Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Iclp 2008 Aau


Published on

Lightning protection for a OHL/UC connected GIS

  • Be the first to comment

  • Be the first to like this

Iclp 2008 Aau

  1. 1. <ul><li>Lightning Simulation of a Combined Overhead Line/Cable Connected GIS </li></ul><ul><li>by </li></ul><ul><li>Jakob Kessel, Ví ðir Már Atlason and Claus Leth Bak </li></ul><ul><li>Aalborg University, </li></ul><ul><li>Institute of Energy Technology </li></ul><ul><li>and </li></ul><ul><li>Jesper Lund </li></ul><ul><li>NV Net A/S </li></ul>
  2. 2. Introduction <ul><li>170 kV transmission system for year 2014 </li></ul><ul><ul><li>Mainly underground cable and GIS </li></ul></ul><ul><li>Follow up on 9th semester project </li></ul>
  3. 3. Introduction <ul><li>Only Area 3 showed overvoltages </li></ul><ul><li>Modelling </li></ul><ul><ul><li>Lines, cables and outdoor busbars </li></ul></ul><ul><ul><ul><li>Transmission lines </li></ul></ul></ul><ul><ul><li>GIS busbars and transformers </li></ul></ul><ul><ul><ul><li>Equivalent capacitances </li></ul></ul></ul><ul><ul><li>Tower model </li></ul></ul><ul><ul><li>Grounding resistance </li></ul></ul><ul><ul><li>Surge arrester </li></ul></ul>SA
  4. 4. Modelling <ul><li>Tower model </li></ul><ul><ul><li>Tower surge impedance </li></ul></ul><ul><ul><li>Insulator model </li></ul></ul><ul><ul><li>Grounding resistance </li></ul></ul>Cite: Fast Front Task Force of the IEEE, and Sargent et al.
  5. 5. Modelling <ul><li>Insulator model </li></ul><ul><ul><li>Voltage-time characteristic </li></ul></ul>Cite: Fast Front Task Force of the IEEE, and Yadee et al.
  6. 6. Modelling <ul><li>Grounding resistance </li></ul><ul><ul><li>Dynamic grounding resistance </li></ul></ul><ul><ul><li>Where: </li></ul></ul><ul><ul><ul><li>R 0 is low current grounding resistance </li></ul></ul></ul><ul><ul><ul><li>I g is the critical current causing ionization of the soil </li></ul></ul></ul><ul><ul><ul><li>I R is the current to ground </li></ul></ul></ul><ul><li>Surge arrester model </li></ul><ul><ul><li>Simplified IEEE model </li></ul></ul>Cite: Fast Front Task Force of the IEEE, and Crisholm et al. Cite: Pinceti et al.
  7. 7. Simulation <ul><li>Simulation parameters </li></ul><ul><ul><li>Shielding failure </li></ul></ul><ul><ul><li>Back flashover </li></ul></ul><ul><ul><li>The lightning surge is estimated with double exponential function </li></ul></ul><ul><li>Parameter investigation </li></ul><ul><ul><li>Lightning front time </li></ul></ul><ul><ul><ul><li>Only for shielding failure </li></ul></ul></ul><ul><ul><li>Soil resistivity (at the overhead line/cable transition point) </li></ul></ul><ul><ul><li>Cable length (between transformer and surge arrester in GIS) </li></ul></ul>Soil resitivity Crest magnitude Time to half Front time [ Ω m] [kA] [µs] [µs] 92,5 -200 350 10 Back flashover 92,5 -41,8 350 1,4 Shielding failure
  8. 8. Results <ul><li>Simulation results </li></ul><ul><ul><li>Varying lightning </li></ul></ul><ul><ul><li>front time, SF, </li></ul></ul><ul><ul><li>closed breaker </li></ul></ul><ul><ul><li>Varying lightning </li></ul></ul><ul><ul><li>front time, SF, </li></ul></ul><ul><ul><li>open breaker </li></ul></ul>U tf
  9. 9. Results <ul><li>Simulation results </li></ul><ul><ul><li>Varying soil </li></ul></ul><ul><ul><li>resistivity, SF, </li></ul></ul><ul><ul><li>closed breaker </li></ul></ul><ul><ul><li>Varying soil </li></ul></ul><ul><ul><li>resistivity, SF, </li></ul></ul><ul><ul><li>open breaker </li></ul></ul>U tf
  10. 10. Results <ul><li>Simulation results </li></ul><ul><ul><li>Varying cable </li></ul></ul><ul><ul><li>length, SF, </li></ul></ul><ul><ul><li>closed breaker </li></ul></ul><ul><ul><li>Varying cable </li></ul></ul><ul><ul><li>length, SF, </li></ul></ul><ul><ul><li>open breaker </li></ul></ul>U tf
  11. 11. Results <ul><li>Evaluation of critical lightning current </li></ul><ul><ul><li>Varying front time </li></ul></ul><ul><ul><ul><li>Only evaluated for shielding failure </li></ul></ul></ul><ul><ul><ul><li>No overvoltages with closed breaker </li></ul></ul></ul><ul><ul><li>Varying soil resistivity </li></ul></ul><ul><ul><ul><li>No overvoltage for SF with closed breaker </li></ul></ul></ul>
  12. 12. Results <ul><li>Evaluation of critical lightning current </li></ul><ul><ul><li>Cable length </li></ul></ul><ul><ul><ul><li>No overvoltages with closed breaker </li></ul></ul></ul><ul><ul><li>The MTBF is found based on the lightning current </li></ul></ul>
  13. 13. Modelling <ul><li>Risk assesment </li></ul><ul><ul><li>Back flashover </li></ul></ul><ul><ul><ul><li>MTBF closed = ( P (closed) P (current) N flashes ) - 1 </li></ul></ul></ul><ul><ul><ul><li>MTBF open = ( P (open) P (current) N flashes ) -1 </li></ul></ul></ul><ul><ul><ul><li>P (open) ≈ 1/365 </li></ul></ul></ul><ul><ul><ul><li>P (closed) = 1 - P (open) </li></ul></ul></ul><ul><ul><li>Shielding failure </li></ul></ul><ul><ul><ul><li>MTBF closed = ( P (closed) P (sf) P (current) N flashes ) -1 </li></ul></ul></ul><ul><ul><ul><li>MTBF open = ( P (open) P (sf) P (current) N flashes ) -1 </li></ul></ul></ul><ul><li>Mean Time Between Failure </li></ul>
  14. 14. Conclusion & Discussion <ul><li>Conclusion </li></ul><ul><ul><li>The steepness of the lightning surge </li></ul></ul><ul><ul><li>Limited effect on the overvoltages. </li></ul></ul><ul><ul><li>The soil resistivity at the overhead line/cable transition point </li></ul></ul><ul><ul><li>Great effect on the overvoltages. </li></ul></ul><ul><ul><li>The cable length between the transformer and the surge arrester in the GIS </li></ul></ul><ul><ul><li>Increased cable length yielding increased voltage magnitude at the transformer. </li></ul></ul><ul><ul><li>MTBF > 2000 years </li></ul></ul><ul><ul><li>The surge arrester at the overhead line/cable transition point provides adequate protection for the substation. </li></ul></ul><ul><ul><li>Further protection in form of a surge arrester at the GIS busbar is not necessary. </li></ul></ul>