SlideShare una empresa de Scribd logo
1 de 12
Descargar para leer sin conexión
GESTIÓN ESPECIALIZADA DE RESIDUOS SÓLIDOS, SOLUCIONES
SOSTENIBLES E INNOVADORAS
VICTORIA ALEJANDRA ARELLANO PÁJARO
Aporte Individual
Manejo Integrado de Residuos Sólidos
UNIVERSIDAD DE MANIZALES
FACULTAD DE CIENCIAS CONTABLES, ECONÓMICAS Y ADMINISTRATIVAS
MAESTRÍA EN DESARROLLO SOSTENIBLE Y MEDIO AMBIENTE
BARRANQUILLA – ATLÁNTICO
20 de abril de 2016
TABLA DE CONTENIDO
INTRODUCCIÓN................................................................................................................................................... 4
1. COGENERACIÓN PARA LA PRODUCCIÓN DE ENERGÍA – WASTE TO ENERGY.................. 5
2. VITRIFICACIÓN PARA EL TRATAMIENTO DE RESIDUOS DE ALTA TOXICIDAD................... 7
3. CONCLUSIÓN.............................................................................................................................................11
BIBLIOGRAFÍA......................................................................................................................................................12
LISTA DE TABLAS
Tabla 1 Información general de la planta de cogeneración de Suecia........................................... 6
LISTA DE FIGURAS
Figura 1 Diagrama de flujo del proceso de Cogeneración en Suecia............................................. 7
Figura 2 Diagrama de vitrificación co horno cerámico de fusión de alimentación líquida
directa. ..................................................................................................................................................................... 8
Figura 2 Diagrama de instalación de vitrificación de Marcoule......................................................... 9
Figura 3 Diagrama de la primera fase de Planta de Vitrificación...................................................... 9
INTRODUCCIÓN
Dado que la producción de residuos es creciente, como el crecimiento poblacional y la
demanda de recursos como la energía, se ha hecho relevante encontrar soluciones que
permitan abordar de manera integradoras los problemas que ha ocasionado el modelo de
desarrollo y crecimiento seleccionado en algunos territorios.
Las tecnologías de gestión de residuos en las últimas décadas han ido evolucionando
rápidamente, frente a las normas ambientales restrictivas y el aumento de la conciencia
ambiental de la población. En la actualidad el abordaje de los residuos sólidos, es distinta,
ya que se visionan como material susceptible a ser parte de la cadena productiva, por lo que
las nuevas tecnologías se en caminan a aprovechar esto.
Para el caso de los residuos con características peligrosas, es similar, se ha buscado una
reducción en el a producción y a la vez formas que permitan la recuperación o neutralización
de los mismos.
Con el presente aporte individual se buscó explorar algunas de las tecnologías innovadoras
utilizados para la gestión de Residuos Sólidos Ordinarios (RSU) y Residuos Sólidos
Peligrosos (RESPEL). Efectuándose un análisis de las tecnologías de Cogeneración con el uso
de combustibles derivados de residuos sólidos urbano y el tratamiento de residuos de alta
toxicidad por Vitrificación.
1. COGENERACIÓN PARA LA PRODUCCIÓN DE ENERGÍA – WASTE TO ENERGY
La cogeneración se entiende como la producción simultánea de dos o más tipos de energía,
siendo normalmente generado electricidad y calor para procesos o calefacción, aunque
puede ser también energía mecánica y calor (y/o frío). (Tchobanoglous, 1994)
Una de las condiciones de la cogeneración, es que al pretender aprovechar el calor, es
necesario que haya proximidad con el usuario final (consumidor), distinto a los sistemas
térmicos convencionales de producción de electricidad, donde a pesar de generarse calor
estés no es aprovechado, sino que es emitido al ambiente. Por consiguiente, el objetivo de
la cogeneración es que no se pierda la gran cantidad de energía, producto de los procesos
térmicos.
Una central termoeléctrica tradicional transforma la energía química contenida en un
combustible fósil (carbón, fuelóleo, gasóleo, gas natural) para producir una energía térmica,
que es convertida en energía mecánica, que a la vez es transformada por medio de un
alternador en energía eléctrica, de alta calidad, alcanzando un rendimiento en la producción
de electricidad no mayor al 45%; el resto se emite a la atmósfera en forma de gases de
escape (Plantas de Cogeneración, 2016).
Las plantas de cogeneración buscan efectuar un aprovechamiento energético, llegando a un
rendimiento global que pueden oscilar entre el 75% y el 90% de la energía química
contenida en el combustible. Para el caso Waste to Energy, es aprovechar el contenido
combustible de los residuos urbanos y/o industriales, pudiendo así reemplazar el
combustible fósil por combustible derivado de residuos (CDR).
Los CDR corresponde a residuos sólidos urbanos estabilizados por medio de proceso
biomecánicos, para luego ser destinados a valoración energética en procesos térmicos,
como los de Cogeneración. Los métodos principales para producción de CDR son:
 El tratamiento mecánico/físico: los residuos se separan, la fracción seca de la fracción
húmeda. La fracción húmeda se desvía para otro tipo de aprovechamiento y la
fracción seca se acondiciona para obtener una mezcla adecuada de residuos, para
usar como combustible.
 Biosecado: en esta etapa los residuos son triturados, libre de contaminantes, se
fermenta y se criba para eliminar residuos metálicos de menor tamaño. Dependiendo
de la mezcla de residuos requerida para el sistema, se efectúan las mezclas de
residuos para obtener el CDR.
Cuando se utilizan CDR para generación, estos deben cumplir con unas especificaciones de
calidad relacionadas con su composición, su PCI (Poder Calorífico Inferior) y el nivel de
contaminantes, esto para garantizar una buena combustión.
ESTUDIO DE CASO: PLANTA DE COGENERACIÓN DE TORSVIK - SUECIA
Entre los proyectos de cogeneración con CDR a gran escala encontramos la Planta de
cogeneración Torsvik, ubicada en el Municipio de Jönköping en Suecia.
Foto 1 planta de cogeneración de Suecia
Fuente: International District Energy Association, 2015
Tabla 1 Información general de la planta de cogeneración de Suecia
Información general
Nombre: Planta de cogeneración Torsvik, Suecia
Propietario: Municipio de Jönköping
Operador: Jönköping Energi AB
Tecnología: Waste to Energy con generación de
calor y electricidad (WtE-CHP, Siglas en
ingles)
Capacidad diseñada: 162.000 Ton/año
Valor calórico medio del CDR 11,7 MJ / kg
El material de entrada 40% de RSU
60% de residuos industriales
Productos Producción Electricidad  350 GWh pa
Calor  100 GWh pa
Eficiencia global de la planta 92%
Usuarios finales El calor se suministra a la red de
calefacción urbana en Jönköping y
Huskvarna, que suministra alrededor de
30.000 hogares
Ubicación: fábrica de papel Munksjö, Torsvik,
Suecia
Área de servicio: Jönköping Municipio
Comercial de puesta en
marcha:
2006
Fuente: EPEM S.A., 2015
Figura 1 Diagrama de flujo del proceso de Cogeneración en Suecia
Fuente: EPEM S.A., 2015
LIMITACIONES ASOCIADAS A LA TECNOLOGÍA
Según Aguilar (2008), las limitantes operativas para trabajar en cogeneracion son:
 Operar en modo de cogeneración implica que la producción de potencia
(electricidad) y calor están acopladas, de manera que no se puede variar una sin
afectar a la otra.
 Confiabilidad de la planta: cuando una unidad dentro de un esquema de
cogeneración falla o debe salir de operación para mantenimiento, se implica tanto
la producción de electricidad como la de calor, por lo que, hay que dejar de operar
la planta en modo de cogeneración para asegurar un nivel mínimo de confiabilidad.
 Costos de inversión: Los equipos utilizados en esquemas de cogeneración,
especialmente las turbinas de gas y los recuperadores de calor, son
significativamente más costosos en comparación con una caldera.
2. VITRIFICACIÓN PARA EL TRATAMIENTO DE RESIDUOS DE ALTA TOXICIDAD
La vitrificación es un tipo de tratamiento térmico en el que se exponen los residuos a una
temperatura entre 1300 y 1500 °C, obteniendo del proceso un material vítreo y moldeable
de color oscuro, cabe anotar que el material final es totalmente inertes y estable a lo largo
del tiempo. Este tipo de tecnología es muy adecuada para el tratamiento de residuos
inorgánicos altamente tóxicos y corresponde a una de las tecnologías más apropiada para
inertizar residuos.
Las principales etapas del proceso de vitrificación corresponde a (Baehr, 1989):
a. la concentración de la solución de desechos líquidos de actividad alta (HLLW) por
evaporación del agua y ácido nítrico
b. Secado y calcinación, que descompone los nitratos a óxidos;
c. Reacción de los óxidos con aditivos vitrificadores.
d. fusión para producir vidrios de desechos de actividad alta1
(HLW, siglas en ingles).
Según los procesos, estas etapas pueden ser separadas o combinadas; es decir, los procesos
pueden ser de una o de varias etapas.
Figura 2 Diagrama de vitrificación co horno cerámico de fusión de alimentación líquida directa.
Fuente: (Grover, 1988)
Se han desarrollado dos procesos principales de vitrificación para la conversión de
soluciones de HLLW a vidrios de borosilicato. Uno es el bien conocido proceso francés AVM
(Atelier de Vitrification Marcoule) y el otro es el proceso continuo con horno de fusión
cerámico en una sola etapa, para el tratamiento de desechos líquidos radiactivos de la planta
Pamela diseñada en la República Federal de Alemania y ubicada en Mol (Bélgica).
ESTUDIO DE CASO: PLANTA DE VITRIFICACIÓN DE MARCOULE –FRANCIA
Esta es una planta de vitrificación construida para tratar todos los residuos nucleares de la
central nuclear de Marcoule – Francia. Esta entro en operación en el año 1978, con una
producción máxima de 18 kilogramos de vidrio por hora, con una alimentación de 40 litros
de solución de residuos por hora.
El proceso AVM consta de una combinación de un horno rotatorio y un crisol metálico
calentado por inducción para la fusión del vidrio. El vidrio se vierte en un recipiente de acero
inoxidable refractario que, una vez lleno, se sella con una tapa mediante soldadura
automática por plasma (Baehr, 1989).
1
Los términos "desechos de actividad baja, media o intermedia, y alta" de uso universal, significan los desechos
con diferentes concentraciones de radionucleidos o de radiactividad. n. El término "desecho de alta actividad"
supone generalmente un refinado (efluente líquido) procedente del primer ciclo de las operaciones de
reelaboración del combustible para recuperar el plutonio y el uranio no quemado.
Figura 3 Diagrama de instalación de vitrificación de Marcoule.
Fuente: Baehr, 1989.
ESTUDIO DE CASO: PLANTA DE VITRIFICACIÓN DE CENIZAS MELILLA - ESPAÑA
La planta de vitrificación de Melilla- España, está destinada para el tratamiento de cenizas
productos de la generación térmica de energía. Este proyecto se encuentra diseñado en dos
fases, teniendo un costo la primera fase de 1.649.000 euros (en el 2006). El objetivo de esta
planta es eliminar el almacenamiento de cenizas, y aprovechar para lleno el material
inertizado.
La primera fase de esta Planta comprende (Melilla medio ambiente, 2016):
a) Silos de almacenamiento de cenizas y fundentes (con vis sinfín regulables). Las cenizas de
incineración procedentes del silo de la PIRSU, se mezclarán con fundentes, variables según
las piezas vitrocerámicas a obtener cuando estén operativas las dos fases.
Figura 4 Diagrama de la primera fase de Planta de Vitrificación
Fuente: Melilla medio ambiente, 2016
b) Un sistema de alimentación de residuo y fundente.
c) Una tolva de carga del contenerizador (con vis sinfín regulable).
d) Un contenerizador. Preparará las cenizas para transporte en contenedores, ensacadas o
compactadas, con pérdida de agua (lixiviados) para disminuir peso.
e) Un sistema de depuración de lixiviados.
LIMITACIONES ASOCIADAS A LA TECNOLOGÍA
 Hay materiales que por su naturaleza no son vitrificables. Los materiales para ser
vetrificables debes pasar cierto nivel de oxidación.
 No es posible procesar materia organica, ya que a cierta temperatura esta se gasifica.
 Para el caso de tratar residuos con presencia de cloruros y sales en general, se debe
contar con un sistema de tratamiento de gases adicional que permita precipitar el
cloro. Esta misma situación para con los sulfuros que al ser procesado residuos con
presencial del mismo hay emisión de SO2/SO3.
 Si el proceso de fusión de vidrio se realiza en un horno de fusión metálico la
capacidad de tratamiento se limita a 30 a 40 litros por hora pero son el bajo costo y
de fácil manipulación, mientras que si se efectúa con hornos de fusión cerámicos hay
elevados costos y una manipulación comparativamente complicada, pero la
capacidad de producción de HLLW es superior a 100 litros por hora.
3. CONCLUSIÓN
Hay múltiples opciones tratamiento de residuos sólidos urbanos no peligros y residuos
peligrosos. El reto es encontrar la tecnología que se adecue a las condiciones sociales,
económicas y ambientales de los territorios, y además es necesario que se desarrolle un
marco normativo y de subsidios para algunas que permita aumentar la viabilidad de algunos
sistemas.
De la opción de analizada para el aprovechamiento de residuos ordinarios e industriales no
peligrosos, se puede concluir que, hay un potencial energético considerable en los residuos,
que a través de procesos de separación y acondicionamiento, estos puede ser introducidos
adecuadamente como combustible derivado de residuos (CDR). El potencial de
aprovechamiento de los RCD no solo se orienta hacia el sector de la generación y
cogeneración, sino también, puede ser utilizado fácilmente dentro de las cementeras.
En cuanto a la vitrificación, esta ha sido un respuesta al interés de tratar corriente de residuos
altamente toxicas, como es el caso de los residuos nucleares. A pesar de que esta tecnología
empezó a desarrollarse desde el año 1978 en Francia, aún no está ampliamente difundida,
con todo y los buenos resultados que ha mostrado.
Del análisis efectuado, si bien se detectaron limitaciones en la implementación de las
tecnologías, es importante tenerlas en cuenta como posibles sistemas de aprovechamiento
y neutralización de residuos peligrosos.
BIBLIOGRAFÍA
Baehr, W. (1989). Procesos industriales de vitrificación para soluciones de desechos líquidos
de actividad alta . Boletín del OIEA, 43-46.
EPEM S.A. (30 de Octubre de 2015). Waste Control software. Obtenido de Database of Waste
Management Technologies: http://www.epem.gr/waste-c-
control/database/default.htm
Grover, J. R. (1988). Solidificación de desechos de alta actividad . Boletín de OIEA , 29-30.
Melilla medio ambiente. (22 de 04 de 2016). Comunicados. Obtenido de Melilla medio
ambiente.com:
http://www.melillamedioambiente.com/index.php?option=com_content&task=vie
w&id=1093
Plantas de Cogeneración. (21 de 04 de 2016). Cursos de cogeneración. Obtenido de Plantas
de Cogeneración: http://www.plantasdecogeneracion.com/index.php/las-plantas-
de-cogeneracion
Tchobanoglous, G. (1994). Gestión integral de residuos sólidos (Vol. I). (A. García, Ed.) Madrid,
España: McGraw-Hill.

Más contenido relacionado

La actualidad más candente

La incineracion de residuos en cifras
La incineracion de residuos en cifrasLa incineracion de residuos en cifras
La incineracion de residuos en cifrasAndoni Tolosa
 
Otra visión empresarial sobre valorización de residuos
Otra visión empresarial sobre valorización de residuosOtra visión empresarial sobre valorización de residuos
Otra visión empresarial sobre valorización de residuosServiDocu
 
TECNOLOGÍAS WTE Y SU APLICACIÓN EN EL PACIFICO COLOMBIANO
TECNOLOGÍAS WTE Y SU  APLICACIÓN EN EL PACIFICO COLOMBIANO TECNOLOGÍAS WTE Y SU  APLICACIÓN EN EL PACIFICO COLOMBIANO
TECNOLOGÍAS WTE Y SU APLICACIÓN EN EL PACIFICO COLOMBIANO Sociedad Colombiana de Ingenieros
 
Trabajo individual liliana maría álvarez - gasificación de residuos plástico...
Trabajo individual  liliana maría álvarez - gasificación de residuos plástico...Trabajo individual  liliana maría álvarez - gasificación de residuos plástico...
Trabajo individual liliana maría álvarez - gasificación de residuos plástico...Liliana María Álvarez Henao
 
C.andrés pinzón muñoz_aporte individual_wiki4
C.andrés pinzón muñoz_aporte individual_wiki4C.andrés pinzón muñoz_aporte individual_wiki4
C.andrés pinzón muñoz_aporte individual_wiki4Andres Pinzon
 
RECUWATT Conference - Carlos Martínez Orgado lecture
RECUWATT Conference - Carlos Martínez Orgado lectureRECUWATT Conference - Carlos Martínez Orgado lecture
RECUWATT Conference - Carlos Martínez Orgado lectureRECUWATT Conference
 

La actualidad más candente (20)

La incineracion de residuos en cifras
La incineracion de residuos en cifrasLa incineracion de residuos en cifras
La incineracion de residuos en cifras
 
Otra visión empresarial sobre valorización de residuos
Otra visión empresarial sobre valorización de residuosOtra visión empresarial sobre valorización de residuos
Otra visión empresarial sobre valorización de residuos
 
Nafta
Nafta Nafta
Nafta
 
Pc Lodos v4
Pc Lodos v4Pc Lodos v4
Pc Lodos v4
 
TECNOLOGÍAS WTE Y SU APLICACIÓN EN EL PACIFICO COLOMBIANO
TECNOLOGÍAS WTE Y SU  APLICACIÓN EN EL PACIFICO COLOMBIANO TECNOLOGÍAS WTE Y SU  APLICACIÓN EN EL PACIFICO COLOMBIANO
TECNOLOGÍAS WTE Y SU APLICACIÓN EN EL PACIFICO COLOMBIANO
 
Trabajo individual liliana maría álvarez - gasificación de residuos plástico...
Trabajo individual  liliana maría álvarez - gasificación de residuos plástico...Trabajo individual  liliana maría álvarez - gasificación de residuos plástico...
Trabajo individual liliana maría álvarez - gasificación de residuos plástico...
 
Por fernando sánchez pirolisis
Por fernando sánchez pirolisisPor fernando sánchez pirolisis
Por fernando sánchez pirolisis
 
Amoniaco qi
Amoniaco qiAmoniaco qi
Amoniaco qi
 
C.andrés pinzón muñoz_aporte individual_wiki4
C.andrés pinzón muñoz_aporte individual_wiki4C.andrés pinzón muñoz_aporte individual_wiki4
C.andrés pinzón muñoz_aporte individual_wiki4
 
INERTIZACIÓN
INERTIZACIÓNINERTIZACIÓN
INERTIZACIÓN
 
Seguridad industrial
Seguridad industrialSeguridad industrial
Seguridad industrial
 
Inertizacion gas
Inertizacion gasInertizacion gas
Inertizacion gas
 
Tratamiento del Gas Natural
Tratamiento del Gas NaturalTratamiento del Gas Natural
Tratamiento del Gas Natural
 
Amoníaco
AmoníacoAmoníaco
Amoníaco
 
Proyecto ib
Proyecto ibProyecto ib
Proyecto ib
 
PC Residuos Sólidos Urbanos v9
PC Residuos Sólidos Urbanos v9PC Residuos Sólidos Urbanos v9
PC Residuos Sólidos Urbanos v9
 
Cauce 154 Artículo Mataró
Cauce 154 Artículo MataróCauce 154 Artículo Mataró
Cauce 154 Artículo Mataró
 
RECUWATT Conference - Carlos Martínez Orgado lecture
RECUWATT Conference - Carlos Martínez Orgado lectureRECUWATT Conference - Carlos Martínez Orgado lecture
RECUWATT Conference - Carlos Martínez Orgado lecture
 
Guia18 lodo
Guia18 lodoGuia18 lodo
Guia18 lodo
 
Gas natural uso industrial
Gas natural uso industrialGas natural uso industrial
Gas natural uso industrial
 

Similar a Aporte individual victoria_arellano

Proyecto de Conversión de RSU en biocombustibles "W2B" (Waste to Biofuels). A...
Proyecto de Conversión de RSU en biocombustibles "W2B" (Waste to Biofuels). A...Proyecto de Conversión de RSU en biocombustibles "W2B" (Waste to Biofuels). A...
Proyecto de Conversión de RSU en biocombustibles "W2B" (Waste to Biofuels). A...tu-entorno calidad y medio ambiente, s.l.
 
Incineracion de residuos_urbanos
Incineracion de residuos_urbanosIncineracion de residuos_urbanos
Incineracion de residuos_urbanosguadiatosostenible
 
Incineracion de residuos_urbanos
Incineracion de residuos_urbanosIncineracion de residuos_urbanos
Incineracion de residuos_urbanosguadiatosostenible
 
Eurosurfas 2011: Jornadas Medioambiente - Xavier Elias 2
Eurosurfas 2011: Jornadas Medioambiente - Xavier Elias 2Eurosurfas 2011: Jornadas Medioambiente - Xavier Elias 2
Eurosurfas 2011: Jornadas Medioambiente - Xavier Elias 2Eurosurfas
 
Presentación Guillermo Virano
Presentación Guillermo ViranoPresentación Guillermo Virano
Presentación Guillermo Viranocedha
 
Tendencia tecnología en el tratamiento de residuos FCC
Tendencia tecnología en el tratamiento de residuos FCCTendencia tecnología en el tratamiento de residuos FCC
Tendencia tecnología en el tratamiento de residuos FCCANEPMA
 
REDUCCIÓN DE LOS IMPACTOS NEGATIVOS DE LA DISPOSICIÓN DE RESIDUOS A TRAVÉS DE...
REDUCCIÓN DE LOS IMPACTOS NEGATIVOS DE LA DISPOSICIÓN DE RESIDUOS A TRAVÉS DE...REDUCCIÓN DE LOS IMPACTOS NEGATIVOS DE LA DISPOSICIÓN DE RESIDUOS A TRAVÉS DE...
REDUCCIÓN DE LOS IMPACTOS NEGATIVOS DE LA DISPOSICIÓN DE RESIDUOS A TRAVÉS DE...prof.dr.paulino.e.coelho
 
Casos exitosos de subproductos: el rol de la bolsa de Subproductos de Catalunya
Casos exitosos de subproductos: el rol de la bolsa de Subproductos de CatalunyaCasos exitosos de subproductos: el rol de la bolsa de Subproductos de Catalunya
Casos exitosos de subproductos: el rol de la bolsa de Subproductos de CatalunyaRodrigo Castro Volpe
 
Hera plasma
Hera plasmaHera plasma
Hera plasmamgarci80
 
AMONIACO - OBTENCION A PARTIR DEL GAS DE SINTESIS (H2)
AMONIACO - OBTENCION  A PARTIR DEL GAS DE SINTESIS (H2)AMONIACO - OBTENCION  A PARTIR DEL GAS DE SINTESIS (H2)
AMONIACO - OBTENCION A PARTIR DEL GAS DE SINTESIS (H2)Tania Gamboa Vila
 
E ry-ambiente
E ry-ambienteE ry-ambiente
E ry-ambientealexmere
 
La gestion de nuestros residuos
La gestion de nuestros residuosLa gestion de nuestros residuos
La gestion de nuestros residuosmiguel
 

Similar a Aporte individual victoria_arellano (20)

Open Ms -Dossier
Open Ms -DossierOpen Ms -Dossier
Open Ms -Dossier
 
Proyecto de Conversión de RSU en biocombustibles "W2B" (Waste to Biofuels). A...
Proyecto de Conversión de RSU en biocombustibles "W2B" (Waste to Biofuels). A...Proyecto de Conversión de RSU en biocombustibles "W2B" (Waste to Biofuels). A...
Proyecto de Conversión de RSU en biocombustibles "W2B" (Waste to Biofuels). A...
 
Incineracion de residuos_urbanos
Incineracion de residuos_urbanosIncineracion de residuos_urbanos
Incineracion de residuos_urbanos
 
Incineracion de residuos_urbanos
Incineracion de residuos_urbanosIncineracion de residuos_urbanos
Incineracion de residuos_urbanos
 
PC Greene General
PC Greene GeneralPC Greene General
PC Greene General
 
Eurosurfas 2011: Jornadas Medioambiente - Xavier Elias 2
Eurosurfas 2011: Jornadas Medioambiente - Xavier Elias 2Eurosurfas 2011: Jornadas Medioambiente - Xavier Elias 2
Eurosurfas 2011: Jornadas Medioambiente - Xavier Elias 2
 
Presentación Guillermo Virano
Presentación Guillermo ViranoPresentación Guillermo Virano
Presentación Guillermo Virano
 
Tendencia tecnología en el tratamiento de residuos FCC
Tendencia tecnología en el tratamiento de residuos FCCTendencia tecnología en el tratamiento de residuos FCC
Tendencia tecnología en el tratamiento de residuos FCC
 
REDUCCIÓN DE LOS IMPACTOS NEGATIVOS DE LA DISPOSICIÓN DE RESIDUOS A TRAVÉS DE...
REDUCCIÓN DE LOS IMPACTOS NEGATIVOS DE LA DISPOSICIÓN DE RESIDUOS A TRAVÉS DE...REDUCCIÓN DE LOS IMPACTOS NEGATIVOS DE LA DISPOSICIÓN DE RESIDUOS A TRAVÉS DE...
REDUCCIÓN DE LOS IMPACTOS NEGATIVOS DE LA DISPOSICIÓN DE RESIDUOS A TRAVÉS DE...
 
PC Greene biomasa v58
PC Greene biomasa v58 PC Greene biomasa v58
PC Greene biomasa v58
 
Mitigacion co2
Mitigacion co2Mitigacion co2
Mitigacion co2
 
Casos exitosos de subproductos: el rol de la bolsa de Subproductos de Catalunya
Casos exitosos de subproductos: el rol de la bolsa de Subproductos de CatalunyaCasos exitosos de subproductos: el rol de la bolsa de Subproductos de Catalunya
Casos exitosos de subproductos: el rol de la bolsa de Subproductos de Catalunya
 
Hera plasma
Hera plasmaHera plasma
Hera plasma
 
Nuevas Tecnologías para la valorización de residuos agrícolas y ganaderos. II...
Nuevas Tecnologías para la valorización de residuos agrícolas y ganaderos. II...Nuevas Tecnologías para la valorización de residuos agrícolas y ganaderos. II...
Nuevas Tecnologías para la valorización de residuos agrícolas y ganaderos. II...
 
Miquel Torrente a Coenercat, sessió de Barcelona (25.11.2013)
Miquel Torrente a Coenercat, sessió de Barcelona (25.11.2013)Miquel Torrente a Coenercat, sessió de Barcelona (25.11.2013)
Miquel Torrente a Coenercat, sessió de Barcelona (25.11.2013)
 
Incineracion
IncineracionIncineracion
Incineracion
 
P. energia
P. energiaP. energia
P. energia
 
AMONIACO - OBTENCION A PARTIR DEL GAS DE SINTESIS (H2)
AMONIACO - OBTENCION  A PARTIR DEL GAS DE SINTESIS (H2)AMONIACO - OBTENCION  A PARTIR DEL GAS DE SINTESIS (H2)
AMONIACO - OBTENCION A PARTIR DEL GAS DE SINTESIS (H2)
 
E ry-ambiente
E ry-ambienteE ry-ambiente
E ry-ambiente
 
La gestion de nuestros residuos
La gestion de nuestros residuosLa gestion de nuestros residuos
La gestion de nuestros residuos
 

Último

Guía de Registro slideshare paso a paso 1
Guía de Registro slideshare paso a paso 1Guía de Registro slideshare paso a paso 1
Guía de Registro slideshare paso a paso 1ivanapaterninar
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxAlexander López
 
La Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdfLa Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdfjeondanny1997
 
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPOAREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPOnarvaezisabella21
 
Documentacion Electrónica en Actos Juridicos
Documentacion Electrónica en Actos JuridicosDocumentacion Electrónica en Actos Juridicos
Documentacion Electrónica en Actos JuridicosAlbanyMartinez7
 
TALLER DE ANALISIS SOLUCION PART 2 (1)-1.docx
TALLER DE ANALISIS SOLUCION  PART 2 (1)-1.docxTALLER DE ANALISIS SOLUCION  PART 2 (1)-1.docx
TALLER DE ANALISIS SOLUCION PART 2 (1)-1.docxobandopaula444
 
Los Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, AplicacionesLos Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, AplicacionesEdomar AR
 
tics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxtics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxazmysanros90
 
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del Perú
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del PerúRed Dorsal Nacional de Fibra Óptica y Redes Regionales del Perú
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del PerúCEFERINO DELGADO FLORES
 
Trabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdfTrabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdfedepmariaperez
 
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptx
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptxModelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptx
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptxtjcesar1
 
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).pptLUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).pptchaverriemily794
 
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxCrear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxNombre Apellidos
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxAlexander López
 
Tecnologias Starlink para el mundo tec.pptx
Tecnologias Starlink para el mundo tec.pptxTecnologias Starlink para el mundo tec.pptx
Tecnologias Starlink para el mundo tec.pptxGESTECPERUSAC
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx241523733
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA241531640
 
CommitConf 2024 - Spring Boot <3 Testcontainers
CommitConf 2024 - Spring Boot <3 TestcontainersCommitConf 2024 - Spring Boot <3 Testcontainers
CommitConf 2024 - Spring Boot <3 TestcontainersIván López Martín
 
Presentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia ArtificialPresentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia Artificialcynserafini89
 
tarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzztarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzzAlexandergo5
 

Último (20)

Guía de Registro slideshare paso a paso 1
Guía de Registro slideshare paso a paso 1Guía de Registro slideshare paso a paso 1
Guía de Registro slideshare paso a paso 1
 
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptxEl_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
El_Blog_como_herramienta_de_publicacion_y_consulta_de_investigacion.pptx
 
La Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdfLa Electricidad Y La Electrónica Trabajo Tecnología.pdf
La Electricidad Y La Electrónica Trabajo Tecnología.pdf
 
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPOAREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
AREA TECNOLOGIA E INFORMATICA TRABAJO EN EQUIPO
 
Documentacion Electrónica en Actos Juridicos
Documentacion Electrónica en Actos JuridicosDocumentacion Electrónica en Actos Juridicos
Documentacion Electrónica en Actos Juridicos
 
TALLER DE ANALISIS SOLUCION PART 2 (1)-1.docx
TALLER DE ANALISIS SOLUCION  PART 2 (1)-1.docxTALLER DE ANALISIS SOLUCION  PART 2 (1)-1.docx
TALLER DE ANALISIS SOLUCION PART 2 (1)-1.docx
 
Los Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, AplicacionesLos Microcontroladores PIC, Aplicaciones
Los Microcontroladores PIC, Aplicaciones
 
tics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptxtics en la vida cotidiana prepa en linea modulo 1.pptx
tics en la vida cotidiana prepa en linea modulo 1.pptx
 
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del Perú
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del PerúRed Dorsal Nacional de Fibra Óptica y Redes Regionales del Perú
Red Dorsal Nacional de Fibra Óptica y Redes Regionales del Perú
 
Trabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdfTrabajo de tecnología excel avanzado.pdf
Trabajo de tecnología excel avanzado.pdf
 
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptx
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptxModelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptx
Modelo de Presentacion Feria Robotica Educativa 2024 - Versión3.pptx
 
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).pptLUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
LUXOMETRO EN SALUD OCUPACIONAL(FINAL).ppt
 
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptxCrear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
Crear un recurso multimedia. Maricela_Ponce_DomingoM1S3AI6-1.pptx
 
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptxLAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
LAS_TIC_COMO_HERRAMIENTAS_EN_LA_INVESTIGACIÓN.pptx
 
Tecnologias Starlink para el mundo tec.pptx
Tecnologias Starlink para el mundo tec.pptxTecnologias Starlink para el mundo tec.pptx
Tecnologias Starlink para el mundo tec.pptx
 
GonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptxGonzalezGonzalez_Karina_M1S3AI6... .pptx
GonzalezGonzalez_Karina_M1S3AI6... .pptx
 
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6    CREAR UN RECURSO MULTIMEDIAActividad integradora 6    CREAR UN RECURSO MULTIMEDIA
Actividad integradora 6 CREAR UN RECURSO MULTIMEDIA
 
CommitConf 2024 - Spring Boot <3 Testcontainers
CommitConf 2024 - Spring Boot <3 TestcontainersCommitConf 2024 - Spring Boot <3 Testcontainers
CommitConf 2024 - Spring Boot <3 Testcontainers
 
Presentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia ArtificialPresentación sobre la Inteligencia Artificial
Presentación sobre la Inteligencia Artificial
 
tarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzztarea de exposicion de senati zzzzzzzzzz
tarea de exposicion de senati zzzzzzzzzz
 

Aporte individual victoria_arellano

  • 1. GESTIÓN ESPECIALIZADA DE RESIDUOS SÓLIDOS, SOLUCIONES SOSTENIBLES E INNOVADORAS VICTORIA ALEJANDRA ARELLANO PÁJARO Aporte Individual Manejo Integrado de Residuos Sólidos UNIVERSIDAD DE MANIZALES FACULTAD DE CIENCIAS CONTABLES, ECONÓMICAS Y ADMINISTRATIVAS MAESTRÍA EN DESARROLLO SOSTENIBLE Y MEDIO AMBIENTE BARRANQUILLA – ATLÁNTICO 20 de abril de 2016
  • 2. TABLA DE CONTENIDO INTRODUCCIÓN................................................................................................................................................... 4 1. COGENERACIÓN PARA LA PRODUCCIÓN DE ENERGÍA – WASTE TO ENERGY.................. 5 2. VITRIFICACIÓN PARA EL TRATAMIENTO DE RESIDUOS DE ALTA TOXICIDAD................... 7 3. CONCLUSIÓN.............................................................................................................................................11 BIBLIOGRAFÍA......................................................................................................................................................12
  • 3. LISTA DE TABLAS Tabla 1 Información general de la planta de cogeneración de Suecia........................................... 6 LISTA DE FIGURAS Figura 1 Diagrama de flujo del proceso de Cogeneración en Suecia............................................. 7 Figura 2 Diagrama de vitrificación co horno cerámico de fusión de alimentación líquida directa. ..................................................................................................................................................................... 8 Figura 2 Diagrama de instalación de vitrificación de Marcoule......................................................... 9 Figura 3 Diagrama de la primera fase de Planta de Vitrificación...................................................... 9
  • 4. INTRODUCCIÓN Dado que la producción de residuos es creciente, como el crecimiento poblacional y la demanda de recursos como la energía, se ha hecho relevante encontrar soluciones que permitan abordar de manera integradoras los problemas que ha ocasionado el modelo de desarrollo y crecimiento seleccionado en algunos territorios. Las tecnologías de gestión de residuos en las últimas décadas han ido evolucionando rápidamente, frente a las normas ambientales restrictivas y el aumento de la conciencia ambiental de la población. En la actualidad el abordaje de los residuos sólidos, es distinta, ya que se visionan como material susceptible a ser parte de la cadena productiva, por lo que las nuevas tecnologías se en caminan a aprovechar esto. Para el caso de los residuos con características peligrosas, es similar, se ha buscado una reducción en el a producción y a la vez formas que permitan la recuperación o neutralización de los mismos. Con el presente aporte individual se buscó explorar algunas de las tecnologías innovadoras utilizados para la gestión de Residuos Sólidos Ordinarios (RSU) y Residuos Sólidos Peligrosos (RESPEL). Efectuándose un análisis de las tecnologías de Cogeneración con el uso de combustibles derivados de residuos sólidos urbano y el tratamiento de residuos de alta toxicidad por Vitrificación.
  • 5. 1. COGENERACIÓN PARA LA PRODUCCIÓN DE ENERGÍA – WASTE TO ENERGY La cogeneración se entiende como la producción simultánea de dos o más tipos de energía, siendo normalmente generado electricidad y calor para procesos o calefacción, aunque puede ser también energía mecánica y calor (y/o frío). (Tchobanoglous, 1994) Una de las condiciones de la cogeneración, es que al pretender aprovechar el calor, es necesario que haya proximidad con el usuario final (consumidor), distinto a los sistemas térmicos convencionales de producción de electricidad, donde a pesar de generarse calor estés no es aprovechado, sino que es emitido al ambiente. Por consiguiente, el objetivo de la cogeneración es que no se pierda la gran cantidad de energía, producto de los procesos térmicos. Una central termoeléctrica tradicional transforma la energía química contenida en un combustible fósil (carbón, fuelóleo, gasóleo, gas natural) para producir una energía térmica, que es convertida en energía mecánica, que a la vez es transformada por medio de un alternador en energía eléctrica, de alta calidad, alcanzando un rendimiento en la producción de electricidad no mayor al 45%; el resto se emite a la atmósfera en forma de gases de escape (Plantas de Cogeneración, 2016). Las plantas de cogeneración buscan efectuar un aprovechamiento energético, llegando a un rendimiento global que pueden oscilar entre el 75% y el 90% de la energía química contenida en el combustible. Para el caso Waste to Energy, es aprovechar el contenido combustible de los residuos urbanos y/o industriales, pudiendo así reemplazar el combustible fósil por combustible derivado de residuos (CDR). Los CDR corresponde a residuos sólidos urbanos estabilizados por medio de proceso biomecánicos, para luego ser destinados a valoración energética en procesos térmicos, como los de Cogeneración. Los métodos principales para producción de CDR son:  El tratamiento mecánico/físico: los residuos se separan, la fracción seca de la fracción húmeda. La fracción húmeda se desvía para otro tipo de aprovechamiento y la fracción seca se acondiciona para obtener una mezcla adecuada de residuos, para usar como combustible.  Biosecado: en esta etapa los residuos son triturados, libre de contaminantes, se fermenta y se criba para eliminar residuos metálicos de menor tamaño. Dependiendo de la mezcla de residuos requerida para el sistema, se efectúan las mezclas de residuos para obtener el CDR. Cuando se utilizan CDR para generación, estos deben cumplir con unas especificaciones de calidad relacionadas con su composición, su PCI (Poder Calorífico Inferior) y el nivel de contaminantes, esto para garantizar una buena combustión.
  • 6. ESTUDIO DE CASO: PLANTA DE COGENERACIÓN DE TORSVIK - SUECIA Entre los proyectos de cogeneración con CDR a gran escala encontramos la Planta de cogeneración Torsvik, ubicada en el Municipio de Jönköping en Suecia. Foto 1 planta de cogeneración de Suecia Fuente: International District Energy Association, 2015 Tabla 1 Información general de la planta de cogeneración de Suecia Información general Nombre: Planta de cogeneración Torsvik, Suecia Propietario: Municipio de Jönköping Operador: Jönköping Energi AB Tecnología: Waste to Energy con generación de calor y electricidad (WtE-CHP, Siglas en ingles) Capacidad diseñada: 162.000 Ton/año Valor calórico medio del CDR 11,7 MJ / kg El material de entrada 40% de RSU 60% de residuos industriales Productos Producción Electricidad  350 GWh pa Calor  100 GWh pa Eficiencia global de la planta 92% Usuarios finales El calor se suministra a la red de calefacción urbana en Jönköping y Huskvarna, que suministra alrededor de 30.000 hogares Ubicación: fábrica de papel Munksjö, Torsvik, Suecia Área de servicio: Jönköping Municipio Comercial de puesta en marcha: 2006 Fuente: EPEM S.A., 2015
  • 7. Figura 1 Diagrama de flujo del proceso de Cogeneración en Suecia Fuente: EPEM S.A., 2015 LIMITACIONES ASOCIADAS A LA TECNOLOGÍA Según Aguilar (2008), las limitantes operativas para trabajar en cogeneracion son:  Operar en modo de cogeneración implica que la producción de potencia (electricidad) y calor están acopladas, de manera que no se puede variar una sin afectar a la otra.  Confiabilidad de la planta: cuando una unidad dentro de un esquema de cogeneración falla o debe salir de operación para mantenimiento, se implica tanto la producción de electricidad como la de calor, por lo que, hay que dejar de operar la planta en modo de cogeneración para asegurar un nivel mínimo de confiabilidad.  Costos de inversión: Los equipos utilizados en esquemas de cogeneración, especialmente las turbinas de gas y los recuperadores de calor, son significativamente más costosos en comparación con una caldera. 2. VITRIFICACIÓN PARA EL TRATAMIENTO DE RESIDUOS DE ALTA TOXICIDAD La vitrificación es un tipo de tratamiento térmico en el que se exponen los residuos a una temperatura entre 1300 y 1500 °C, obteniendo del proceso un material vítreo y moldeable de color oscuro, cabe anotar que el material final es totalmente inertes y estable a lo largo del tiempo. Este tipo de tecnología es muy adecuada para el tratamiento de residuos inorgánicos altamente tóxicos y corresponde a una de las tecnologías más apropiada para inertizar residuos. Las principales etapas del proceso de vitrificación corresponde a (Baehr, 1989): a. la concentración de la solución de desechos líquidos de actividad alta (HLLW) por evaporación del agua y ácido nítrico b. Secado y calcinación, que descompone los nitratos a óxidos; c. Reacción de los óxidos con aditivos vitrificadores.
  • 8. d. fusión para producir vidrios de desechos de actividad alta1 (HLW, siglas en ingles). Según los procesos, estas etapas pueden ser separadas o combinadas; es decir, los procesos pueden ser de una o de varias etapas. Figura 2 Diagrama de vitrificación co horno cerámico de fusión de alimentación líquida directa. Fuente: (Grover, 1988) Se han desarrollado dos procesos principales de vitrificación para la conversión de soluciones de HLLW a vidrios de borosilicato. Uno es el bien conocido proceso francés AVM (Atelier de Vitrification Marcoule) y el otro es el proceso continuo con horno de fusión cerámico en una sola etapa, para el tratamiento de desechos líquidos radiactivos de la planta Pamela diseñada en la República Federal de Alemania y ubicada en Mol (Bélgica). ESTUDIO DE CASO: PLANTA DE VITRIFICACIÓN DE MARCOULE –FRANCIA Esta es una planta de vitrificación construida para tratar todos los residuos nucleares de la central nuclear de Marcoule – Francia. Esta entro en operación en el año 1978, con una producción máxima de 18 kilogramos de vidrio por hora, con una alimentación de 40 litros de solución de residuos por hora. El proceso AVM consta de una combinación de un horno rotatorio y un crisol metálico calentado por inducción para la fusión del vidrio. El vidrio se vierte en un recipiente de acero inoxidable refractario que, una vez lleno, se sella con una tapa mediante soldadura automática por plasma (Baehr, 1989). 1 Los términos "desechos de actividad baja, media o intermedia, y alta" de uso universal, significan los desechos con diferentes concentraciones de radionucleidos o de radiactividad. n. El término "desecho de alta actividad" supone generalmente un refinado (efluente líquido) procedente del primer ciclo de las operaciones de reelaboración del combustible para recuperar el plutonio y el uranio no quemado.
  • 9. Figura 3 Diagrama de instalación de vitrificación de Marcoule. Fuente: Baehr, 1989. ESTUDIO DE CASO: PLANTA DE VITRIFICACIÓN DE CENIZAS MELILLA - ESPAÑA La planta de vitrificación de Melilla- España, está destinada para el tratamiento de cenizas productos de la generación térmica de energía. Este proyecto se encuentra diseñado en dos fases, teniendo un costo la primera fase de 1.649.000 euros (en el 2006). El objetivo de esta planta es eliminar el almacenamiento de cenizas, y aprovechar para lleno el material inertizado. La primera fase de esta Planta comprende (Melilla medio ambiente, 2016): a) Silos de almacenamiento de cenizas y fundentes (con vis sinfín regulables). Las cenizas de incineración procedentes del silo de la PIRSU, se mezclarán con fundentes, variables según las piezas vitrocerámicas a obtener cuando estén operativas las dos fases. Figura 4 Diagrama de la primera fase de Planta de Vitrificación Fuente: Melilla medio ambiente, 2016
  • 10. b) Un sistema de alimentación de residuo y fundente. c) Una tolva de carga del contenerizador (con vis sinfín regulable). d) Un contenerizador. Preparará las cenizas para transporte en contenedores, ensacadas o compactadas, con pérdida de agua (lixiviados) para disminuir peso. e) Un sistema de depuración de lixiviados. LIMITACIONES ASOCIADAS A LA TECNOLOGÍA  Hay materiales que por su naturaleza no son vitrificables. Los materiales para ser vetrificables debes pasar cierto nivel de oxidación.  No es posible procesar materia organica, ya que a cierta temperatura esta se gasifica.  Para el caso de tratar residuos con presencia de cloruros y sales en general, se debe contar con un sistema de tratamiento de gases adicional que permita precipitar el cloro. Esta misma situación para con los sulfuros que al ser procesado residuos con presencial del mismo hay emisión de SO2/SO3.  Si el proceso de fusión de vidrio se realiza en un horno de fusión metálico la capacidad de tratamiento se limita a 30 a 40 litros por hora pero son el bajo costo y de fácil manipulación, mientras que si se efectúa con hornos de fusión cerámicos hay elevados costos y una manipulación comparativamente complicada, pero la capacidad de producción de HLLW es superior a 100 litros por hora.
  • 11. 3. CONCLUSIÓN Hay múltiples opciones tratamiento de residuos sólidos urbanos no peligros y residuos peligrosos. El reto es encontrar la tecnología que se adecue a las condiciones sociales, económicas y ambientales de los territorios, y además es necesario que se desarrolle un marco normativo y de subsidios para algunas que permita aumentar la viabilidad de algunos sistemas. De la opción de analizada para el aprovechamiento de residuos ordinarios e industriales no peligrosos, se puede concluir que, hay un potencial energético considerable en los residuos, que a través de procesos de separación y acondicionamiento, estos puede ser introducidos adecuadamente como combustible derivado de residuos (CDR). El potencial de aprovechamiento de los RCD no solo se orienta hacia el sector de la generación y cogeneración, sino también, puede ser utilizado fácilmente dentro de las cementeras. En cuanto a la vitrificación, esta ha sido un respuesta al interés de tratar corriente de residuos altamente toxicas, como es el caso de los residuos nucleares. A pesar de que esta tecnología empezó a desarrollarse desde el año 1978 en Francia, aún no está ampliamente difundida, con todo y los buenos resultados que ha mostrado. Del análisis efectuado, si bien se detectaron limitaciones en la implementación de las tecnologías, es importante tenerlas en cuenta como posibles sistemas de aprovechamiento y neutralización de residuos peligrosos.
  • 12. BIBLIOGRAFÍA Baehr, W. (1989). Procesos industriales de vitrificación para soluciones de desechos líquidos de actividad alta . Boletín del OIEA, 43-46. EPEM S.A. (30 de Octubre de 2015). Waste Control software. Obtenido de Database of Waste Management Technologies: http://www.epem.gr/waste-c- control/database/default.htm Grover, J. R. (1988). Solidificación de desechos de alta actividad . Boletín de OIEA , 29-30. Melilla medio ambiente. (22 de 04 de 2016). Comunicados. Obtenido de Melilla medio ambiente.com: http://www.melillamedioambiente.com/index.php?option=com_content&task=vie w&id=1093 Plantas de Cogeneración. (21 de 04 de 2016). Cursos de cogeneración. Obtenido de Plantas de Cogeneración: http://www.plantasdecogeneracion.com/index.php/las-plantas- de-cogeneracion Tchobanoglous, G. (1994). Gestión integral de residuos sólidos (Vol. I). (A. García, Ed.) Madrid, España: McGraw-Hill.