Successfully reported this slideshow.
Upcoming SlideShare
×

# Energy conversion

11,657 views

Published on

Published in: Education
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

### Energy conversion

1. 1. A1 The International System of Units, Fundamental Constants, andNitin Goel Conversion FactorsIntel Technology India Pvt. Ltd.The International system of units (SI) is based on seven base units. Other derived units can be related tothese base units through governing equations. The base units with the recommended symbols are listedin Table A1.1. Derived units of interest in solar engineering are given in Table A1.2. Standard preﬁxes can be used in the SI system to designate multiples of the basic units and therebyconserve space. The standard preﬁxes are listed in Table A1.3. Table A1.4 lists some physical constants that are frequently used in solar engineering, together withtheir values in the SI system of units. Conversion factors between the SI and English systems for commonly used quantities are given inTable A1.5. A1-1q 2007 by Taylor & Francis Group, LLC
2. 2. A1-2 Energy Conversion TABLE A1.1 The Seven SI Base Units Quantity Name of Unit Symbol Length Meter m Mass Kilogram kg Time Second s Electric current Ampere A Thermodynamic temperature Kelvin K Luminous intensity Candela cd Amount of a substance Mole mol TABLE A1.2 SI Derived Units Quantity Name of Unit Symbol Acceleration Meters per second squared m/s2 Area Square meters m2 Density Kilogram per cubic meter kg/m3 Dynamic viscosity Newton-second per square meter N s/m2 Force Newton (Z1 kg m/s2) N Frequency Hertz Hz Kinematic viscosity Square meter per second m2/s Plane angle Radian rad Potential difference Volt V Power Watt(Z1 J/s) W Pressure Pascal (Z1 N/m2) Pa Radiant intensity Watts per steradian W/sr Solid angle Steradian sr Speciﬁc heat Joules per kilogram–Kelvin J/kg K Thermal conductivity Watts per meter–Kelvin W/m K Velocity Meters per second m/s Volume Cubic meter m3 Work, energy, heat Joule (Z1 N/m) J TABLE A1.3 English Preﬁxes Multiplier Symbol Preﬁx Multiplier Multiplier Symbol 12 3 10 T Tera 10 M (thousand) 109 G Giga 106 MM (million) 106 m Mega 103 k Kilo 102 h Hecto 101 da Deka 10K1 d Deci 10K2 c Centi 10K3 m Milli 10K6 m Micro 10K9 n Nano 10K12 p Pico 10K15 f Femto 10K18 a Attoq 2007 by Taylor & Francis Group, LLC
3. 3. The International System of Units, Fundamental Constants, and Conversion Factors A1-3 TABLE A1.4 Physical Constants in SI Units Quantity Symbol Value Avogadro constant N 6.022169!1026 kmolK1 Boltzmann constant k 1.380622!10K23 J/K First radiation constant C1Z2phC2 3.741844!10K16 W m2 Gas constant R 8.31434!103 J/kmol K Planck constant h 6.626196!10K34 J s Second radiation constant C2Zhc/k 1.438833!10K2 m K Speed of light in a vacuum C 2.997925!108 m/s Stefan–Boltzmann constant s 5.66961!10K8 W/m2 K4q 2007 by Taylor & Francis Group, LLC
4. 4. A1-4 Energy ConversionTABLE A1.5 Conversion Factors Physical Quantity Symbol Conversion FactorArea A 1 ft. Z0.0929 m2 2 1 acreZ43,560 ft.2Z4047 m2 1 hectareZ10,000 m2 1 square mileZ640 acresDensity r 1 lbm/ft.3Z16.018 kg/m3Heat, energy, or work Q or W l BtuZ1055.1 J 1 kWhZ3.6 MJ 1 ThermZ105.506 MJ l calZ4.186 J 1 ft. lbfZ1.3558 JForce F 1 lbfZ4.448 NHeat ﬂow rate, refrigeration q 1 Btu/hZ0.2931 W 1 ton (refrigeration)Z3.517 kW l Btu/sZ1055.1 WHeat ﬂux q/A 1 Btu/h ft.2Z3.1525 W/m2Heat-transfer coefﬁcient h 1 Btu/h ft.2 FZ5.678 W/m2 KLength L 1 ft.Z0.3048 m 1 in.Z2.54 cm 1 miZ1.6093 kmMass m 1 lbmZ0.4536 kg 1 tonZ2240 lbm 1 tonne (metric)Z1000 kgMass ﬂow rate m _ 1 lbm/hZ0.000126 kg/sPower W_ 1 hpZ745.7 W 1 kWZ3415 Btu/h 1 ft. lbf/sZ1.3558 W 1 Btu/hZ0.293 WPressure p 1 lbf/in.2 (psi)Z6894.8 Pa (N/m2) 1 in. HgZ3,386 Pa 1 atmZ101,325 Pa (N/m2)Z14.696 psiRadiation l 1 langleyZ41,860 J/m2 1 langley/minZ697.4 W/m2Speciﬁc heat capacity c 1 Btu/lbm 8FZ4187 J/kg KInternal energy or enthalpy e or h 1 Btu/lbmZ2326.0 J/kg 1 cal/gZ4184 J/kgTemperature T T(8R)Z(9/5)T(K) T(8F)Z[T(8C)](9/5)C32 T(8F)Z[T(K)K273.15](9/5)C32Thermal conductivity k 1 Btu/h ft. 8FZ1.731 W/m KThermal resistance Rth 1 h 8F/BtuZ1.8958 K/WVelocity V 1 ft./sZ0.3048 m/s 1 mi/hZ0.44703 m/sViscosity, dynamic m 1 lbm/ft. sZ1.488 N s/m2 1 cPZ0.00100 N s/m2Viscosity, kinematic n 1 ft.2/sZ0.09029 m2/s 1 ft.2/hZ2.581!10K5 m2/sVolume V 1 ft.3Z0.02832 m3Z28.32 L 1 barrelZ42 gal (U.S.) 1 gal (U.S. liq.)Z3.785 L 1 gal (U.K.)Z4.546 LVolumetric ﬂow rate _ Q 1 ft.3/min (cﬁa)Z0.000472 m3/s 1 gal/min (GPM)Z0.0631 l/sq 2007 by Taylor & Francis Group, LLC
5. 5. A3 Properties of Gases, Vapors, Liquids andNitin Goel SolidsIntel Technology India Pvt. Ltd. A3-1q 2007 by Taylor & Francis Group, LLC
6. 6. A3-2 Energy ConversionTABLE A3.1 Properties of Dry Air at Atmospheric Pressures between 250 and 1000 K aT (K) r (kg/m3) cp (kJ/kg K) m (kg/m n (m2/s!106) k (W/m K) a (m2/s!104) dPr s!105)250 1.4128 1.0053 1.488 9.49 0.02227 0.13161 0.722300 1.1774 1.0057 1.983 15.68 0.02624 0.22160 0.708350 0.9980 1.0090 2.075 20.76 0.03003 0.2983 0.697400 0.8826 1.0140 2.286 25.90 0.03365 0.3760 0.689450 0.7833 1.0207 2.484 28.86 0.03707 0.4222 0.683500 0.7048 1.0295 2.671 37.90 0.04038 0.5564 0.680550 0.6423 1.0392 2.848 44.34 0.04360 0.6532 0.680600 0.5879 1.0551 3.018 51.34 0.04659 0.7512 0.680650 0.5430 1.0635 3.177 58.51 0.04953 0.8578 0.682700 0.5030 1.0752 3.332 66.25 0.05230 0.9672 0.684750 0.4709 1.0856 3.481 73.91 0.05509 1.0774 0.686800 0.4405 1.0978 3.625 82.29 0.05779 1.1951 0.689850 0.4149 1.1095 3.765 90.75 0.06028 1.3097 0.692900 0.3925 1.1212 3.899 99.3 0.06279 1.4271 0.696950 0.3716 1.1321 4.023 108.2 0.06525 1.5510 0.6991000 0.3524 1.1417 4.152 117.8 0.06752 1.6779 0.702 a Symbols: KZabsolute temperature, degrees Kelvin; vZm/r; rZdensity; cp speciﬁc heat capacity; aZcpr/k; mZviscosity;kZthermal conductivity; PrZPrandtl number, dimensionless. The values of m, k, cp, and Pr are not strongly pressure-dependent and may be used over a fairly wide range of pressures. Source: From Natl. Bureau Standards (U.S.) Circ. 564, 1955.q 2007 by Taylor & Francis Group, LLC
7. 7. Properties of Gases, Vapors, Liquids and Solids A3-3TABLE A3.2 Properties of Water (Saturated Liquid) between 273 and 533 K T cp (kJ/kg r (kg/m3) m (kg/m s) k (W/m Pr ðgbr2 cp =mkÞðmK3 8CK1 Þ 8C) 8C) K 8F 8C273 32 0 4.225 999.8 1.79!10K3 0.566 13.25277.4 40 4.44 4.208 999.8 1.55 0.575 11.35 1.91!109283 50 10 4.195 999.2 1.31 0.585 9.40 6.34!109288.6 60 15.56 4.186 998.6 1.12 0.595 7.88 1.08!1010294.1 70 21.11 4.179 997.4 9.8!10K4 0.604 6.78 1.46!1010299.7 80 26.67 4.179 995.8 8.6 0.614 5.85 1.91!1010302.2 90 32.22 4.174 994.9 7.65 0.623 5.12 2.48!1010310.8 100 37.78 4.174 993.0 6.82 0.630 4.53 3.3!1010316.3 110 43.33 4.174 990.6 6.16 0.637 4.04 4.19!1010322.9 120 48.89 4.174 988.8 5.62 0.644 3.64 4.89!1010327.4 130 54.44 4.179 985.7 5.13 0.649 3.30 5.66!1010333.0 140 60 4.179 983.3 4.71 0.654 3.01 6.48!1010338.6 150 65.55 4.183 980.3 4.3 0.659 2.73 7.62!1010342.1 160 71.11 4.186 977.3 4.01 0.665 2.53 8.84!1010349.7 170 76.67 4.191 973.7 3.72 0.668 2.33 9.85!1010355.2 180 82.22 4.195 970.2 3.47 0.673 2.16 1.09!1011360.8 190 87.78 4.199 966.7 3.27 0.675 2.03366.3 200 93.33 4.204 963.2 3.06 0.678 1.90377.4 220 104.4 4.216 955.1 2.67 0.684 1.66388.6 240 115.6 4.229 946.7 2.44 0.685 1.51399.7 260 126.7 4.250 937.2 2.19 0.685 1.36410.8 280 137.8 4.271 928.1 1.98 0.685 1.24421.9 300 148.9 4.296 918.0 1.86 0.684 1.17449.7 350 176.7 4.371 890.4 1.57 0.677 1.02477.4 400 204.4 4.467 859.4 1.36 0.665 1.00505.2 450 232.2 4.585 825.7 1.20 0.646 0.85533.0 500 260 4.731 785.2 1.07 0.616 0.83 Source: Adapted from Brown, A. I. and S. M. Marco. 1958. Introduction to Heat Transfer, 3d Ed., McGraw-Hill BookCompany, New York.q 2007 by Taylor & Francis Group, LLC
8. 8. A3-4 Energy ConversionTABLE A3.3 Emittances and Absorptances of Materials Substance Short-Wave Long-Wave a3 Absorptance EmittanceClass I substances: Absorptance to emittance ratios less than 0.5Magnesium carbonate, MgCO3 0.025–0.04 0.79 0.03–0.05White plaster 0.07 0.91 0.08Snow, ﬁne particles, fresh 0.13 0.82 0.16White paint, 0.017 in. on aluminum 0.20 0.91 0.22Whitewash on galvanized iron 0.22 0.90 0.24White paper 0.25–0.28 0.95 0.26–0.29White enamel on iron 0.25–0.45 0.9 0.28–0.5Ice, with sparse snow cover 0.31 0.96–0.97 0.32Snow, ice granules 0.33 0.89 0.37Aluminum oil base paint 0.45 0.90 0.50White powdered sand 0.45 0.84 0.54Class II substances: Absorptance to emittance ratios between 0.5 and 0.9Asbestos felt 0.25 0.50 0.50Green oil base paint 0.5 0.9 0.56Bricks, red 0.55 0.92 0.60Asbestos cement board, white 0.59 0.96 0.61Marble, polished 0.5–0.6 0.9 0.61Wood, planed oak – 0.9 –Rough concrete 0.60 0.97 0.62Concrete 0.60 0.88 0.68Grass, green, after rain 0.67 0.98 0.68Grass, high and dry 0.67–0.69 0.9 0.76Vegetable ﬁelds and shrubs, wilted 0.70 0.9 0.78Oak leaves 0.71–0.78 0.91–0.95 0.78–0.82Frozen soil – 0.93–0.94 –Desert surface 0.75 0.9 0.83Common vegetable ﬁelds and shrubs 0.72–0.76 0.9 0.82Ground, dry plowed 0.75–0.80 0.9 0.83–0.89Oak woodland 0.82 0.9 0.91Pine forest 0.86 0.9 0.96Earth surface as a whole (land and sea, no clouds) 0.83 1010 –Class III substances: Absorptance to emittance ratios between 0.8 and 1.0Grey paint 0.75 0.95 0.79Red oil base paint 0.74 0.90 0.82Asbestos, slate 0.81 0.96 0.84Asbestos, paper 0.93–0.96Linoleum, red–brown 0.84 0.92 0.91Dry sand 0.82 0.90 0.91Green roll rooﬁng 0.88 0.91–0.97 0.93Slate, dark grey 0.89 –Old grey rubber 0.86 –Hard black rubber – 0.90–0.95Asphalt pavement 0.93 – –Black cupric oxide on copper 0.91 0.96 0.95Bare moist ground 0.9 0.95 0.95Wet sand 0.91 0.95 0.96Water 0.94 0.95–0.96 0.98Black tar paper 0.93 0.93 1.0Black gloss paint 0.90 0.90 1.0Small hole in large box, furnace, or enclosure 0.99 0.99 1.0“Hohlraum,” theoretically perfect black body 1.0 1.0 1.0Class IV substances: Absorptance to emittance ratios greater than 1.0Black silk velvet 0.99 0.97 1.02 (continued)q 2007 by Taylor & Francis Group, LLC
9. 9. Properties of Gases, Vapors, Liquids and Solids A3-5TABLE A3.3 (Continued) Substance Short-Wave Long-Wave a3 Absorptance EmittanceAlfalfa, dark green 0.97 0.95 1.02Lampblack 0.98 0.95 1.03Black paint, 0.017 in. on aluminum 0.94–0.98 0.88 1.07–1.11Granite 0.55 0.44 1.25Graphite 0.78 0.41 1.90High ratios, but absorptances less than 0.80Dull brass, copper, lead 0.2–0.4 0.4–0.65 1.63–2.0Galvanized sheet iron, oxidized 0.8 0.28 2.86Galvanized iron, clean, new 0.65 0.13 5.0Aluminum foil 0.15 0.05 3.00Magnesium 0.3 0.07 4.3Chromium 0.49 0.08 6.13Polished zinc 0.46 0.02 23.0Deposited silver (optical reﬂector) untarnished 0.07 0.01Class V substances: Selective surfacesaPlated metals:bBlack sulﬁde on metal 0.92 0.10 9.2Black cupric oxide on sheet aluminum 0.08–0.93 0.09–0.21Copper (5!10w5 cm thick) on nickel or silver-plated metalCobalt oxide on platinumCobalt oxide on polished nickel 0.93–0.94 0.24–0.40 3.9Black nickel oxide on aluminum 0.85–0.93 0.06–0.1 14.5–15.5Black chrome 0.87 0.09 9.8Particulate coatings:Lampblack on metalBlack iron oxide, 47 mm grain size, on aluminumGeometrically enhanced surfaces:cOptimally corrugated greys 0.89 0.77 1.2Optimally corrugated selectives 0.95 0.16 5.9Stainless-steel wire mesh 0.63–0.86 0.23–0.28 2.7–3.0Copper, treated with NaClO, and NaOH 0.87 0.13 6.69 a Selective surfaces absorb most of the solar radiation between 0.3 and 1.9 mm, and emit very little in the 5–15 mm range–the infrared. b For a discussion of plated selective surfaces, see Daniels, Direct Use of the Sun’s Energy, especially chapter 12. c For a discussion of how surface selectivity can be enhanced through surface geometry, see K. G. T. Hollands, July 1963.Directional selectivity emittance and absorptance properties of vee corrugated specular surfaces, J. Sol. Energy Sci. Eng, vol. 3. Source: From Anderson, B. 1977. Solar Energy, McGraw-Hill Book Company. With permission.q 2007 by Taylor & Francis Group, LLC
10. 10. A3-6 Energy ConversionTABLE A3.4 Thermal Properties of Metals and Alloys Material k, Btu/(hr)(ft.)(8F) c, Btu/(lbm)(8F) r, lbm/ft.3 a, ft.2/hr 328F 2128F 5728F 9328F 328F 328F 328FMetalsAluminum 117 119 133 155 0.208 169 3.33Bismuth 4.9 3.9 . . 0.029 612 0.28Copper, pure 224 218 212 207 0.091 558 4.42Gold 169 170 . . 0.030 1,203 4.68Iron, pure 35.8 36.6 . . 0.104 491 0.70Lead 20.1 19 18 . 0.030 705 0.95Magnesium 91 92 . . 0.232 109 3.60Mercury 4.8 . . . 0.033 849 0.17Nickel 34.5 34 32 . 0.103 555 0.60Silver 242 238 . . 0.056 655 6.6Tin 36 34 . . 0.054 456 1.46Zinc 65 64 59 . 0.091 446 1.60AlloysAdmiralty metal 65 64Brass, 70% Cu, 56 60 66 . 0.092 532 1.14 30% ZnBronze, 75% Cu, 15 . . . 0.082 540 0.34 25% SnCast iron Plain 33 31.8 27.7 24.8 0.11 474 0.63 Alloy 30 28.3 27 0.10 455 0.66Constantan, 12.4 12.8 0.10 557 0.22 60% Cu, 40% Ni18-8 Stainless steel, Type 304 8.0 9.4 10.9 12.4 0.11 488 0.15 Type 347 8.0 9.3 11.0 12.8 0.11 488 0.15Steel, mild, 1% C 26.5 26 25 22 0.11 490 0.49 Source: From Kreith, F. 1997. Principles of Heat Transfer, PWS Publishing Co., Boston.q 2007 by Taylor & Francis Group, LLC
11. 11. Properties of Gases, Vapors, Liquids and Solids A3-7TABLE A3.5 Thermal Properties of Some Insulating and Building Materials Material Average, k, Btu/(hr)(ft.) c, Btu/(lbm) r, lbm/ft.3 a, ft.2/hr Temperature, 8F (8F) (8F) Insulating MaterialsAsbestos 32 0.087 0.25 36 K0.01 392 0.12 36 K0.01Cork 86 0.025 0.04 10 K0.006Cotton, fabric 200 0.046Diatomaceous earth, powdered 100 0.030 0.21 14 K0.01 300 0.036 . 600 0.046 .Molded pipe covering 400 0.051 . 26 1600 0.088 . Glass Wool Fine 20 0.022 . 100 0.031 . 1.5 200 0.043 . Packed 20 0.016 . 100 0.022 . 6.0 200 0.029 .Hair felt 100 0.027 . 8.2Kaolin insulating brick 932 0.15 . 27 2102 0.26 .Kaolin insulating ﬁrebrick 392 0.05 . 19 1400 0.11 .85% magnesia 32 0.032 . 17 200 0.037 . 17Rock wool 20 0.017 . 8 200 0.030 .Rubber 32 0.087 0.48 75 0.0024Brick Building MaterialsFire-clay 392 0.58 0.20 144 0.02 1832 0.95 Masonry 70 0.38 0.20 106 0.018 Zirconia 392 0.84 . 304 1832 1.13 .Chrome brick 392 0.82 . 246 1832 0.96 . ConcreteStone K70 0.54 0.20 144 0.01910% Moisture K70 0.70 . 140 K0.025Glass, window K70 K0.45 0.2 170 0.013Limestone, dry 70 0.40 0.22 105 0.017 Sand Dry 68 0.20 . 95 10% H2O 68 0.60 100 Soil Dry 70 K0.20 0.44 . K0.01 Wet 70 K1.5 . K0.03 Wood Oak t to grain 70 0.12 0.57 51 0.0041 s to grain 70 0.20 0.57 51 0.0069 Pine t to grain 70 0.06 0.67 31 0.0029 s to grain 70 0.14 0.67 31 0.0067Ice 32 1.28 0.46 57 0.048 Source: From Kreith, R. 1997. Principles of Heat Transfer, PWS Publishing Co.q 2007 by Taylor & Francis Group, LLC
12. 12. A3-8TABLE A3.6 Saturated Steam and Water–SI Units Temperature Pressure Speciﬁc Volume (m3/kg) Speciﬁc Energy Internal (kJ/kg) Speciﬁc Enthalpy (kJ/kg) Speciﬁc Entropy (kJ/kg.K) (K) (MN/m2) vf vg uf ug hf hfg hg sf sg273.15 0.0006109 0.0010002 206.278 K0.03 2375.3 K0.02 2501.4 2501.3 K0.0001 9.1565273.16 0.0006113 0.0010002 206.136 0 2375.3 C0.01 2501.3 2501.4 0 9.1562278.15 0.0008721 0.0010001 147.120 C20.97 2382.3 20.98 2489.6 2510.6 C0.0761 9.0257280.13 0.0010000 0.0010002 129.208 29.30 2385.0 29.30 2484.9 2514.2 0.1059 8.975283.15 0.0012276 0.0010004 106.379 42.00 2389.2 42.01 2477.7 2519.8 0.1510 8.9008286.18 0.0015000 0.0010007 87.980 54.71 2393.3 54.71 2470.6 2525.3 0.1957 8.8279288.15 0.0017051 0.0010009 77.926 62.99 2396.1 62.99 2465.9 2528.9 0.2245 8.7814290.65 0.0020000 0.0010013 67.004 73.48 2399.5 73.48 2460.0 2533.5 0.2607 8.7237293.15 0.002339 0.0010018 57.791 83.95 2402.9 83.96 2454.1 2538.1 0.2966 8.6672297.23 0.0030000 0.0010027 45.665 101.04 2408.5 101.05 2444.5 2545.5 0.3545 8.5776298.15 0.003169 0.0010029 43.360 104.88 2409.8 104.89 2442.3 2547.2 0.3674 8.5580302.11 0.004000 0.0010040 34.800 121.45 2415.2 121.46 2432.9 2554.4 0.4226 8.4746303.15 0.004246 0.0010043 32.894 125.78 2416.6 125.79 2430.5 2556.3 0.4369 8.4533306.03 0.005000 0.0010053 28.192 137.81 2420.5 137.82 2423.7 2561.5 0.4764 8.3951308.15 0.005628 0.0010060 25.216 146.67 2423.4 146.68 2418.6 2565.3 0.5053 8.3531309.31 0.006000 0.0010064 23.739 151.53 2425.0 151.53 2415.9 2567.4 0.5210 8.3304312.15 0.007000 0.0010074 20.530 163.39 2428.8 163.40 2409.1 2572.5 0.5592 8.2758313.15 0.007384 0.0010078 19.523 167.56 2430.1 167.57 2406.7 2574.3 0.5725 8.2570314.66 0.008000 0.0010084 18.103 173.87 2432.2 173.88 2403.1 2577.0 0.5926 8.2287316.91 0.009000 0.0010094 16.203 183.27 2435.2 183.29 2397.7 2581.0 0.6224 8.1872318.15 0.009593 0.0010099 15.258 188.44 2436.8 188.45 2394.8 2583.2 0.6387 8.1648318.96 0.010000 0.0010102 14.674 191.82 2437.9 191.83 2392.8 2584.7 0.6493 8.1502323.15 0.012349 0.0010121 12.032 209.32 2443.5 209.33 2382.7 2592.1 0.7038 8.0763327.12 0.015000 0.0010141 10.022 225.92 2448.7 225.94 2373.1 2599.1 0.7549 8.0085328.15 0.015758 0.0010146 9.568 230.21 2450.1 230.23 2370.7 2600.9 0.7679 7.9913333.15 0.019940 0.0010172 7.671 251.11 2456.6 251.13 2358.5 2609.6 0.8312 7.9096333.21 0.020000 0.0010172 7.649 251.38 2456.7 251.40 2358.3 2609.7 0.8320 7.9085 Energy Conversion338.15 0.025030 0.0010199 6.197 272.02 2463.1 272.06 2346.2 2618.3 0.8935 7.8310342.25 0.030000 0.0010223 5.229 289.20 2468.4 289.23 2336.1 2625.3 0.9439 7.7686343.15 0.031190 0.0010228 5.042 292.95 2469.6 292.98 2333.8 2626.8 0.9549 7.7553348.15 0.038580 0.0010259 4.131 313.90 2475.9 313.93 2221.4 2635.3 1.0155 7.6824349.02 0.040000 0.0010265 3.993 317.53 2477.0 317.58 2319.2 2636.8 1.0259 7.6700353.15 0.047390 0.0010291 3.407 334.86 2482.2 334.91 2308.8 2643.7 1.0753 7.6122354.48 0.050000 0.0010300 3.240 340.44 2483.9 340.49 2305.4 2645.9 1.0910 7.5939q 2007 by Taylor & Francis Group, LLC
13. 13. Properties of Gases, Vapors, Liquids and Solids358.15 0.057830 0.0010325 2.828 355.84 2488.4 355.90 2296.0 2651.9 1.1343 7.5445359.09 0.060000 0.0010331 2.732 359.79 2489.6 359.86 2293.6 2653.5 1.1453 7.5320363.10 0.070000 0.0010360 2.365 376.63 2494.5 376.70 2283.3 2660.0 1.1919 7.4797363.15 0.070140 0.0010360 2.361 376.85 2494.5 376.92 2283.2 2660.1 1.1925 7.4791366.65 0.080000 0.0010386 2.087 391.58 2498.8 391.66 2274.1 2665.8 1.2329 7.4346368.15 0.084550 0.0010397 1.9819 397.88 2500.6 397.96 2270.2 2668.1 1.2500 7.4159 Subscripts: f refers to a property of liquid in equilibrium with vapor; g refers to a property of vapor in equilibrium with liquid; fg refers to a change by evaporation. Table from Bolz, R. E. andG. L. Tuve, eds. 1973. CRC Handbook of Tables for Applied Engineering Science, 2nd Ed., Chemical Rubber Co., Cleveland, Ohio. A3-9q 2007 by Taylor & Francis Group, LLC
14. 14. A3-10TABLE A3.7 Superheated Steam–SI Units 2Pressure (MN/m ) Temperature (Saturation Temperature)a 508C 1008C 1508C 2008C 3008C 4008C 5008C 7008C 10008C 13008C 323.15 K 373.15 K 423.15 K 473.15 K 573.15 K 673.15 K 773.15 K 973.15 K 1273.15 K 1573.15 K0.001 v 149.093 172.187 195.272 218.352 264.508 310.661 356.814 449.117 587.571 726.025(6.988C) u 2445.4 2516.4 2588.4 2661.6 2812.2 2969.0 3132.4 3479.6 4053.0 4683.7(280.13 K) h 2594.5 2688.6 2783.6 2880.0 3076.8 3279.7 3489.2 3928.7 4640.6 5409.7 s 9.2423 9.5129 9.7520 9.9671 10.3443 10.6705 10.9605 11.4655 12.1019 12.64380.002 v 74.524 86.081 97.628 109.170 132.251 155.329 178.405 224.558 293.785 363.012(17.508C) u 2445.2 2516.3 2588.3 2661.6 2812.2 2969.0 3132.4 3479.6 4053.0 4683.7(290.65 K) h 2594.3 2688.4 2793.6 2879.9 3076.7 3279.7 3489.2 3928.7 4640.6 5409.7 s 8.9219 9.1928 9.4320 9.6471 10.0243 10.3506 10.6406 11.1456 11.7820 12.32390.004 v 37.240 43.028 48.806 54.580 66.122 77.662 89.201 112.278 146.892 181.506(28.%8C) u 2444.9 2516.1 2588.2 2661.5 2812.2 2969.0 3132.3 3479.6 4053.0 4683.7(302.11 K) h 2593.9 2688.2 2783.4 2879.8 3076.7 3279.6 3489.2 3928.7 4640.6 5409.7 s 8.6009 8.8724 9.1118 9.3271 9.7044 10.0307 10.3207 10.8257 11.4621 12.00400.006 v 24.812 28.676 32.532 36.383 44.079 51.774 59.467 74.852 97.928 121.004(36.168C) u 2444.6 2515.9 2588.1 2661.4 2812.2 2969.0 31323 3479.6 4053.0 4683.7(309.31 K) h 2593.4 2688.0 2783.3 2879.7 3076.6 3279.6 3489.1 3928.7 4640.6 5409.7 s 8.4128 8.6847 8.9244 9.1398 9.5172 9.8435 10.1336 10.6386 11.2750 11.81680.008 v 18.598 21.501 24.395 27.284 33.058 38.829 44.599 56.138 73.446 90.753(41.518C) u 2444.2 2515.7 2588.0 2661.4 2812.1 2969.0 3132.3 3479.6 4053.0 4683.7(314.66 K) h 2593.0 2687.7 2783.1 2879.6 3076.6 3279.6 3489.1 3928.7 4640.6 5409.7 s 8.2790 8.5514 8.7914 9.0069 9.3844 9.7107 10.0008 10.5058 11.1422 11.68410.010 v 14.869 17.196 19.512 21.825 26.445 31.063 35.679 44.911 58.757 72.602(45.818C) u 2443.9 2515.5 2587.9 2661.3 2812.1 2968.9 3132.3 3479.6 4053.0 4683.7(318.96 K) h 2592.6 2687.5 2783.0 2879.5 3076.5 3279.6 3489.1 3928.7 4640.6 5409.7 s 8.1749 8.4479 8.6882 8.9038 9.2813 9.6077 9.8978 10.4028 11.0393 11.58110.020 v 7.412 8.585 9.748 10.907 13.219 15.529 17.838 22.455 29.378 36.301(60.068C) u 2442.2 2514.6 2587.3 2660.9 2811.9 2968.8 3132.2 3479.5 4053.0 4683.7(333.21 K) h 2590.4 2686.2 2782.3 2879.1 3076.3 3279.4 3489.0 3928.6 4640.6 5409.7 s 7.8498 8.1255 8.3669 8.5831 8.9611 9.2876 9.5778 10.0829 10.7193 11.26120.040 v 3.683 4.279 4.866 5.448 6.606 7.763 8.918 11.227 14.689 18.151(75.878C) u 2438.8 2512.6 2586.2 2660.2 2811.5 2968.6 3132.1 3479.4 4052.9 4683.6(349.02 K) h 2586.1 2683.8 2780.8 2878.1 3075.8 3279.1 3488.8 3928.5 4640.5 5409.6 s 7.5192 7.8003 8.0444 8.2617 8.6406 8.9674 9.2577 9.7629 10.3994 10.9412 Energy Conversion0.060 v 2.440 2.844 3.238 3.628 4.402 5.174 5.944 7.484 9.792 12.100(85.948C) u 2435.3 2510.6 2585.1 2659.5 2811.2 2968.4 3131.9 3479.4 4052.9 4683.6(359.09 K) h 2581.7 2681.3 2779.4 2877.2 3075.3 3278.8 3488.6 3928.4 4640.4 5409.6 s 7.3212 7.6079 7.8546 8.0731 8.4528 8.7799 9.0704 9.5757 10.2122 10.75410.080 v 1.8183 2.127 2.425 2.718 3.300 3.879 4.458 5.613 7.344 9.075(93.508C) u 2431.7 2508.7 2583.9 2658.8 2810.8 2968.1 3131.7 3479.3 4052.8 4683.5(366.65 K) h 2577.2 2678.8 2777.9 2876.2 3074.8 3278.5 3488.3 3928.3 4640.4 5409.5 s 7.1775 7.4698 7.7191 7.9388 8.3194 8.6468 8.9374 9.4428 10.0794 10.62130.100 v 1.4450 1.6958 1.9364 2.172 2.639 3.103 3.565 4.490 5.875 7.260q 2007 by Taylor & Francis Group, LLC
15. 15. Properties of Gases, Vapors, Liquids and Solids(99.638C) u 2428.2 2506.7 2582.8 2658.1 2810.4 2967.9 3131.6 3479.2 4052.8 4683.5(372.78 K) h 2572.7 2676.2 2776.4 2875.3 3074.3 3278.2 3488.1 3928.2 4640.3 5409.5 s 7.0633 7.3614 7.6134 7.8343 8.2158 8.5435 8.8342 9.3398 9.9764 10.51830.200 v 0.6969 0.8340 0.9596 1.0803 1.3162 1.5493 1.7814 2.244 2.937 3.630(120.238C) u 2409.5 2496.3 2576.9 2654.4 2808.6 2966.7 3130.8 3478.8 4052.5 4683.2(393.38 K) h 2548.9 2663.1 2768.8 2870.5 3071.8 3276.6 3487.1 3927.6 4640.0 5409.3 s 6.6844 7.0135 7.2795 7.5066 7.8926 8.2218 8.5133 9.0194 9.6563 10.19820.300 v 0.4455 0.5461 0.6339 0.7163 0.8753 1.0315 1.1867 1.4957 1.9581 2.4201(133.558C) u 2389.1 2485.4 2570.8 2650.7 2806.7 2965.6 3130.0 3478.4 4052.3 4683.0(406.70 K) h 2522.7 2649.2 2761.0 2865.6 3069.3 3275.0 3486.0 3927.1 4639.7 5409.0 s 6.4319 6.7965 7.0778 7.3115 7.7022 8.0330 8.3251 8.8319 9.4690 10.01100.400 v 0.3177 0.4017 0.4708 0.5342 0.6548 0.7726 0.8893 1.1215 1.4685 1.8151(143.638C) u 2366.3 2473.8 2564.5 2646.8 2804.8 2964.4 3129.2 3477.9 4052.0 4682.8(416.78 K) h 2493.4 2634.5 2752.8 2860.5 3066.8 3273.4 3484.9 3926.5 4639.4 5408.8 s 6.2248 6.6319 6.9299 7.1706 7.5662 7.8985 8.1913 8.6987 9.3360 9.87800.500 v 0.3146 0.3729 0.4249 0.5226 0.6173 0.7109 0.8969 1.1747 1.4521(151.868C) u 2461.5 2557.9 2642.9 2802.9 2963.2 328.4 3477.5 4051.8 4682.5(425.01 K) h 2618.7 2744.4 2855.4 3064.2 3271.9 3483.9 3925.9 4639.1 5408.6 s 6.4945 6.8111 7.0592 7.4599 7.7938 8.0873 8.5952 9.2328 9.7749 a Symbols: vZspeciﬁc volume, m3/kg; uZ speciﬁc internal energy, U/kg; hZspeciﬁc enthalpy, kJ/kg; sZspeciﬁc entropy, kJ/K kg. Source: From Bolz, R. E. and G. L. Tuve, Eds. 1973. CRC Handbook of Tables for Applied Engineering Science, 2nd Ed., Chemical Rubber Co., Cleveland, Ohio. A3-11q 2007 by Taylor & Francis Group, LLC
16. 16. A4 Ultimate Analysis ofNitin Goel Biomass FuelsIntel Technology India Pvt. Ltd. Material Ca (%) H2a (%) O2a (%) N2a (%) Sa (%) Aa (%) HHV (kJ/kg)b Agricultural WastesBagasse (sugarcane refuse) 47.3 6.1 35.3 0.0 0.0 11.3 21,255Feedlot manure 42.7 5.5 31.3 2.4 0.3 17.8 17,160Rice hulls 38.5 5.7 39.8 0.5 0.0 15.5 15,370Rice straw 39.2 5.1 35.8 0.6 0.1 19.2 15,210 Municipal Solid WasteGeneral 33.9 4.6 22.4 0.7 0.4 38.0 13,130Brown paper 44.9 6.1 47.8 0.0 0.1 1.1 17,920Cardboard 45.5 6.1 44.5 0.2 0.1 3.6 18,235Corrugated boxes 43.8 5.7 45.1 0.1 0.2 5.1 16,430Food fats 76.7 12.1 11.2 0.0 0.0 0.0 38,835Garbage 45.0 6.4 28.8 3.3 0.5 16.0 19,730Glass bottles (labels) 0.5 0.1 0.4 0.0 0.0 99.0 195Magazine paper 33.2 5.0 38.9 0.1 0.1 22.7 12,650Metal cans (labels, etc.) 4.5 0.6 4.3 0.1 0.0 90.5 1,725Newspapers 49.1 6.1 43.0 0.1 0.2 1.5 19,720Oils, paints 66.9 9.6 5.2 2.0 0.0 16.3 31,165Paper food cartons 44.7 6.1 41.9 0.2 0.2 6.9 17,975Plastics General 60.0 7.2 22.6 0.0 0.0 10.2 33,415 Polyethylene 85.6 14.4 0.0 0.0 0.0 0.0 46,395 Vinyl chloride 47.1 5.9 18.6 (ChlorineZ28.4%) 20,535Rags 55.0 6.6 31.2 4.6 0.1 2.5 13,955Rubber 77.7 10.3 0.0 0.0 2.0 10.0 26,350 SewageRaw sewage 45.5 6.8 25.8 3.3 2.5 16.1 16,465Sewage sludge 14.2 2.1 10.5 1.1 0.7 71.4 4,745 Wood and Wood ProductsHardwoods Beech 51.6 6.3 41.5 0.0 0.0 0.6 20,370 Hickory 49.7 6.5 43.1 0.0 0.0 0.7 20,165 (continued) A4-1q 2007 by Taylor & Francis Group, LLC
17. 17. A4-2 Energy Conversion Material Ca (%) H2a (%) O2a (%) N2a (%) Sa (%) Aa (%) HHV (kJ/kg)b Maple 50.6 6.0 41.7 0.3 0.0 1.4 19,955 Poplar 51.6 6.3 41.5 0.0 0.0 0.6 20,745 Oak 49.5 6.6 43.4 0.3 0.0 0.2 20,185Softwoods Douglas ﬁr 52.3 6.3 40.5 0.1 0.0 0.8 21,045 Pine 52.6 6.1 40.9 0.2 0.0 0.2 21,280 Redwood 53.5 5.9 40.3 0.1 0.0 0.2 21,025 Western hemlock 50.4 5.8 41.4 0.1 0.1 2.2 20,045Wood products Charcoal (made at 4008C) 76.5 3.9 15.4 0.8 0.0 3.4 28,560 Charcoal (made at 5008C) 81.7 3.2 11.5 0.2 0.0 3.4 31,630 Douglas ﬁr bark 56.2 5.9 36.7 0.0 0.0 1.2 22,095 Pine bark 52.3 5.8 38.8 0.2 0.0 2.9 20,420 Dry sawdust pellets 47.2 5.5 46.3 0.0 0.0 1.0 20,500 Ripe leaves 40.5 6.0 45.1 0.2 0.1 8.1 16,400Plant wastes Brush 42.5 5.9 41.2 2.0 0.1 8.3 18,370 Evergreen trimmings 49.5 6.6 41.2 1.7 0.2 0.8 6,425 Garden plants 48.0 6.8 41.3 1.2 0.3 2.4 8,835 Grass 48.4 6.8 41.6 1.2 0.3 1.7 18,520 a All percentages on moisture-free basis. b 1 kJ/kgZ0.43 Btu/lbm.q 2007 by Taylor & Francis Group, LLC
18. 18. q 2007 by Taylor & Francis Group, LLC
19. 19. q 2007 by Taylor & Francis Group, LLC
20. 20. q 2007 by Taylor & Francis Group, LLC
21. 21. q 2007 by Taylor & Francis Group, LLC
22. 22. q 2007 by Taylor & Francis Group, LLC
23. 23. PrefaceEnergy is universally acknowledged to be the mainstay of an industrial society. Without an adequatesupply of energy, the stability of the social and economic order, as well as the political structure of asociety, is in jeopardy. As the world supply of fossil energy sources decreases, the need for energyconservation, efﬁcient energy conversion, and developing renewable energy technologies becomes evermore critical. This book deals with energy conversion from traditional fossil fuels and nuclear as well asrenewable energy resources. Recently, the issue of energy efﬁciency has emerged as a serious engineering challenge because it isnow generally accepted that human activities, mainly burning of fossil fuels, are the main contributors toglobal climate change. Global warming is largely the result of the emission of radiation-trapping gases,such as carbon dioxide and methane, into the atmosphere. It is the consensus of the scientiﬁc communitythat human activities are largely responsible for the increase in the average global temperature. Thus,improving the efﬁciency of energy conversion from fossil fuels and the development of renewable energytechnologies is becoming ever more important for the engineering community. This book is divided into two parts: energy resources and energy conversion. The ﬁrst seven chaptersdeal with available energy resources including fossil fuels, nuclear, and renewable. Chapters 8–11 coverconventional energy conversion technologies of steam power plants, gas turbines, internal combustionengines, and hydraulic turbines. Advanced conversion technologies such as advanced coal powerplants, combined cycle power plants, Stirling engines, and advanced nuclear power are covered inChapters 12–17. Chapter 15 covers various storage technologies. Renewable energy technologies including solar thermal power, photovoltaics, wind energy conver-sion, biomass and biofuels, geothermal energy conversion, as well as waste-to-energy combustion arecovered in Chapters 18–24. Chapter 26 presents fundamentals as well as technology assessment offuel cells. Unconventional energy conversion systems still under development, including nuclear fusion,ocean energy, and direct energy conversion by thermionic, thermoelectric, and magneto-hydrodynamicmethods, are covered in Chapters 17, 25, and 27. The material presented in this handbook has been extracted from the two previous handbooks editedby us. The ﬁrst is the Handbook of Mechanical Engineering and the other the Handbook of Energy Efﬁciencyand Renewable Energy published in 2007. It is hoped that bringing all the information for energyresources and conversion under one roof will be useful to engineers in designing and building energygeneration systems from traditional and renewable resources. The editors would like to express theirappreciation to the authors for their forbearance and diligence in preparing their work for publication. In a work of this type, scope errors and omissions are unavoidable. The editors would thereforeappreciate feedback from the readers to rectify any errors and improve the coverage of future editions. D. Yogi Goswami Frank Kreithq 2007 by Taylor & Francis Group, LLC
24. 24. Editors-in-ChiefD. Yogi Goswami, Clean Energy Research Center, University of South Florida, Tampa,FloridaFrank Kreith, Department of Mechanical Engineering, University of Colorado, Boulder,Coloradoq 2007 by Taylor & Francis Group, LLC
25. 25. ContributorsElsayed M. Aﬁfy Steven I. Freedman David E. KlettNorth Carolina State University Gas Research Institute North Carolina A&T StateRaleigh, North Carolina Deerﬁeld, Illinois University Greensboro, North Carolina Nitin GoelAnthony F. Armor Intel Technology India Pvt. Ltd.Electric Power Bangalore, India Kenneth D. Kok Research Institute WSMS Mid-AmericaPalo Alto, California D. Yogi Goswami Oak Ridge, Tennessee Clean Energy Research CenterRoger E.A. Arndt University of South Florida Alex LezuoUniversity of Minnesota Tampa, Florida Siemans Power GenerationMinneapolis, Minnesota and Erlangen, Germany University of Florida Gainesville, FloridaRichard Bajura Xianguo LiWest Virginia University Leonard M. Grillo University of WaterlooMorgantown, West Virginia Grillo Engineering Company Waterloo, Ontario, Canada Hollis, New HampshireRiccardo BattistiUniversity of Rome Roel Hammerschlag Robert McConnell “La Sapienza” Institute for Lifecycle National Center for PhotovoltaicsRome, Italy Environmental Assessment National Renewable Seattle, Washington Energy Laboratory Golden, ColoradoDale E. Berg Edwin A. HarvegoSandia National Laboratories Idaho National LaboratoryAlbuquerque, New Mexico Roger Messenger Idaho Falls, Idaho Department of Electrical EngineeringDesikan Bharathan Massoud Kayhanian Florida Atlantic UniversityNational Renewable Energy Center for Environmental and Boca Raton, Florida Laboratory Water Resources EngineeringGolden, Colorado Department of Civil and Environmental Engineering Jeffrey H. Morehouse University of California at Davis Department of MechanicalRobert C. Brown Davis, CaliforniaCenter for Sustainable Engineering Environmental Technologies University of South Carolina John Kern Columbia, South CarolinaIowa State University Siemens Power GenerationAmes, Iowa Milwaukee, Wisconsin Ralph P. OverendPhilip C. Crouse Kevin Kitz National Renewable EnergyPhilip C. Crouse and Associates Inc. U.S. Geothermal Inc. LaboratoryDallas, Texas Boise, Idaho Golden, Coloradoq 2007 by Taylor & Francis Group, LLC
26. 26. Takhir M. Razykov Hans Schweiger Hari M. UpadhyayaPhysical Technical Institute AIGUASOL Engineering Centre for Renewable EnergyUzbek Academy of Sciences Active Solar Systems Group Systems Technology (CREST)Tashkent, Uzbekistan Barcelona, Spain Department of Electronic and Electrical Engineering Loughborough UniversityT. Agami Reddy Thomas E. Shannon Loughborough, Leicestershire,Department of Civil, Architectural University of Tennessee United Kingdom and Environmental Engineering Knoxville, TennesseeDrexel University Charles O. VelzyPhiladelphia, Pennsylvania Private Consultant William B. Stine White Haven, Pennsylvania California State PolytechnicMarshall J. Reed University Sanjay VijayaraghavanU.S. Department of Energy Pasadena, California Intel Technology India Pvt. Ltd.Washington, D.C. Bangalore, India George Tchobanoglous Werner WeissJoel L. Renner Department of Civil and AEE INTECIdaho National Engineering Environmental Engineering Feldgasse, Austria LaboratoryIdaho Falls, Idaho University of California at Davis Roland Winston Davis, California University of CaliforniaRobert Reuther Merced, CaliforniaU.S. Department of EnergyMorgantown, West Virginia Ayodhya N. Tiwari Lynn L. Wright Centre for Renewable Energy Oak Ridge National Laboratory Systems Technology (CREST) Oak Ridge, TennesseeManuel Romero-Alvarez Department of ElectronicPlataforma Solar de and Electrical Engineering Federica Zangrando Almeria-CIEMAT Loughborough University National Renewable EnergyMadrid, Spain Loughborough, Leicestershire, Laboratory United Kingdom Golden, ColoradoChristopher P. Schaber Eduardo ZarzaInstitute for Lifecycle James S. Tulenko Plataforma Solar de Environmental Assessment University of Florida Almeria-CIEMATSeattle, Washington Gainesville, Florida Madrid, Spainq 2007 by Taylor & Francis Group, LLC
27. 27. Contents 1 Introduction D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Energy Use by Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 1.2 Electrical Capacity Additions to 2030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 1.3 Present Status and Potential of Renewable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 1.4 Role of Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 1.5 Energy Conversion Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10SECTION I Energy Resources 2 Fossil Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1 Coal Robert Reuther . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Environmental Aspects Richard Bajura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 2.3 Oil Philip C. Crouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 2.4 Natural Gas Philip C. Crouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 3 Biomass Energy Ralph P. Overend and Lynn L. Wright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 Biomass Feedstock Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.2 Biomass Conversion Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 4 Nuclear Resources James S. Tulenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.1 The Nuclear Fuel Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4.2 Processing of Nuclear Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 5 Solar Energy Resources D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.1 Solar Energy Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5.2 Earth–Sun Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5.3 Solar Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 5.4 Solar Radiation on a Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 5.5 Solar Radiation on a Horizontal Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 5.6 Solar Radiation on a Tilted Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 5.7 Solar Radiation Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 5.8 Solar Radiation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 6 Wind Energy Resources Dale E. Berg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 6.1 Wind Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1q 2007 by Taylor & Francis Group, LLC
28. 28. 6.2 Wind Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 6.3 Wind Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 6.4 Wind Energy Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 6.5 Wind Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 6.6 Wind Energy Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 7 Geothermal Energy Joel L. Renner and Marshall J. Reed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 7.1 Heat Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 7.2 Types of Geothermal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 7.3 Geothermal Energy Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 7.4 Geothermal Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 7.5 Environmental Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 7.6 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6SECTION II Energy Conversion 8 Steam Power Plant John Kern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 8.2 Rankine Cycle Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 8.3 Topping and Bottoming Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 8.4 Steam Boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 8.5 Steam Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 8.6 Heat Exchangers, Pumps, and Other Cycle Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 8.7 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14 9 Gas Turbines Steven I. Freedman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 9.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 9.3 Fuels and Firing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 9.4 Efﬁciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 9.5 Gas Turbine Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 9.6 Cycle Conﬁgurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 9.7 Components Used in Complex Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 9.8 Upper Temperature Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 9.9 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 9.10Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 9.11Mechanical Product Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1110 Internal Combustion Engines David E. Klett and Elsayed M. Aﬁfy . . . . . . . . . . . . . . . . . . . . . . . 10-1 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 10.2 Engine Types and Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 10.3 Air Standard Power Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 10.4 Actual Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10 10.5 Combustion in IC Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12 10.6 Exhaust Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15 10.7 Fuels for SI and CI Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17 10.8 Intake Pressurization—Supercharging and Turbocharging . . . . . . . . . . . . . . . . . . . . . . . 10-20q 2007 by Taylor & Francis Group, LLC
29. 29. 11 Hydraulic Turbines Roger E.A. Arndt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 11.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 11.2 Principles of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5 11.3 Factors Involved in Selecting a Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8 11.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12 11.5 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-14 11.6 Field Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1712 Stirling Engines William B. Stine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 12.2 Thermodynamic Implementation of the Stirling Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 12.3 Mechanical Implementation of the Stirling Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4 12.4 Future of the Stirling Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-913 Advanced Fossil Fuel Power Systems Anthony F. Armor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 13.2 Fuels for Electric Power Generation in the U.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 13.3 Coal as a Fuel for Electric Power (World Coal Institute 2000) . . . . . . . . . . . . . . . . . . . . . 13-3 13.4 Clean Coal Technology Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 13.5 Pulverized-Coal Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5 13.6 Emissions Controls for Pulverized Coal Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-9 13.7 Fluidized Bed Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13 13.8 Gasiﬁcation Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-16 13.9 Combustion Turbine Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-20 13.10Central Station Options for New Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-24 13.11Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2614 Combined-Cycle Power Plants Alex Lezuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1 14.1Combined-Cycle Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1 14.2Combined-Cycle Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2 14.3Combined-Cycle Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4 14.4Combined Heat and Power from Combined-Cycle Plants . . . . . . . . . . . . . . . . . . . . . . . . . 14-7 14.5Environmental Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-815 Energy Storage Technologies Roel Hammerschlag and Christopher P. Schaber . . . . . . . . . . . . . 15-1 15.1 Overview of Storage Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 15.2 Principal Forms of Stored Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3 15.3 Applications of Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3 15.4 Specifying Energy Storage Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4 15.5 Specifying Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6 15.6 Direct Electric Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7 15.7 Electrochemical Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8 15.8 Mechanical Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-13 15.9 Direct Thermal Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-15 15.10Thermochemical Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1816 Nuclear Power Technologies Edwin A. Harvego and Kenneth D. Kok . . . . . . . . . . . . . . . . . . . . . 16-1 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1 16.2 Development of Current Power-Reactor Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2 16.3 Next-Generation Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-8q 2007 by Taylor & Francis Group, LLC
30. 30. 16.4 Generation-IV Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-11 16.5 Fuel Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-20 16.6 Nuclear Waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-26 16.7 Nuclear Power Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-29 16.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2917 Nuclear Fusion Thomas E. Shannon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1 17.2 Fusion Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1 17.3 Conﬁnement Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2 17.4 Tokamak Reactor Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2 17.5 Fusion Energy Conversion and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-418 Solar Thermal Energy Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1 18.1 Active Solar Heating Systems T. Agami Reddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1 18.2 Solar Heat for Industrial Processes Riccardo Battisti, Hans Schweiger, and Werner Weiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-49 18.3 Passive Solar Heating, Cooling, and Daylighting Jeffrey H. Morehouse . . . . . . . . . . . . 18-59 18.4 Solar Cooling D. Yogi Goswami and Sanjay Vijayaraghavan . . . . . . . . . . . . . . . . . . . . . . 18-12119 Concentrating Solar Thermal Power Manuel Romero-Alvarez and Eduardo Zarza . . . . . . . 19-1 19.1 Introduction and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2 19.2 Solar Concentration and CSP Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-6 19.3 Solar Concentrator Beam Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-9 19.4 Solar Concentration Ratio: Principles and Limitations of CSP Systems . . . . . . . . . . 19-13 19.5 Solar Thermal Power Plant Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-15 19.6 Parabolic Trough Solar Thermal Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-18 19.7 Central Receiver Solar Thermal Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-50 19.8 Volumetric Atmospheric Receivers: PHOEBUS and Solair . . . . . . . . . . . . . . . . . . . . . . . 19-80 19.9 Solar Air Preheating Systems for Combustion Turbines: The SOLGATE Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-82 19.10 Dish/Stirling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-85 19.11 Market Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-91 19.12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-9220 Photovoltaics Fundamentals, Technology and Application . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1 20.1 Photovoltaics Roger Messenger and D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1 20.2 Thin-Film PV Technology Hari M. Upadhyaya, Takhir M. Razykov, and Ayodhya N. Tiwari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-28 20.3 Concentrating PV Technologies Roland Winston, Robert McConnell, and D. Yogi Goswami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-5421 Wind Energy Conversion Dale E. Berg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1 21.2 Wind Turbine Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-4 21.3 Wind Turbine Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-16 21.4 Wind Turbine Structural Dynamic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-16 21.5 Peak Power Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-18 21.6 Turbine Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-20 21.7 Other Wind-Energy Conversion Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-23q 2007 by Taylor & Francis Group, LLC