • World Wide Web • Road networks • Airline networks • Call networks • Social networks • Social media networks
- 4. Examples • Neural networks • Power grids • Gas networks • Internet router network • World Wide Web • Road networks • Airline networks • Call networks • Social networks • Social media networks
- 5. Examples • Neural networks • Power grids • Gas networks • Internet router network • World Wide Web • Road networks • Airline networks • Call networks • Social networks • Social media networks
- 6. Examples • Neural networks • Power grids • Gas networks • Internet router network • World Wide Web • Road networks • Airline networks • Call networks • Social networks • Social media networks
- 7. Examples • Neural networks • Power grids • Gas networks • Internet router network • World Wide Web • Road networks • Airline networks • Call networks • Social networks • Social media networks
- 8. Examples • Neural networks • Power grids • Gas networks • Internet router network • World Wide Web • Road networks • Airline networks • Call networks • Social networks • Social media networks
- 9. Basics Network • Graph or networks G = (V , E) • Nodes V = 1, . . . , n (vertices) Power station, webpage, intersection, person. • Edges E ⊆ V × V (links, ties) Power cables, hyperlinks, roads, friendships. Can be directed, and possibly weighted Essentials • Degree ki is number of links at node i. • If |E| = m number of edges, then i ki = 2m. • Average degree k = 2m n . • Density p = m (n 2) = k n−1 ≈ k n . • Most networks sparse: k , p low.
- 10. Picture worth . . . words Visualisations essentially wrong, but sometimes insightful. Need to assess statistics to understand networks.
- 11. Analysed properties Analysis strategy • Focus on some key (statistical) ingredients. • Only overall general properties, no particulates. • Compare to random graph: what can we expect? • Modelling ⇒ replicate key properties. Some key properties • Degree distribution • Degree correlations • Path lengths • Clustering • Modularity • Dynamics: inter event times
- 12. Small world Milgram’s experiment (1960s) • Ask people to reach speciﬁc person: John Doe, Journalist, Kansas • Send letter to acquaintance, who forwards, and so on • Result: about 5 intermediaries to reach destination. • Six degrees of separation. Key question: is this diﬀerent from a random graph?
- 13. Erd¨os-R´enyi (ER) graphs Random graph • Create empty graph G with n nodes. • Every edge probability p of appearing. • On average p n 2 = m edges. • Average degree k = pn. • Random graph essentially a (very simple) model. • Was (and still is) used frequently. Biology, epidemiology: well mixed population. • Many interesting questions still.
- 14. Small world? Path length • Every node ki ≈ k , in steps, reach about k . • When k = n reached whole network. • Hence ≈ log n log k : grows slowly! Random edges create short paths. Clustering • Clustering, Ci = ei ki 2 . • In ER graph Ci = p3n(n − 1) p2n(n − 1) = p. • Networks are sparse, low p, so low Ci . Real world: both short paths & clustering. How to get that?
- 15. Small world? Path length • Every node ki ≈ k , in steps, reach about k . • When k = n reached whole network. • Hence ≈ log n log k : grows slowly! Random edges create short paths. Clustering • Clustering, Ci = ei ki 2 . • In ER graph Ci = p3n(n − 1) p2n(n − 1) = p. • Networks are sparse, low p, so low Ci . Real world: both short paths & clustering. How to get that?
- 16. Watts & Strogatz Small world model • Create lattice (connect to nearest neighbours). • Rewire edge (or add) with probability p.
- 17. Watts & Strogatz
- 18. Watts & Strogatz Small world model • Create lattice (connect to nearest neighbours). • Rewire edge (or add) with probability p. Few shortcuts enough to create short paths
- 19. Degree distribution 0 20 40 60 80 100 ki ≈ k Degree Probability • In real networks, power-law ki ∼ k−α, usually 2 < α < 3. • In ER graphs, poisson ki ∼ k k k! .
- 20. Degree distribution 100 101 102 Hubs Degree Probability • In real networks, power-law ki ∼ k−α, usually 2 < α < 3. • In ER graphs, poisson ki ∼ k k k! .
- 21. Barab´asi & Albert How to get power-law degree distribution? Preferential attachment, cumulative advantage Start with graph with q nodes 1 Add node 2 Add q links to previous nodes with probability pi ∼ ki 3 Repeat (1)-(2). Results • Analysis by master rate equation p(k) = k−1 2 p(k − 1) − k 2 p(k). • Leads to p(k) = m(m+1)(m+2) k(k+1)(k+2) ∼ k−3. • Preferential attachment ⇒ scale free network.
- 22. Scale free Scale free: so what? Why does it matter? • Scale free networks robust again random node failure. • Vulnerable for targeted attacks (take out the hubs). • No threshold for epidemic spreading. Approach: percolation & generating functions.
- 23. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate mean k = k kpk • Sum S = Si , pgf f (x) = E(xS )
- 24. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate mean k = k kpk • Sum S = Si , pgf f (x) = E(xS )
- 25. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate mean k = k kpk • Sum S = Si , pgf f (x) = E(xS )
- 26. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate mean k = k kpk1k−1 • Sum S = Si , pgf f (x) = E(xS )
- 27. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate mean k = g (1) • Sum S = Si , pgf f (x) = E(xS )
- 28. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate moment km = x ∂ ∂x m g x=1 • Sum S = Si , pgf f (x) = E(xS )
- 29. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate moment km = x ∂ ∂x m g x=1 • Sum S = Si , pgf f (x) = E(xS )
- 30. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate moment km = x ∂ ∂x m g x=1 • Sum S = Si , pgf f (x) = E(x Si )
- 31. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate moment km = x ∂ ∂x m g x=1 • Sum S = Si , pgf f (x) = E(xSi )
- 32. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate moment km = x ∂ ∂x m g x=1 • Sum S = Si , pgf f (x) = g(x)
- 33. Generating functions Deﬁnition (Generating function) Let Pr(S = k) = pk. Then g(x) = E(xS ) = k pkxk is the probability generating function (pgf). Properties • Normalized g(1) = E(1S ) = k pk = 1 • Calculate moment km = x ∂ ∂x m g x=1 • Sum S = Si , pgf f (x) = g(x)m
- 34. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = k n k pk(1 − p)n−kxk • Normalized g(1) = e k (1−1) = 1. • Mean g (x) = k e k (x−1). • Number of neighbours of m nodes g(x)m = em k (x−1).
- 35. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = k n k pk(1 − p)n−kxk • Normalized g(1) = e k (1−1) = 1. • Mean g (x) = k e k (x−1). • Number of neighbours of m nodes g(x)m = em k (x−1).
- 36. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = k n k (xp)k(1 − p)n−k (binomial theorem) • Normalized g(1) = e k (1−1) = 1. • Mean g (x) = k e k (x−1). • Number of neighbours of m nodes g(x)m = em k (x−1).
- 37. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = (px + (1 − p))n • Normalized g(1) = e k (1−1) = 1. • Mean g (x) = k e k (x−1). • Number of neighbours of m nodes g(x)m = em k (x−1).
- 38. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = (1 + p(x − 1))n (remember k = pn) • Normalized g(1) = e k (1−1) = 1. • Mean g (x) = k e k (x−1). • Number of neighbours of m nodes g(x)m = em k (x−1).
- 39. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = (1 + k (x−1) n )n (limn→∞, def. exp) • Normalized g(1) = e k (1−1) = 1. • Mean g (x) = k e k (x−1). • Number of neighbours of m nodes g(x)m = em k (x−1).
- 40. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = e k (x−1) • Normalized g(1) = e k (1−1) = 1. • Mean g (x) = k e k (x−1). • Number of neighbours of m nodes g(x)m = em k (x−1).
- 41. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = e k (x−1) • Normalized g(1) = e k (1−1) = 1. • Mean g (x) = k e k (x−1). • Number of neighbours of m nodes g(x)m = em k (x−1).
- 42. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = e k (x−1) • Normalized g(1) = e k (1−1) = 1. • Mean g (x) = k e k (x−1). • Number of neighbours of m nodes g(x)m = em k (x−1).
- 43. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = e k (x−1) • Normalized g(1) = e k (1−1) = 1. • Mean g (1) = k . • Number of neighbours of m nodes g(x)m = em k (x−1).
- 44. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = e k (x−1) • Normalized g(1) = e k (1−1) = 1. • Mean g (1) = k . • Number of neighbours of m nodes g(x)m = em k (x−1).
- 45. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = e k (x−1) • Normalized g(1) = e k (1−1) = 1. • Mean g (1) = k . • Number of neighbours of m nodes (g(x)m) = m k em k (x−1).
- 46. Degree generating function Example, ER degree distribution • Let pk be probability node has degree k. • Take pk = n k pk(1 − p)n−k (Erd¨os-R´enyi) • Then pgf g(x) = e k (x−1) • Normalized g(1) = e k (1−1) = 1. • Mean g (1) = k . • Number of neighbours of m nodes (g(1)m) = m k .
- 47. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k kpk . • Average neighbour degree k kpk k . • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 48. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k kpk . • Average neighbour degree k kpk k . • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 49. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k kpk k . • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 50. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k kpk k . • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 51. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 k . • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 52. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 k > k . • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 53. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 k − k > 0. • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 54. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0. • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 55. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 56. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 57. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k qkxk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 58. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k(k + 1)pk+1xk • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 59. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k k kpkxk−1 • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 60. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k g (x) • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 61. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k g (x) • Second neigbhours for m degree g1(x)m • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 62. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k g (x) • Second neigbhours for m degree g1(x)m = k p2(k|m)xk • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 63. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k g (x) • Second neigbhours for m degree g1(x)m = k p2(k|m)xk • Distribution of second neighbours m k pmp2(k|m)xk • Average number of second neighbours k2 − k .
- 64. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k g (x) • Second neigbhours for m degree g1(x)m = k p2(k|m)xk • Distribution of second neighbours m pm k p2(k|m)xk • Average number of second neighbours k2 − k .
- 65. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k g (x) • Second neigbhours for m degree g1(x)m = k p2(k|m)xk • Distribution of second neighbours m pmg1(x)m • Average number of second neighbours k2 − k .
- 66. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k g (x) • Second neigbhours for m degree g1(x)m = k p2(k|m)xk • Distribution of second neighbours g(g1(x)) • Average number of second neighbours k2 − k .
- 67. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k g (x) • Second neigbhours for m degree g1(x)m = k p2(k|m)xk • Distribution of third neighbours g(g1(g1(x))) • Average number of second neighbours k2 − k .
- 68. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k g (x) • Second neigbhours for m degree g1(x)m = k p2(k|m)xk • Distribution of d neighbours g(g1(· · · g1(x) · · · )) • Average number of second neighbours k2 − k .
- 69. Excess degree distribution Earlier: random node Now: follow random edge to node • Probability that node has k links is kpk k . • Average neighbour degree k2 − k 2 k > 0 (friendship paradox). • Probability that node has k other links is qk = (k+1)pk+1 k • pgf g1(x) = 1 k g (x) • Second neigbhours for m degree g1(x)m = k p2(k|m)xk • Distribution of d neighbours g(g1(· · · g1(x) · · · )) • Average number of second neighbours k2 − k .
- 70. Giant component Giant component (GC) • Always only one GC (and lots of small ones). • Probability link does not connect node to GC u. • Probability node of degree k not in GC uk • Probability node not in giant component k pkuk = g(u) • Size of giant component: S = 1 − g(u). But what is u? Self consistency • Probability link not connects to GC is u. • Connects to node with k other neighbours: excess degree. • Average probability: k qkuk = g1(u).
- 71. Giant component Giant component (GC) • Always only one GC (and lots of small ones). • Probability link does not connect node to GC u. • Probability node of degree k not in GC uk • Probability node not in giant component k pkuk = g(u) • Size of giant component: S = 1 − g(u). But what is u? Self consistency • Probability link not connects to GC is u. • Connects to node with k other neighbours: excess degree. • Average probability: k qkuk = g1(u).
- 72. Giant component Giant component (GC) • Always only one GC (and lots of small ones). • Probability link does not connect node to GC u. • Probability node of degree k not in GC uk • Probability node not in giant component k pkuk = g(u) • Size of giant component: S = 1 − g(u). But what is u? Self consistency • Probability link not connects to GC is u. • Connects to node with k other neighbours: excess degree. • Average probability: k qkuk = g1(u).
- 73. Giant component Giant component (GC) • Always only one GC (and lots of small ones). • Probability link does not connect node to GC u. • Probability node of degree k not in GC uk • Probability node not in giant component k pkuk = g(u) • Size of giant component: S = 1 − g(u). But what is u? Self consistency • Probability link not connects to GC is u. • Connects to node with k other neighbours: excess degree. • Average probability: k qkuk = g1(u).
- 74. Giant component Giant component (GC) • Always only one GC (and lots of small ones). • Probability link does not connect node to GC u. • Probability node of degree k not in GC uk • Probability node not in giant component k pkuk = g(u) • Size of giant component: S = 1 − g(u). But what is u? Self consistency • Probability link not connects to GC is u. • Connects to node with k other neighbours: excess degree. • Average probability: k qkuk = g1(u).
- 75. Giant component Giant component (GC) • Always only one GC (and lots of small ones). • Probability link does not connect node to GC u. • Probability node of degree k not in GC uk • Probability node not in giant component k pkuk = g(u) • Size of giant component: S = 1 − g(u). But what is u? Self consistency • Probability link not connects to GC is u. • Connects to node with k other neighbours: excess degree. • Average probability: k qkuk = g1(u).
- 76. Giant component Giant component (GC) • Always only one GC (and lots of small ones). • Probability link does not connect node to GC u. • Probability node of degree k not in GC uk • Probability node not in giant component k pkuk = g(u) • Size of giant component: S = 1 − g(u). But what is u? Self consistency • Probability link not connects to GC is u. • Connects to node with k other neighbours: excess degree. • Average probability: k qkuk = g1(u).
- 77. Giant component Giant component (GC) • Always only one GC (and lots of small ones). • Probability link does not connect node to GC u. • Probability node of degree k not in GC uk • Probability node not in giant component k pkuk = g(u) • Size of giant component: S = 1 − g(u). But what is u? Self consistency • Probability link not connects to GC is u. • Connects to node with k other neighbours: excess degree. • Average probability: k qkuk = g1(u) = u.
- 78. Giant component How to solve g1(u) = u? 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 g1(u) u = g1(u) u
- 79. Giant component If derivative g1(1) > 1 giant component appears. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 g (1) u
- 80. Giant component • GC appears when 1 < g1(1). • For ER graphs k2 − k = k 2, so k > 1 the GC appears. 0 1 2 3 4 5 6 0 0.5 1 k S • For scale free graphs k2 → ∞ , so always GC (if 2 < α < 3).
- 81. Giant component • GC appears when 1 < g1(1) = k kqk. • For ER graphs k2 − k = k 2, so k > 1 the GC appears. 0 1 2 3 4 5 6 0 0.5 1 k S • For scale free graphs k2 → ∞ , so always GC (if 2 < α < 3).
- 82. Giant component • GC appears when 1 < g1(1) = 1 k k k(k + 1)pk+1. • For ER graphs k2 − k = k 2, so k > 1 the GC appears. 0 1 2 3 4 5 6 0 0.5 1 k S • For scale free graphs k2 → ∞ , so always GC (if 2 < α < 3).
- 83. Giant component • GC appears when 1 < g1(1) = 1 k k(k − 1)kpk. • For ER graphs k2 − k = k 2, so k > 1 the GC appears. 0 1 2 3 4 5 6 0 0.5 1 k S • For scale free graphs k2 → ∞ , so always GC (if 2 < α < 3).
- 84. Giant component • GC appears when 1 < g1(1) = 1 k k k2pk − kpk. • For ER graphs k2 − k = k 2, so k > 1 the GC appears. 0 1 2 3 4 5 6 0 0.5 1 k S • For scale free graphs k2 → ∞ , so always GC (if 2 < α < 3).
- 85. Giant component • GC appears when 1 < g1(1) = k2 − k k . • For ER graphs k2 − k = k 2, so k > 1 the GC appears. 0 1 2 3 4 5 6 0 0.5 1 k S • For scale free graphs k2 → ∞ , so always GC (if 2 < α < 3).
- 86. Giant component • GC appears when 1 < g1(1) = k2 − k k . • For ER graphs k2 − k = k 2, so k > 1 the GC appears. 0 1 2 3 4 5 6 0 0.5 1 k S • For scale free graphs k2 → ∞ , so always GC (if 2 < α < 3).
- 87. Giant component • GC appears when 1 < g1(1) = k2 − k k . • For ER graphs k2 − k = k 2, so k > 1 the GC appears. 0 1 2 3 4 5 6 0 0.5 1 k S • For scale free graphs k2 → ∞ , so always GC (if 2 < α < 3).
- 88. Giant component • GC appears when 1 < g1(1) = k2 − k k . • For ER graphs k2 − k = k 2, so k > 1 the GC appears. 0 1 2 3 4 5 6 0 0.5 1 k S • For scale free graphs k2 → ∞ , so always GC (if 2 < α < 3).
- 89. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node does not “fail”. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average k qk(1 − φ + φuk). • Solve for u gives solution.
- 90. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node “functions”. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average k qk(1 − φ + φuk). • Solve for u gives solution.
- 91. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node not removed from network. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average k qk(1 − φ + φuk). • Solve for u gives solution.
- 92. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node not removed from network. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average k qk(1 − φ + φuk). • Solve for u gives solution.
- 93. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node not removed from network. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average k qk(1 − φ + φuk). • Solve for u gives solution.
- 94. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node not removed from network. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average k qk(1 − φ + φuk). • Solve for u gives solution.
- 95. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node not removed from network. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average k qk(1 − φ + φuk). • Solve for u gives solution.
- 96. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node not removed from network. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average 1 − φ + φ k qkuk. • Solve for u gives solution.
- 97. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node not removed from network. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average 1 − φ + φg1(u). • Solve for u gives solution.
- 98. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node not removed from network. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average 1 − φ + φg1(u) = u. • Solve for u gives solution.
- 99. Node failure How fast is giant component destroyed if nodes are removed? Same approach • Probability φ node not removed from network. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φ). • II: Neighbour is not removed (φ), but not in GC (uk). • So, probability is 1 − φ + φuk. • On average 1 − φ + φg1(u) = u. • Solve for u gives solution.
- 100. Node failure • Again, solving u = 1 − φ + φg1(u) not easy. • But if ∂ ∂u 1 − φ + φg1(u) > 1 GC exists. • For ER φc = 1/ k , for scale free φc = 0. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ER Scale Free φ S
- 101. Node failure • Again, solving u = 1 − φ + φg1(u) not easy. • But if ∂ ∂u 1 − φ + φg1(u) > 1 GC exists. • For ER φc = 1/ k , for scale free φc = 0. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ER Scale Free φ S
- 102. Node failure • Again, solving u = 1 − φ + φg1(u) not easy. • But if φg1(u) > 1 GC exists. • For ER φc = 1/ k , for scale free φc = 0. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ER Scale Free φ S
- 103. Node failure • Again, solving u = 1 − φ + φg1(u) not easy. • But if φ > 1 g1(u) GC exists. • For ER φc = 1/ k , for scale free φc = 0. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ER Scale Free φ S
- 104. Node failure • Again, solving u = 1 − φ + φg1(u) not easy. • But if φ > 1 g1(u) = φc GC exists. • For ER φc = 1/ k , for scale free φc = 0. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ER Scale Free φ S
- 105. Node failure • Again, solving u = 1 − φ + φg1(u) not easy. • But if φ > 1 g1(u) = φc GC exists. • For ER φc = 1/ k , for scale free φc = 0. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ER Scale Free φ S
- 106. Node failure • Again, solving u = 1 − φ + φg1(u) not easy. • But if φ > 1 g1(u) = φc GC exists. • For ER φc = 1/ k , for scale free φc = 0. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ER Scale Free φ S 0 0.2
- 107. Node attack What if we attack speciﬁc nodes? Same approach • Probability φk node of degree k does not “fail”. • On average φ = k φkpk. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φk). • II: Neighbour is not removed (φk), but not in GC (uk−1). • So on average u = k qk−1(1 − φk + φkuk−1). • Deﬁne f (u) = k φkqk−1uk−1. • Then u = 1 − f (1) + f (u), solve for u gives solution.
- 108. Node attack What if we attack speciﬁc nodes? Same approach • Probability φk node of degree k does not “fail”. • On average φ = k φkpk. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φk). • II: Neighbour is not removed (φk), but not in GC (uk−1). • So on average u = k qk−1(1 − φk + φkuk−1). • Deﬁne f (u) = k φkqk−1uk−1. • Then u = 1 − f (1) + f (u), solve for u gives solution.
- 109. Node attack What if we attack speciﬁc nodes? Same approach • Probability φk node of degree k does not “fail”. • On average φ = k φkpk. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φk). • II: Neighbour is not removed (φk), but not in GC (uk−1). • So on average u = k qk−1(1 − φk + φkuk−1). • Deﬁne f (u) = k φkqk−1uk−1. • Then u = 1 − f (1) + f (u), solve for u gives solution.
- 110. Node attack What if we attack speciﬁc nodes? Same approach • Probability φk node of degree k does not “fail”. • On average φ = k φkpk. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φk). • II: Neighbour is not removed (φk), but not in GC (uk−1). • So on average u = k qk−1(1 − φk + φkuk−1). • Deﬁne f (u) = k φkqk−1uk−1. • Then u = 1 − f (1) + f (u), solve for u gives solution.
- 111. Node attack What if we attack speciﬁc nodes? Same approach • Probability φk node of degree k does not “fail”. • On average φ = k φkpk. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φk). • II: Neighbour is not removed (φk), but not in GC (uk−1). • So on average u = k qk−1(1 − φk + φkuk−1). • Deﬁne f (u) = k φkqk−1uk−1. • Then u = 1 − f (1) + f (u), solve for u gives solution.
- 112. Node attack What if we attack speciﬁc nodes? Same approach • Probability φk node of degree k does not “fail”. • On average φ = k φkpk. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φk). • II: Neighbour is not removed (φk), but not in GC (uk−1). • So on average u = k qk−1(1 − φk + φkuk−1). • Deﬁne f (u) = k φkqk−1uk−1. • Then u = 1 − f (1) + f (u), solve for u gives solution.
- 113. Node attack What if we attack speciﬁc nodes? Same approach • Probability φk node of degree k does not “fail”. • On average φ = k φkpk. • Again u probability link does not connect to GC. Self consistency • I: Neighbour is removed (1 − φk). • II: Neighbour is not removed (φk), but not in GC (uk−1). • So on average u = k qk−1(1 − φk + φkuk−1). • Deﬁne f (u) = k φkqk−1uk−1. • Then u = 1 − f (1) + f (u), solve for u gives solution.
- 114. Failure and Attack
- 115. Epidemics Disease spreading • Standard models: Susceptable, Infected, Recovered. • SIR: transmission rate β, recovery rate ν. • Infect neighbour with probability φ = 1 − eβτ • How far will it spread: giant component. Percolation • I: Disease not transmitted (1 − φ). • II: Disease transmitted (φ), but not to GC (uk). • Already solved: critical φc = 1 g1(u) . • Epidemiological threshold βτ = log k2 − k k2 −2 k
- 116. Epidemics Disease spreading • Standard models: Susceptable, Infected, Recovered. • SIR: transmission rate β, infectious time τ = 1/ν. • Infect neighbour with probability φ = 1 − eβτ • How far will it spread: giant component. Percolation • I: Disease not transmitted (1 − φ). • II: Disease transmitted (φ), but not to GC (uk). • Already solved: critical φc = 1 g1(u) . • Epidemiological threshold βτ = log k2 − k k2 −2 k
- 117. Epidemics Disease spreading • Standard models: Susceptable, Infected, Recovered. • SIR: transmission rate β, infectious time τ = 1/ν. • Infect neighbour with probability φ = 1 − eβτ • How far will it spread: giant component. Percolation • I: Disease not transmitted (1 − φ). • II: Disease transmitted (φ), but not to GC (uk). • Already solved: critical φc = 1 g1(u) . • Epidemiological threshold βτ = log k2 − k k2 −2 k
- 118. Epidemics Disease spreading • Standard models: Susceptable, Infected, Recovered. • SIR: transmission rate β, infectious time τ = 1/ν. • Infect neighbour with probability φ = 1 − eβτ • How far will it spread: giant component. Percolation • I: Disease not transmitted (1 − φ). • II: Disease transmitted (φ), but not to GC (uk). • Already solved: critical φc = 1 g1(u) . • Epidemiological threshold βτ = log k2 − k k2 −2 k
- 119. Epidemics Disease spreading • Standard models: Susceptable, Infected, Recovered. • SIR: transmission rate β, infectious time τ = 1/ν. • Infect neighbour with probability φ = 1 − eβτ • How far will it spread: giant component. Percolation • I: Disease not transmitted (1 − φ). • II: Disease transmitted (φ), but not to GC (uk). • Already solved: critical φc = k k2 − k . • Epidemiological threshold βτ = log k2 − k k2 −2 k
- 120. Epidemics Disease spreading • Standard models: Susceptable, Infected, Recovered. • SIR: transmission rate β, infectious time τ = 1/ν. • Infect neighbour with probability φ = 1 − eβτ • How far will it spread: giant component. Percolation • I: Disease not transmitted (1 − φ). • II: Disease transmitted (φ), but not to GC (uk). • Already solved: critical φc = k k2 − k . • Epidemiological threshold βτ = log k2 − k k2 −2 k
- 121. Epidemics Epidemic threshold • For ER, threshold βτ = log k k −1. • For scale free, k2 diverges: always epidemic outbreak. 0 0.2 0.4 0.6 0.8 1 0 0.5 1 ER Scale Free φ S
- 122. Conclusions Models • Short pats & clustering: small world model • Scale free: preferential attachment • Many other mechanisms: e.g. triadic closure, homophily, etc. . . • Focus on stylistic features. Analysis • Scale-free networks robust, spread fast, but vulnerable for attack. • Generating functions greatly help analysis. • Compare observed network to random/model. How does it deviate? Questions?

No public clipboards found for this slide

Be the first to comment