Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Logarithms level 2

logarithm aptitude questions level 2

  • Be the first to comment

Logarithms level 2

  1. 1. LOGARITHMS LEVEL 2 C.S.VEERARAGAVAN 98948 34264 veeraa1729@gmail.com
  2. 2. Simplify log(27)(16)(24)(18) 1) 4 2)2 3)1 4) 3 log(27)(16)(24)(18) = log(27)(16)(3x8)(9x2) = log(27)(16)(27)(16) = 1 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 2 I
  3. 3. If logxa = logya , both x,y > a and a is natural number then which of the following is necessarily true? 1) x is always equal to y 2) x is never equal to y 3) x need not be equal to y logxa = logya implies xt = yt = a When t = 0, x need not be equal to y When t = 1, x should be equal to y When t = 2, x need not be equal to y. In general x need not be equal to y. 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 3 II
  4. 4. If log36 + log312 = log3m, m = ? 1) 9 2) 18 3) 3 4) 72 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 4 III
  5. 5. Simplify log248 – log26. 1)log242 2) log254 3)log2288 4) log28 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 5 IV
  6. 6. What is the value of log4m0 where m β‰  0 1) 1 2) 2 3) 3 4) 0 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 6 V
  7. 7. Simplify: log482 1) 2 2) 3 3) 4 4) 6 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 7 VI
  8. 8. If log49 . logx2 = 1, x =? 1) 9 2) 1 9 3) 1 3 4)3 log49 . logx2 = 1 log 9 log 4 log2 log π‘₯ = 1 2log 3 2log 2 log2 log π‘₯ = 1 x = 3 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 8 VII
  9. 9. π‘™π‘œπ‘”79 π‘™π‘œπ‘”716 1) log32 2) log23 3) log43 4) log34 π‘™π‘œπ‘”79 π‘™π‘œπ‘”716 2π‘™π‘œπ‘”73 2π‘™π‘œπ‘”74 π‘™π‘œπ‘”43 π‘™π‘œπ‘”44 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 9 VII I
  10. 10. If 2π‘™π‘œπ‘”232 = π‘˜, what is the value of k? 1) 81 2) 27 3) 9 4) 243 2π‘™π‘œπ‘”232 = π‘˜ Since π‘Ž π‘™π‘œπ‘” π‘Ž 𝑁 = N 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 10 IX
  11. 11. If 4 = log3p, p = ? 1) 81 2) 27 3) 9 4) 243 34 = p 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 11 X
  12. 12. π‘™π‘œπ‘”916 = π‘™π‘œπ‘”94 π‘™π‘œπ‘” π‘₯3 , π‘‘β„Žπ‘’π‘› π‘₯ =? 1) 3 2) 9 3) 27 4) 81 π‘™π‘œπ‘”916 = π‘™π‘œπ‘”16 π‘™π‘œπ‘”9 2π‘™π‘œπ‘”4 2π‘™π‘œπ‘”3 π‘™π‘œπ‘”94 π‘™π‘œπ‘”93 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 12 XI
  13. 13. If logax = logay , where a β‰  1, both x,y are positive then which of the following is necessarily true? 1) x is always equal to y 2) x is never equal to y 3) x need not be equal to y 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 13 XII
  14. 14. If log169 = k log23, then k = ? 1) 1 2) 2 3) 1 2 4) 1 4 π‘™π‘œπ‘”169 = π‘™π‘œπ‘”9 π‘™π‘œπ‘”16 2π‘™π‘œπ‘”3 2π‘™π‘œπ‘”4 π‘™π‘œπ‘”23 π‘™π‘œπ‘”24 1 2 π‘™π‘œπ‘”23 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 14 XIII
  15. 15. What is the integral part of log210000? 1) 11 2) 12 3) 13 4) 14 10000 lies between 213 and 214. Hence log210000 lies between 13 & 14 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 15 XIV
  16. 16. If N is a 20-digit number, what is the integral part of log10N? 1) 118 2) 19 3) 120 4) 21 Any 20 digit number lies between 1019 and 1020. 12-Jun-15 C.S.VEERARAGAVAN 9894834264 veeraa1729@gmail.com 16 XV

Γ—