Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this document? Why not share!

- Парадоксът на Скулем и квантовата и... by Vasil Penchev 657 views
- Superhumans: Superlanguage? by Vasil Penchev 259 views
- Дебатът между Айнщайн и Бор по осно... by Vasil Penchev 722 views
- Разумът в цивилизацията by Vasil Penchev 340 views
- Vasil Penchev. Theory of Quantum Мe... by Vasil Penchev 430 views
- „Верблюдът Радичков“: въображението... by Vasil Penchev 143 views

954 views

Published on

No Downloads

Total views

954

On SlideShare

0

From Embeds

0

Number of Embeds

1

Shares

0

Downloads

9

Comments

0

Likes

1

No embeds

No notes for slide

- 1. Vasil Penchev The Kochen – Specker theorem in quantum mechanics: A philosophical commentHighlights: Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hiddenparameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner,and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics andHermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen –Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit– Quantum computer is not Turing machine – Is continuality universal? – Diffeomorphism and velocity –Einstein’s general principle of relativity – „Mach’s principle“ – The Skolemian relativity of the discrete andthe continuous – The counterexample in § 6 – About the classical tautology which is untrue being replacedby the statements about commeasurable quantum-mechanical quantities – Logical hidden parameters –The undecidability of the hypothesis about hidden parameters – Wigner’s work and и Weyl’s previous one –Lie groups, representations, and -function – From a qualitative to a quantitative expression of relativity− -function, or the discrete by the random – Bartlett’s approach − -function as the characteristic func-tion of random quantity – Discrete and/ or continual description – Quantity and its “digitalized projection“– The idea of „velocity−probability“ – The notion of probability and the light speed postulate – Generalizedprobability and its physical interpretation – A quantum description of macro-world – The period of the as-sociated de Broglie wave and the length of now – Causality equivalently replaced by chance – The philoso-phy of quantum information and religion – Einstein’s thesis about “the consubstantiality of inertia antweight“ – Again about the interpretation of complex velocity – The speed of time – Newton’s law of inertiaand Lagrange’s formulation of mechanics – Force and effect – The theory of tachyons and general relativity– Riesz’s representation theorem – The notion of covariant world line – Coding a world line by -function– Spacetime and qubit − -function by qubits – About the physical interpretation of both the complex axesof a qubit – The interpretation of the self-adjoint operators components – The world line of an arbitraryquantity – The invariance of the physical laws towards quantum object and apparatus – Hilbert space andthat of Minkowski – The relationship between the coefficients of -function and the qubits – World line = -function + self-adjoint operator – Reality and description – Does „curved“ Hilbert space exist? –The axiom of choice, or when is possible a flattening of Hilbert space? – -function и -function – But whynot to flatten also pseudo-Riemannian space? – The commutator of conjugate quantities – Relative mass –The strokes of self-movement and its philosophical interpretation – The self-perfection of the universe –The generalization of quantity in quantum physics – An analogy of the Feynman formalism – Feynman andmany-world interpretation – The -function of various objects – Countable and uncountable basis – Ge-neralized continuum and arithmetization – Field and entanglement – Function as coding – The idea of„curved“ Descartes product – The environment of a function – Another view to the notion of velocity-probability – Reality and description – Hilbert space as a model both of object and description – The no-tion of holistic logic – Physical quantity as the information about it – Cross-temporal correlations –The forecasting of future – Description in separable and inseparable Hilbert space – „Forces“ or„miracles“ – Velocity or time – The notion of non-finite set – Dasein or Dazeit – The trajectory of the whole– Ontological and onto-theological difference – An analogy of the Feynman and many-world interpretation− -function as physical quantity – Things in the world and instances in time – The generation of the physi-cal by mathematical – The generalized notion of observer – Subjective or objective probability – Energy asthe change of probability per the unite of time – The generalized principle of least action from a new view-point – The exception of two dimensions and Fermat’s last theoremKey words: Kochen – Specker theorem, generalized relativity, Hilbert space, Minkowski space, world lineby -function, -function by qubits At first glance, the work of Kochen and Specker reiterates well-known results: The main aim of this paper is to give a proof of the nonexistence of hidden variables. This requires that we give at least a precise necessary condition for their existence (Kochen, Specker 1967: 59). 1
- 2. In fact, it was a revolutionary, new as a principle in regard to the proof and thefoundation of the claim given initially by von Neumann. Before it, the non-existence of thehidden parameters in the quantum mechanics had been attributed to non-commuting op-erators and observables (e.g. in Dmitriev, 2005:435 summarizing the premises of vonNeumann’s theorem). Kochen and Specker demonstrated the impossibility of hidden pa-rameters even about commuting operators in quantum mechanics. Respectively, in thecase of statements about commuting and therefore commensurable quantum-mechanicalobservables, classical logic is not always applicable, because its tautologies might turn outrefutable and even identically false in quantum mechanics. Furthermore, after a more detailed look at their proof, we are going to under-line the fact that, in their interpretation, the absence of hidden parameters is due to thenecessity of common considering discrete and continual morphisms, i.e. to wave-corpuscular dualism in last analysis. Thereupon, they have tacitly comprehend hidden parameters as local onessince Lorentz invariance still remains in force restricting the generalization of thecontinuous functions as Borel ones, and this enables the precise translation of the com-mensurability of quantum-mechanical observables into mathematical language as a com-mon measure in the rigorous mathematical meaning of the concept ‘measure’. So non-local hidden parameters − which are left outside the range of Kochen and Specker’s article− are completely and implicitly ignored by the justification that their Lorentz non-invariance implies their mathematical and physical incommensurability with the quantitiesto whose functions they should serve as arguments. On the other hand, Dirac delta function or Schwartz distributions (generalizedfunctions) long ago involved in the apparatus of quantum mechanics do not require suchmathematical commensurability of the areas of the argument and the values of the gene-ralized function. Sometimes the local (Lorentz invariant) hidden parameters are undulyconfused with hidden parameters in general (including the violation of Bells inequalitiesopposite to Kochen and Specker’s results), but this confusion does not evolve neither ex-plicitly, nor implicitly from their article. Kochen and Specker’s text – both rigorous and precise, also heuristic, and ofradically new ideas and approach, not only gives rise to a great number of subsequentstudies, but by now is away from depleting its intrinsic potential. In the beginning of theirarticle the authors submit concisely their conception, which can be summed up as follows:if we look at the previous attempts to introduce hidden variables (e.g. the Bohm theory,1952, or the description of the general model made by von Neumann - see Penchev 2009,ch.4), the paradigm of classical statistic mechanics shows up: The proposals in the literature for a classical reinterpretation usually introduce a phase space of hidden pure states in a manner reminiscent of statistical mechanics. The attempt is then shown to succeed in the sense that the quantum mechanical average of an observable is equal to the phase space average (Kochen, Specker 1967: 59). 2
- 3. Von Neumann used to underline quite explicitly that the half of the variablesof the configuration space of micro-objects are “superfluous”, redundant and simultane-ously fully adequate to describe again the same micro-system if the other half of the samevariables, in number used in the first description are now left aside as redundant.The two descriptions are incompatible, complementary, or dual in the intention of Bohr,but they both give the same probabilistic description of the micro-system, which asSchrödinger (1935: 827) highlighted is the all possible knowledge of it. Because of that reason the phase space must be modified to be applicable inquantum mechanics: one modification is made by Wigner (1932) and Moyal (1949) onthe base of the preceding fundamental work of Weyl (1927): e.g. the basic cell inthe classical phase space is the product of quantities – position and momentum – whichare non-commuting in quantum mechanics; therefore each cell is duplicated according tothe order of multiplying the quantities. As this is independently valid for each of the cellsin the phase space, the variants of the phase space that have to be referred to the samequantum system are found to be as a number instead of the only single one in classicalconsideration. Since the observables in the two sets are conjugated, each with the one towhich it is relevant , and their operators do not commute (e.g. position and momentumfor every particular micro-object according to the uncertainty relation), there may be pro-pounded the hypothesis by analogy, illegal as a strict logical inference, that just the non-commutability of the operators (or the observables in quantum as contrasted to classicalmechanics) is the premise, the precondition for the absence of hidden parameters. Henceit becomes obvious that if hidden parameters exist, the physical quantities would commutewith each other in the same way as in classical mechanics. As the non-commutability doesnot allow a physically relevant interpretation of the product and even the sum of two suchnon-commuting quantities (demonstrated in Hermann (1935) – Bell (1966) argument),"the back door" of our ignorance, behind which the cherished "true" hidden variablescould be found eventually, remains anyway. Notice that we speak of another (second!)heuristic hypothesis by analogy. Kochen and Specker show categorically and unambiguously (i.e. by a counter-example) that the non-commutability of the observable variables is not the premise for theabsence of hidden parameters: Commutability is not an indispensable condition for hiddenvariables, and thus they clear their way for formulating a logically strict indispensable con-dition, instead of the “heuristic” and in fact wrong hypothesis based on a misleading anal-ogy to classical statistic mechanics. Their interpretation on the commensurability of physical quantities in quantummechanics by the mathematical concept of “commensurability” (and hereby, of “measure”)is a decisive step. The measure of a function does not require the latter to be continuous,but only almost continuous, i.e. the measure of the set of points where it is discontinuousto be zero. Two quantities of a common measure are commensurable and commutable. The algebraic structure to be preserved is formalized … in the concept of a partial algebra. The set of quantum mechanical observables viewed as operators 3
- 4. on Hilbert space form a partial algebra if we restrict the operations of sum and product to be defined only when the operators commute (Kochen, Specker 1967: 59-60). Nevertheless, although being commensurable and commutable, they do not al-low hidden parameters as Kochen and Specker showed, since the indispensable conditionfor their presence is not fulfilled: exactly the embeddability of “partial algebra” – accordingto two authors’ concept, by which they formalise commensurable quantities – of quantum-mechanical quantities in commutative algebra. Respectively the statements on such quan-tities – so-called partial Boolean algebra – is not embeddable in Boolean algebra, or inother words, more contemporarily said, one qubit is not embeddable in one bit, quantumcomputer is not Turing machine. A necessary condition then for the existence of hidden variables is that this partial algebra be imbeddable in a commutative algebra (such as the algebra of all real- valued functions on a phase space) (Kochen, Specker 1967: 60). Then it is shown that there exists a finite partial algebra of quantum mechanical observables for which no such imbedding exists. The physical description of this result may be understood in an intuitive fashion quite independently of the formal machinery introduced (Kochen, Specker 1967: 60). So it comes natural to ask how can be explained the different behaviour ofphysical quantities in classical and in quantum mechanics − the determinism of the formerand the indeterminism of the latter − if the demarcation: commutability – non-commutability makes no already sense. Obviously the only difference left is the continuali-ty of the quantities in classical physics and their discrete character as a rule in quantummechanics, or in other words – the validity of its field of the principle of quantum-mechanical dualism. The real premise for the absence of hidden parameters could be for-mulated as invalidity of Einstein’s principle of relativity (Einstein 1918: 241) and the result-ing from it suspension of Mach’s principle (ibid.): the concepts of speed or resp., of dif-feomorphism are not universal in regard to mechanical as well as physical movement. Along with this, the requirement for Lorentz invariance may remain in force,whereas the discontinuities appear to be in space-time and it corresponds to the velocityconfined to the same maximum, which is defined by the fundamental constant of the ve-locity of light in free space. That is exactly the implicit model, with which Kochen andSpecker comply, suggesting the ordinary consideration for hidden variables as local ones.That is the reason why their statement for the absence of hidden variables concerns onlylocal ones and does not affect neither the type of investigation made by Bell, nor the pos-sibility of violation the inequalities introduced by him. Here we should raise again the question of ineradicable insolubility, which facesany profound philosophical discussion of quantum mechanics. Because of the Skolemianrelativity of the discrete and continual, the absence of hidden parameters also seems to be 4
- 5. Skolemian relative, including the manner of their exposition in Kochen and Specker’s ar-ticle. After proving their famous theorem and its implications, they gave a counter-example introducing hidden parameters limiting their consideration to two-dimensionalHilbert space and a model of a single electron spin emphasizing that it is completely artifi-cial and even invalid in the case of two electrons in a potential field according to theirwords. However, their intention was thus to show that von Neumann’s theorem requires inthat case the absence of hidden parameters, while their own consideration would demon-strate the possibility of being introduced. In turn, we may easily show that this counter-example is isomorphic to a qubit,since it represents a sphere in three-dimensional Euclidean space, and because ofthe qubit additivity it can be transferred and consolidated for the whole Hilbert space.In other words, this is a counter-example also towards the very main theorem of theirsand is in direct contradiction to the immediate corollary. That is why the theorem shouldobtain the statute of one more claim unsolvable in quantum mechanics − the one side of acomplementary, dual relation whose other side is precisely its negation. They togetherdemonstrate the same suggesting that it is only one special case; on the basis of Skole-mian type relativity we can talk about a special kind of quantum dualism: absence − pres-ence of hidden parameters. But how then should we interpret hidden parameter? Accord-ing to the illustration that Kochen and Specker have given, this is a random position on adisc, i.e. of a large circle of the sphere. In the general case of ordered sum of qubits rep-resenting Hilbert space, the hidden parameter will be the angle formed from the "axes" ofHilbert space, which represent an infinite number of embedded into one another decreas-ing oscillators. That angle may be interpreted as an initial moment in time: for example,if we have chosen a zero point of time for all oscillators, then Hilbert space as an orderedset of qubits will be displayed in a simple and determined manner by the hidden parame-ters as an infinite strip. That is also a respectively ordered set of zeros and ones accordingto the following (not only possible) rule: , if the hidden parameter determines a pastmoment in time corresponding to the chosen zero benchmark, and , if it determines pre-sent or future moment. Along with this, “curved” Hilbert space can be compared in a sim-ple manner with pseudo-Riemannian space and thus be so interpreted. Therefore the pa-rameter can be construed as gravity. These two interpretations of the hidden parameter −time and gravitational − again proved to be dual, which turns out to be a normal expecta-tion in quantum mechanics. At the end of their article, in the last § 7 both authors suggest that their con-sideration may be logically demonstrated as the impossibility to be embedded (resp. weakembedding − homomorphism) the partial Boolean algebra of quantum-mechanical observ-ables in Boolean algebra. It is proved there that the imbedding problem we considered earlier is equivalent to the question of whether the logic of quantum mechanics is essentially the same as classical logic (Kochen, Specker 1967: 60). 5
- 6. Thence they deduce that there is a classical tautology , which is false even inmeaningful substitution, i.e. the substitution with statements concerning commensurablequantum-mechanical variables: Roughly speaking a propositional formula is valid in quantum mechanics if for every "meaningful" substitution of quantum mechanical propositions for the variables this formula is true, where a meaningful substitution is one such that the propositions , are only conjoined by the logical connectives in if they are simultaneously measurable. It then follows from our results that there is a formula which is a classical tautology but is false for some meaningful substitution of quantum mechanical propositions. In this sense the logic of quantum mechanics differs from classical logic (Kochen, Specker 1967: 60). And they immediately give a simple example of such a tautology. According toour principle position we will pay attention once again to the alleged relativity of thisstatement, i.e. from what kind of dual, complementary, but also quite legitimate positionthe opposite is true: the non-existence of such a classical tautology or no substitution ofthe quantum mechanical observables, which makes that classical tautology false. For this purpose the concept of hidden parameter should be transferred toproperly logical consideration. That would be the presence of a hidden unsolvable state-ment, in other words, a hidden axiom. Thus whether it or its negation is accepted will de-termine whether the concerned statement on quantum mechanical observable is true orfalse. Embedability (weak embedment, homomorphism) is the necessary condition for theexistence of such a logical hidden parameter. Respectively the absence of such embedabil-ity ensures its non-existence. Then our propositional formula which is a classical tautol-ogy will appear to be true also in substitution for commensurable quantum-mechanicalobser-vables. Therefore, the very formula is from the desired type of unsolvable state-ment or a logically hidden parameter. In this case any propositional formula that is true ina classical sense and false in a quantum-mechanical substitution, as stated above, is sucha logically hidden parameter, an unsolvable statement. There emerges a common and fundamental hidden parameter of such logicaltype, an unsolvable statement: whether randomly given formula will be considered asclassical or as quantum-mechanical. That cannot surprise us at all, as it is built in the veryfoundation, in the structure and mathematical formalism of quantum mechanics as a theo-ry about the system of a classical device and a quantum object. Accordingly, such insolu-ble, dually true propositions about the system can be solved when referred either only tothe apparatus, or only to the micro-object. But the very second reference contains an ele-ment of insolubility and is hypothetical as a theory of the micro-object by itself does notseem possible. With a similar reservation reducing the mere statement about the existence ofhidden parameters to insolubility, however, the opposition or the dualism between deviceand quantum object may be assumed and therefore interpreted in any special case as auniversal hidden parameter in the logical sense. 6
- 7. Finally, the same situation can be demonstrated by the counter-example givenby them, in which a sphere as a qubit will be compared to the propositional formula ofquantum-mechanical observables and a usual bit, i.e. a binary unit, to the true value ofthe propositional formula classically interpreted. The conclusion of Kochen and Specker indicated the significance of their workto the overall development of thought in quantum mechanics, which we have already triedto sketch briefly: This way of viewing the results of Sections 3 and 4, seems to us to display a new feature of quantum mechanics in its departure from classical mechanics. It is of course true that the Uncertainty Principle, say, already marks a departure from classical physics. However, the statement of the Uncertainty Principle involves two observables which are not commeasurable, and so may be refuted in the future with the addition of new states. This is the view of those who believe in hidden variables. Thus, the Uncertainly Principle as applied to the two-dimensional situation described in Section 6 becomes inapplicable once the system is imbedded in the classical one. The statement , we have constructed deals only in each of the steps of its construction with commeasurable observables, and so cannot be refuted at a later date (Kochen, Specker 1967: 86). Let us start our detailed discussion of the work of Kochen and Specker fromthe possibility, the difficulties and the ways to use the phase space of classical mechanicsand thermodynamics since it acts as a bridge between the statistical interpretations ofthe latter by the former, and thus sets a successful example for the introduction of "hid-den parameters". Therefore, any confirmation of such impossibility must clarify preciselywhat exactly is the difference between classical and quantum mechanics, which deters usfrom following this method. We also have the major works of Weyl (1927), Wigner (1932),Groenewold (1946) and Moyal (1949), which show mathematically rigorously the degreeof correspondence between Hilbert and phase space. They demonstrate how and by whatnecessary generalizations of the classical phase space in the latter may be presentand deployed by the standard formalism of quantum mechanics based on Hilbert space. Fundamental is the work of Wigner. As for the study of Weil, it is historicallythe earlier (1927) and is based on the theory of groups, ones of the most simple and fun-damental objects of the abstract algebra equipped with a single binary operation, a re-verse element to any and a single neutral element coinciding with its reverse element.Also interesting is the theory of representations1 − Hermann Weil should be assumed asits founder2 − and the study in quest, which clarifies the meaning of such an abstractmathematical theory to quantum mechanics at the same time.1 And in particular, Lie groups in the automorphisms of Hilbert space.2 A work (Peter, Weyl 1927) co-authored with his student of the same year should be mentioned in a properly mathe-matical aspect. Its main theorem essentially ensures that any group fulfilled certain broad conditions can be juxtaposedone or even one-one Hilbert space determined by its orthonormal basis if the group has a representation into it: In otherwords, representation is the condition (its boundaries of necessity or sufficiency could investigate in different cases) foridentifying of a group with (a) Hilbert space. 7
- 8. The main idea of the theory of representations − the identification under cer-tain conditions, namely the availability of representation in general, of the groups and of(the transformations of) Hilbert space will allow us to make a decisive step forward instudying the relativity of the continuous and discrete in a mathematical and in a physical,and in a philosophical sense as well. If the group is not only continuous but also smooth,i.e. differentiable, such as Lie groups are, we could equate it, at least mathematically, byits presentations, to Hilbert space of -functions, i.e. of quantum, therefore discretestates. If the very Lie group embodies Einstein’s principle of general covariance (relativi-ty), we should clarify how exactly (or namely) -function presents a quantum, discretestate. It will help us to move forward from a merely qualitative relativity of continuity anddiscreteness to a quantitative (in a broad sense, by mathematical structures) descriptionof their unity and the transition between them. -function presents the discrete by the random as follows. It is always a func-tion of arguments consisting of exactly half the parameters in the configuration spacethan in the classical case and those parameters may be considered as continuous ones.The other half – according to Heisenberg’s uncertainty – proved to be completely vague,random, and discrete. Since there is a quantum leap, discreteness, that second half ofthe parameters appears to be a set of random variables, which may take one or anothervalue with different probability. Then we will interpret -function, in the spirit of Bartlett (1945)s approach, asthe characteristic function of the discrete and therefore random coordinates in configura-tion space. The other half of coordinates in configuration space simply do not need a de-scription by - function, since being continuous, they are not random. From this point of view "the problem of hidden parameters" appears to be a re-sult of misunderstanding: -function does not summarize, but only complementsthe continual description of classical physics with its discrete "mate", where the discrete isrepresented by the accidental. The other "half", i.e. the continual description itself is givenby the inevitable in quantum mechanics presence of classical device. Hence the im-portance of the theory of representations for the interpretation or creating the ontology ofquantum mechanics: it provides the possibility, unity and quantitative equivalence of thediscrete description of quantum phenomena in terms of micro-object and their continualdescription in terms of device. In such "translations" between both languages, we should pay special attention tothe consubstantiality and the equivalent transformation of the speed from a smooth de-scription (i.e. not only mathematically continual but also differentiable) in the probabilityfrom a discrete description. There comes the conclusion that Lorentz invariance (and re-spectively the postulate of no exceeding the speed of light in free space) is a direct resultof a principle already involved in the previous sentence, which is valid for the imposedgeneralisation of Einstein’s relativity principle also for discrete motions: as gravity and in-ertia are treated equally in general relativity, as velocity and probability should coincide asto the sketched more general view. However, this would be possible only if there is a fun-damental constant of maximal velocity, in relation to which any velocity is converted to a 8
- 9. dimensionless number that for all less or equal to the maximal velocity is respectively lessthan or equal to one and can therefore be interpreted as a standard probability. If however, using Bartlett’s approach, we have introduced negative probabilities(and hence those which are greater than one), then they should be discussed also speedsexceeding that of light according to a principle of equivalence of velocity and probability.Conversely, the emerging from the mathematical formalism of special relativity complexspeed or other kinematic physical quantities getting complex values are immediately inter-preted as the explained above complex probabilities or the physical quantities of entangledsystems studied by quantum information: The tachyons theory developed in the secondhalf of last century could be identified with quantum information or more exactly, with itstranslation into the diffeomorphism language of classical physics. So Wigner function(Wigner 1932: 750) is already in fact interpreted as the corresponding and earlier transla-tion into the classical language of smooth transformation from the previously postulateddiscreteness of quantum mechanics. On the one hand, our world well-described by classical physics allows an equi-valent quantum description towards a sufficiently massive mega-object losing its causalityequivalently replaced by randomness. On the other hand, we could extrapolate the situ-ation regarding micro-objects studied by quantum mechanics and information hypotheti-cally introducing an analogous classical physical description for them (by diffeomorfisms,causal, using as a hidden parameter the moment of time within the almost eternity oftheir own present). A similar hidden parameter, of course, can no way be defined in terms(quantities) of the massive object. That is why we can genera-lize in the spirit of Skole-mian relativity that both following statements are valid: there is and there is not ‘hiddenparameter’ in quantum mechanics: The latter is from the viewpoint of the appliance,the former from that of the micro-object. In classical physics, in science or even inknowledge at all, the empirical and the objective never reach to such a direct impact toeach other. On the other hand, however, a similar collision is typical for religious views,including and especially for the Christian ones. The objective is interpreted also as thehidden, non-empirical, also as the random, non-causally impacting on the practical world,also as the ideal, non-material, and also as the numinous, sacral, non-profane.3. If you return to a quantum reading of GR and take into account „the consub-stantiality of inertia and gravity“4 (Einstein 1918: 241), you should mean that not only de-scriptions by gravitational and any potential field are equivalent to each othermathematically (or if we allow ourselves to express so, consubstantial), but from ourviewpoint the quantum description of the same object to a mega-object is equivalent to3 It is clear that the philosophy of quantum information looks at religion and religious experience with impossible foranother scientific discipline or philosophy sympathy and interest in anticipation to be presumably synthesized the view-points of those two thorough enemies, which, being polar, but of the same doxography, outline or at least sketch theepisteme of fundamental and historical moment preceding the articulation of fundamental history. (Пенчев 2010: 116-124).4 The exact quote is as follows: „b) Äquivalenzprinzip: Trägheit und Schwere sind wesensgleich. Hieraus und aus denErgebnissen der speziellen Relativitättheorie folgt notwendig, daβ der symmetrische ,,Fundamentaltensor" ( ) diemetrischen Eigenschaften des Raumes, das Tragheitsverhalten der Körper in ihm, sowie die Gravitationswirkungenbestimmt. Den durch den Fundamentaltensor beschriebenen Raumzustand wollen wir als " -Feld" bezeichnen ” (Ein-stein 1918: 241). 9
- 10. them, too. Clearly, the theory of representations, offering a mathematical language toidentify and explain the isomorphism of potential (gravitational) and quantum random-ness, along with that, guides us to their eventual consubstantiality. If quantum mechanicsby -function shares an equivalent discrete description of any potential field, and generalrelativity has already enacted the indistinguishability of arbitrary potential and gravitationalfield, we have no more choice except concluding that -function should be an equivalent,but discrete description of gravitational field: For example, then the descriptions of theuniverse by its -function or by metrical tensor in any point of space-time are at leastisomorphic, and following an Einsteinian kind of Pythagorean ontology (Пенчев 2010:300), one in essence, besides. In our physical world a model can be represented by dissipative system fromchaos theory. By it we could read as the alleged hidden parameter of quantum mechanicsany “gently swinging the wings of a butterfly” in the appliance that leads to the measuredresult about the investigated quantum object in a dissipative, but causal way, anyway.Such an approach very reminisces Bohm (1952, I: 171)’s interpretation. However accord-ing to Kochen – Specker’s theorem and its corollaries a coherent system is impossible tobe reduced to any de-coherent state. Consequently, dissipation can be accomplished onlyby the system environment or in other words, by the system non-standard, entangled,external parts, i.e. by the device as which all the rest can be considered. If we think of theuniverse as a whole without parts or environment, then all other possible states of itsforce it to leave the coherent state in favor of the single real state. Who accomplishes achoice? According to the axiom of choice a system can make the choice by itself. Accord-ing to the Kochen – Specker theorem it is impossible to do that by itself, and the choice isonly forced by its environment or by its possible states. Therefore we should again speakof a Skolemian type of the relativity of freedom and necessity, this time. Our central interest is the pending identification of the alleged superluminalarea of SR (the tachyons theory) with GR on the base of the already proposed identifica-tion of any potential field (GR), but also with one-one discrete morphism, and hence witha certain superluminal speed transferring us into the real domain of Minkowski space (SR). The idea of interpreting GR as the theory of tachyons, i.e. as the superluminalGR generalization, is not only quite new and unexpected, but suggests even having to beparticularly highlighted. The reasons are several: Even the very name and the intention of general relativity suggest that it to beinterpreted as a generalization of SR as to non-inertial (or arbitrary) reference frame.Along with that the quoted already many times principle of Einstein’s relativity (1918: 241)constrains all physical movement to diffeomorphisms, so that non-inertial systems whichare obtained from one another by a discrete (quantum) leap are not considered. Just be-cause of that the idea of a possible generalization of the principle or theory of relativity aswell regarding such a kind of reference frame is able to be suggested. Moreover, it seemsthat the notion of relative speed cannot be defined in a nontrivial way, since it isalways infinite, and besides, violates the principle of no exceeding the light sped in freespace, correspondingly, Lorentz invariance. 10
- 11. It is useful to emphasize a relationship with the representation theorem (Riesz1907) to try to clarify how the already sketched identification of GR with the superluminalextension of SR (the theory of tachyons), first, is easy to be transferred as isomorphismbetween pseudo-Riemannian and Minkowski space, and secondly, gains some redundancyof the thought of “curved” Hilbert space, since that isomorphism can be conducted, name-ly by the Riesz theorem, also between usual standard and alleged “curved” Hilbert space. Suffice it to introduce the concept of covariant world line matching the usualcontravariant one if and only if the curvature of pseudo-Riemannian space in any point ofthe world line is zero. Obviously, the condition is met for each world line in Minkowskispace. If you introduce a more natural and reasonable, and one can say, and tradi-tional principle of invariance of physical laws in the transition from quantum micro-objectto measuring instrument (in particular, it implies the mega-interpretation of quantum me-chanics), which establishes the equivalence of any usual continual and a new, discretedescription of the surrounding macro-physical reality in relation to mega, i.e. universe ob-jects. The resulting common micro and mega-interpretation is called relative interpretation(Пенчев 2009: 127). Its relativity affects the equivalence as of the relation of micro andmacro and of macro and mega as of the relation of discrete and continuous models. This approach is similar to that of Schrödinger: -function to be interpreted asa „list of expectation“ (Schrödinger 1935: 827-828), i.e. as a „description“. He also dis-cussed it as “reality”, therefore in an epistemological sense, which is opposite. There ismore information in the world line than in the -function and it should regard as realityfrom this perspective. From the other hand, we cannot recover the real world line from allthe set of experiments, as we have not any empirical or experimental access the allegedhidden parameter, which we could call the moment of projection and which appears to bedue to an uncontrollably random superposition of a large number of contributing factorsassociated with macro-measuring: if we did so, we would be near to Bohm (1952, I:171)’s position. There is always a morphism, whose physical interpretation is the time rever-sion, swapping places of calculation and meta-calculation, or respectively, of the co- andcontravariant world line as well as, of the set of all subset of a given one and it itself,which is rather unexpectedly. That will be allowed only if any set is always a set of subsetsof another (Пенчев 2009: 235). The conclusion is: continual representation by force or (gravitational) field be-tween parts, interacting by means of it, of a system is equivalent to entanglement be-tween them if representation is discrete. Gravity (force field) and entanglement are twodifferent, correspondingly continual and discrete, images of a single common essence. Here we encounter a Skolemian type of relativity between discrete and continu-al models, between a system as an indivisible whole and as an ensemble or even sum ofits components, between entanglement and (incl. gravitational) forces. On the poles ofphilosophical reflection, continual and discrete, countable and countless, “curved” and“flat”, physical and logico-mathematical, material and algorithmic, holistic and calculatemodels proved to be really united, but splitting up into these polar images, which should 11
- 12. be different only and seemingly rather only by tradition. It is Hilbert space that managesto display that unity. Getting once again on a properly philosophical position, we have to raisethe issue of mapping between description and reality, or on the poles of inevitable specu-lation, between subject and object, in our case: a quantum physical object described by -function. For classical philosophy, the description is always different from reality, inmost cases it is not more than an extremely rude and imperfect copy. This viеw, prevalentamong scientists and philosophers of science, is opposed to the position got a completeexpression in classical German philosophy, in turn reflecting Christian faith, about an abso-lute entity, God, an abstract philosophical essence as the “absolute subject”, or humanbeing creating reality and thus, conversely, the reality is a slight and very imperfect copyof a subjective intent. It is hardly the 20th century philosophy, namely phenomenology, thedoctrines of Husserl or Heidegger, that put the problem about such reality that is synony-mous with its description, so-called ‘phenomenon’, and by its postulation to legitimize phi-losophy as science, the science of “phenomena”, i.e. “philosophy as a rigorous science” tobe just ‘phenomenology’. Is there a mathematical structure to model both an object and its descriptionand which can display the relationship of identity between them, figuratively speaking, a“phenomenon” mathematical structure? Hilbert space matches such a type. We could lookat world line as an object by itself, and on -function as its description. On the one hand,we could add to -function the corresponding hypermaximal operator or a set of suchones so as to get the object just as the movement of a material point or as the change ofthe quantities characteristic of it. On the other hand, the very -function choses exactly asingle world line as the movement of a material point and in a sense it is that descriptionwhich coincides with the object, it is a “phenomenon”. So, in this second case, we dealwith the phenomenon of the thing in relation to the latter. The phenomenon can play therole of logical subject in spite of being variable in time and having many physical quanti-ties, which are not phenomena as the -function has to be complemented by the corre-sponding self-adjoint operator characterizing a concrete quantity. However, any quantitycan be considered as the substance of the thing, and any else as its predication.This al-lows us to make identification, by which to move ourselves to the position of classical on-tology and logic, by taking the entire class of specific quantities as the very thing, sinceeach one of them can be considered as that substance – a phenomenon, to which the restare predications. The prospect of an also Skolemian relativity of phenomenon and object,of individual and class is now outlined in front of us. @@@@The made just discussion should be added to in the following sense.Not only the mechanical movement can be seen in the logical and discursive perspectiveof description, but conversely, any logic of something or a concrete discourse is isomor-phic of some mechanical movement and consequently, we can direct to them also fromthis position, again by means of -function, but already discussed as an iterating and iter-ative set of projective operators in the spirit of von Neumann’s classical foundation ofquantum logic. 12
- 13. The notion of time as in physical as in philosophical sense allows us also to cor-relate infinite and finite choice: infinite choice mathematically guaranteed by the axiom ofchoice and embodied in the totality of time usually named eternity, and finite choice whichis empirically given to any human being in present. If we now apply the Skolemian type ofrelativity, but no longer to the continual and discrete, and to the infinite and finite, thenwe head to an existential reading of eternity like that, witnessed extensively in the work ofnumerous authors from which we choose to mention Berdyaev, Shestov, Heidegger andAssen Ignatov. One could formulate the following principle of a rather philosophical nature: de-scription is not more complex than described (reality), the cardinal of the former is lessthan or equal to that of the latter. Description can be treated as encoding the described,and the physical quantity of information as the product of those two factors. Along with the above, ‘forces in reality’ can adequately and equivalently be rep-resented as the entanglement of descriptions. Jumps, „miracles“ from the discrete descrip-tion have a parallel continual physical description only within which they are able to bethought as physical forces or fields according to the setting or prejudices of modern sci-ence. A-causal description by means of feedback from the future is systematically over-lapped by causal one, which has as if the crucial advantage of successful scientific predic-tions, which do not influence, do not “shift” the future by their very nature. The notions of subjective or objective probability allow for us to distinguish cor-respondingly subjective or objective time being reconstructed on the base of them (e.g. asthe expectation of a subject or the frequency a given event to occurs). In both cases, timeis assumed discrete as it jumps from the present to the fixed future moment when theevent is going to occur. In the case of objective probability interpreted e.g. as frequency, a statistics isavailable as to the realization of the event in many cases: the numbering of the latter maybe regarded as a parameter or as a name of many parameters. The case of subjective probability means a unique event, which rejects the pos-sibility of any hidden parameter because of its indivisibility. An iterative procedure can beimagined such that it converges on a hypothetical absolute subject gradually coveringmore and more real ones who form a common (to call it “expert”) opinion on the probabil-ity for the target event to take place in reality. We can express the hypothesis that the two limits each tending to infinity cor-respondingly of individual events or actors will coincide, besides suggesting its fundamen-tal, axiomatic character. Another option is its negation, namely that there is in general a mismatchbetween the value of the objective and subjective probability, possibly varying from one toanother event: We will call it ontological difference. Let us emphasize that we define astrictly quantitative expression for ‘ontological difference’: the difference or the ratiobetween the limits (in infinity) of subjective and objective probability, to which a differenceor a ratio of the restored to their base discrete (subjective and objective) times will corre-spond. 13
- 14. However, if you stand on the position of a match, therefore continuity betweensubjective and objective time, then you could weaken the hypothesis of smooth transitionbetween them: It is only the infinite values that have to coincide, but not both first deriva-tives correspondingly “on the right” and “on the left”, which both must exist. The limits ofconverging by subjective and by objective probability do not coincide. Such an option split the concept of ontological difference by the hypothesis ofthe identity/ non-identity of infinity: we will denote it as “theological difference”, and beingdifferent from “ontological difference”, it suggests a topic about “onto-theological differ-ence”, of course, in a partly quantitative and emphasizing its limited aspect. But which is the case realized in quantum mechanics if we look at it as a checkon that: which of the above suggestions as theoretical possibility has taken place in reali-ty? There is a statistics (frequency) as in the case of objective probability, but itprecludes any hidden parameter, as in that of subjective probability. One (and perhaps theonly possible) solution is matching the subjective and objective probability, i.e. zero onto-logical and therefore onto-theological difference. We are going to denote that case as“quantum probability” and understand exactly matching the subjective and objective prob-ability. We can add that the concept of probability seen as the ratio of infinites in a fi-nite limit allows to clarify how and why its involvement in quantum mechanics gains a de-finite quantitative expression for any discretization as regards the infinite speeds obtainedas a result because of the zero time to perform any quantum leap. While infinity is notempirically and therefore experimentally attainable, it is already subjective probability (ofan absolute subject), postulated as coinciding with the objective one and by means of it,that is. While and if we have assumed that present is before the infinity of past, andthat of future is after it, we could use the term of “non-finite” for a similar status afterarithmetization. Non-finite sets are built as follows: that set whose set of subsets is count-able is non-finite. (Пенчев 2005: 60-62). Present is located in non-finiteness: after anyfiniteness, but before any infinity. It is the relation between non-finiteness and infinity thatis represented as probability and can describe discreteness. In the context of the above, another approach is possible to the comparison ofsubjective and objective probability, respectively, of subjective and objective time. Wewould like to recall the idea of a non-standard whole, which includes its externality as itsunusual part. In this sense, one part is considered as the very whole: the other parts to-wards the standard whole are accepted as non-standard, or external, ones of that partbeing simultaneously the whole. We could use the descriptive term “here-and-now-integrity” if we have understood “here and now” as that privileged part, on whose positionwe have stood. Appropriate is the analogy to the established and fundamental term ofHeidegger’s philosophy “Dasein” as well as to the neologism “Dazeit”, which is possible tobe introduced on its base (Пенчев 2009Х: 48). Further we could assign the subjective probability to the privileged part, whilethe objective one to its “negative image”: i.e. by means of the non-standard, external 14
- 15. parts of its. In a generalized sense, the trajectory of a part can be determined by an anal-ogous to the principle of least action, according to which the trajectory is accomplishedthrough the smallest, in particular zero ontological difference. The pathway of least or noontological difference may be indicated, using the terms of Chinese philosophy, whichhave been entrants after Bohr in that of quantum mechanics, such as Tao, and subjectiveand objective probability, or subjective and objective time, correlate the couple of Yangand Yin5. When we generalize the concept of “trajectory” from three-dimensional toHilbert space, we replace point (an element of a function) with function. The concept of“continuous trajectory” must therefore be reviewed. In our examination by means ofqubits, continuous trajectory refers to all of them and thus is limited to the continuouspath of points. Furthermore, the change of probability per time unit is directly interpretedby the quantum of action, i.e. for the values smaller than it. We have to pay special atten-tion to the text in italics, because, by the assumed and interpreted relationship betweenenergy and probability, we can transform sub-quantum into super-quantum reality includ-ing the macro-world. Roughly speaking, the entire universe can look like the inside of onequantum; inversely, the super-quantum area can be considered as the outside of the uni-verse: It is very interesting that the vicinity of any its internal point is able to be discussedas its outside. Indeed, Hilbert space interpreted as a space of -functions equivalent toworld lines has precisely this property, which can be called fractal probably not only meta-phorically. Each line describes an eternity of the universe as the continuity of past, presentand future: note that the description originates from one reference frame. The impossibleand self-contradictory6 external movement of the universe is described as the internalone: It is enough to “change the Gestalt” and look at each -function like a description ofthe state of the universe and only secondarily, and as a result of the former like a descrip-tion of a physical object inside. The universe consists (internally) of its (external) states.The transition from stochastically determined chaos to probabilistic quantum states con-verts its parts into its states. Therefore, the Skolemian relativity of continuity and discreteness is easily to betransformed into the relativity of externality and internality permitting a single commondescription. Then energy corresponds to the values of change within a quant or a discretejump. On the other hand, we have used the probabilities for infinity: the probability is abridge, through which we are able to think uniformly as infinitely great as infinitely smallquantities as infinitesimal, but in terms of discreteness embedded by quantum. Since in our approach, action corresponds to the change of probability, theprinciple of least action is converted into a principle of least probability change, which is5 Such a transformation clears that Tao is just another, but more accurate way to be described onto-theological differ-ence insofar as the latter is, as a kind of speaking, “a function of here and now”, or using an aphorism: Tao is the desti-ny of Dasein. In other words, the Tao presents the presence of God in this world, or translating by the terms of classicalphilosophy and therefore being bound by an oxymoron, as “transcendental transcendence” (Пенчев 2007: 10). Obvi-ously, such an approach is much closer to the kind of ecumenism, to “God as a human ability”, or conversely, to detect-ing the possibility of cooperation between the sacred and profane.6 Since it unites the non-self-identity of external identity and the definitive reflexivity of the universe as a single whole.Therefore the outcome which “is found” by the universe we can apply to solve similar difficulties lush in many para-doxes and in “the crisis in the foundation of mathematics” as to the set theory. For this purpose, a minimum base struc-ture should be drawn from Hilbert space which would allow us to transform infinity into a point of that infinity. 15
- 16. intuitively perfectly acceptable: the transition from one to another -function must takeplace through the least change of probability. In particular, in the case of the transfor-mation corresponding to a physical quantity (i.e. by a hypermaximal operator), theamendment of probability is zero, and we have already noted that all transformation ofthat class may be related to the present of the object possessing that -function. Timecan be described as the density of probability for transiting from one to another -function, in which the former is interpreted as the present of the quantum object inquestion, while the latter as future or past states. The probability density function will bemaximal in the present, to the maximum of which the past values will grow monotonicallyby different slope, and those of the future in turn will decrease, forming a typical bellshaped probability density curve. Negative probability will be then naturally inter-preted asa probability for converting in past states, i.e. back in time, while the complex one will bereferred to the time axis distortion. The fundamental constants – the Plank and the speed of light – are a naturalunits set allowing the parts of them to be interpreted as probabilities, and continuity to betransformed into the internality of a discrete (quantum) jump. If we mean to type a summary of the principle of least action, it appears thatmay cover a wider area, namely Hilbert space, and as long as the amendment of theprobability in time is interpreted as the frequency of de Broglie wave. Such an interpreta-tion is natural because probability, thought even elementarily, is defined as the ratio of thepart of the alternatives accepted as favorable (whether in anticipation or as a statisticalfrequency) of a choice towards all of them. Then de Broglie wave corresponds to theamendment of the positive alternatives if the set of all the alternatives remains the same(in other words, the change of the favorable ones is for the account of the negative ones).Such an approach, besides suggesting an unusual perspective on energy, respectivelymatter, assumes that the law of energy conservation roughly approximates the linear areaof increasing (decreasing) the probability of the bell curve of probability density distribu-tion, or of the linear change of the positive alternatives. In areas, in which such an ap-proximation is significantly different, forces, fields, and their energies should appear tocompensate for the inaccuracy of approximation. We tend to interpret the somewhat or-ganized abundance of elementary particles and the four main forces (fields) of the stan-dard model as “Ptolemaic cycles”, figuratively speaking. It is the probabilistic approach of“classical” quantum mechanics that favors the almost linear section as it prevailsdecisively. The principle of least action as a principle of least changing the probability ac-tually includes also the case of its amendment in time corresponding to the above intro-duced concept of theological difference. In terms of the alternatives accepted to be favor-able of a choice, ontological difference is the difference between the amount of favorableand unfavorable alternatives and all the alternatives7, while theological difference is that7 The said does not contradict the interpretation of subjective probability as a jump of an expectation, which is realizedas a smooth change of the objective probability by an also gradual shift of the favorable alternatives in a real movement.Zero ontological difference postulates their coincidence. We can likewise use a metaphor for the subjective probabilityas a negative imprint and "expectation" determined by anything else in relation to a given thing so that its amendment tomodify the rest in the slightest possible degree. 16
- 17. between all the alternatives (e.g. at different points in time). Theological difference, how-ever, should be understood sufficiently generally: since all alternatives form a totality, itmeans that we can assume for the difference as preservation as change in an equal de-gree. Therefore, theological difference seeks to quantify the relationship of the totality toitself. Finally, the context of the work can be used to address a few − seeminglydisparate and unrelated − exceptions for the dimensionality of : in Gleason’s (Gleason1957: 132), in Kochen – Specker’s theorem (Kochen, Specker 1967: 70; § 6; Specker1975: 139-140), and at last … Fermat’s last theorem proven at the end of last century byAndrew Wiles. Kochen and Specker directly indicated that the displayed result can beobtained from the theorem of Gleason. (Kochen, Specker 1967: 70). However our workhas grounded on the isomorphism of qubit and three-dimensional sphere (which in fact issimilar to Kochen and Specker’s counter-example of the § 6 of their article), on the repre-sentation of Hilbert space by qubits and hence, by Minkowski space. Further a surpriseoccurs: as three-dimensional sphere is obtained from the complex Hilbert space of dimen-sion , and Minkowski space is an additive combination of qubits, at that representable asHilbert space, then there is a direct pathway the exception about dimensionality two to betransferred to infinite dimensions. It should however again be noted that this is not a wayto carry over to any finite dimensions. Further the axiom of choice carries the outcome toany transfinite power provided it to be valid for that power. We have statements − all ofthose that appear by the exception of dimensionality , − which are not true for any finiteinteger, but they are true for an infinite number. The only way out of the situation, if weare to preserve the principle of induction, moreover it is included in the Peano axiomatic ofintegers, is to accept that there is a number that we cannot point out8, for which thattype of statements are not valid. Argued could immediately referred to Fermat’s last theorem if we have taken asufficiently powerful axiom of choice as long as higher dimensions are obtained multiplica-tively. Is the axiom of choice or weaker version of it (the theorem of prime Boolean ide-als9) used in Wiles’ proof (McLarty 2010) to be displayed that the field of rational numbershas an algebraic closure or all fields have algebraic closures Wiles (1995; Taylor, Wiles1995)? On the base of just made considering as well as the whole context of the articlewe tend to insist on a negative answer: rather Fermat’s last theorem as in Wiles’ proof asat all10 is equivalent to the negation of the axiom of choice or even of a stronger versionof it. It could display by its eventual deduction from the Kochen – Specker or Gleason the-orem. Instead, in the spirit of the philosophical nature of this discussion, we may pro-pose the following problem: whether the propositions valid for any instant of time arevalid for the eternity, i.e. whether they are tautologies. In statements on eternity, we findourselves in an analogue of well-known difficulties on the set of all sets; in the case: the8 Pure, i.e. nonconstructive in principle existence proof.9 It states that all ideals in a Boolean algebra can be extended to prime ideals. A variation of this statement for filters onsets is known as the ultrafilter lemma.10 We would like to pay special attention to the notion of the admissible representation of a group (incl. Lie group) inHilbert space (Cornel, Silverman, Stevens 1997: 165). 17
- 18. alleged validity / invalidity of the claim on all valid claims. Obviously, the proposed isomor-phism between Minkowski space and Hilbert space and their physical interpretation be-cause of the exception of alleged impossibility usual Boolean logic to be embedded(Kochen, Specker 1967: 70; Specker 1975: 139-140) as to dimension or transfers itsstatements which are valid, i.e. tautological, for any moment of time into “valid at all”, i.e.valid as to eternity, however even if they are not valid as to any future moment (but notpresent one!)11. It turns out that the usual binary logic has an unusual privilege with re-gard to eternity: in a sense it makes or brings an equivalence characteristic to existential-ism, between present and eternity, interpreting eternity by generality quantifier as “for allpresents”. Finally we will apply the used argument also to the theorem that a field (i.e.multiplication is commutative) of dimensionality higher than two does not exist: theprinciple of induction requires such to exists anyway: Of course, it comes to a clean andunconstructive proof of its existence. But later, according to the conventional interpretation of the theorem known asthe “paradox Banach − Traski“12 (Banach, Tarski 1924: 244), a qubit is equivalent to twoones, hence ultimately to Hilbert space as a whole, as a model of the Universum. Ac-cording to the theorem of Kochen and Specker (more precisely, as its direct consequence)it cannot be represented as a bit. However being valid the axiom of choice, it should beable, as well as according the very example (as a counter-example given by them in § 6 oftheir article). In last analysis, the starting point for their consideration may be reduced toa kind of a “bit”: wave-corpuscular dualism, or according to the discussion made in thisstudy, the Skolemain or Einsteinian type of relativity between discreteness and continuity.Choice within a relativity is guaranteed, but immaterial. Therefore, the primal philosophicalchoice we have made is between the importance of the very choice and the relativity of itsalternatives, and hence their immateriality, ultimately, of the very choice. In gnomicwords, the being of the world is reduced to a single choice (even of the simplest kind, be-tween two equal possibilities, i.e. to a single bit). On the other hand, this is trivial, becausethe question might be: is there a world? But that problem turns out most surprisingly(of course, not to the successors of the anti-metaphysic trend à la Wittgenstein in the con-11 The statements about invalidity towards an arbitrary future, but not present instant of time turn out to be self-contradictory on the base of the proposed argument. So „the problem of unobservables“ (Feyerabend 1975: 110) afterinterpreting quantum mechanics by means of three-values logic (Reichenbach 1975) reveals its self-contradiction. Theyare statements about unobservables which turn out to be contradictory as such ones about future moments in our ap-proach.12 Particularly should be emphasized that in this case − and in conjunction with the previous ones, − we encounter againa remarkable exception for dimension or : "In the Euclidean space of dimensions any two limited sets con-taining their internal points are equivalent in a finite decomposition. There is an analogous theorem for sets located on asphere, but the corresponding theorem on Euclidean space with dimensions or is incorrect "(Banach, Tarski 1924:244). The proof of the theorem uses the axiom of choice (ibid.: 244-245). Actually, received two spheres from one iswidespread interpretation (or even replacement) of the theorem, which does not appear in the original work. Whether aset consisting of two spheres is “a limited set, which contains its internal points”? One area is a compact set, but twoones are not in general. If we take two hemispheres of the initial one and by the theorem, generate those two areas fromthem, whether that one of the two hemispheres will not contain dividing them circle would violate the conditions of thetheorem? Whether another arbitrary set including its entire contour can also build by a set in the Euclidean space ofthree or more dimensions, deprived of its contour partly or entirely? Maybe we are faced with a topological equivalentof the relativity of one or two quantum systems. 18
- 19. temporary philosophy) to be immaterial: in Skolemian way, even being and non-being arerelative. If we pass the route in reverse order, we can create the universe, includinggravity, the ensemble of all the possible states of it: each of them is simultaneously theactual state of some part of it. In other words, we can create the universe as “consistingonly of itself”, but not limited to acting as one, i.e. a whole, and also of all of its own partsequivalent to the states of the whole. Summarizing the whole current statement, we can highlight several majorproblems: 1. The fundamental importance of the axiom of choice in the discussion ofissues around the theorem of Kochen and Specker. 2. The status of the theorem of Kochen and Specker: Is not it an axiom? 3. The relationship of the axiom of choice and the theorem of Kochen andSpecker: whether and how the latter can be seen as a direct negation of the former?LITERATURE:Banach, S., A. Tarski. 1924. Sur la décomposition des ensembles de points en partiesrespectivement congruentes. − Fundamenta Mathematicae. Vol. 6, 244–277( http://matwbn.icm.edu.pl/ksiazki/fm/fm6/fm6127.pdf ).Bartlett, M. 1945. Negative probability. – Mathematical Proceedings of the CambridgePhilosophical Society. Vol. 41, No 1 (June 1945), 71-73.Bell, J. 1966. On the Problem of Hidden Variables in Quantum Mechanics. ‒ Reviews of ModernPhysics. Vol. 38, No 3 (July), 447-452. (Bell, J. Speakable and unspeakable in quantum mechanics:collected papers in quantum mechanics. Cambridge: University Press, 1987, 1-13) −http://www.ffn.ub.es/luisnavarro/nuevo_maletin/Bell%20(1966)_Hidden%20variables.pdf .Bohm, D. 1952. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden”Variables. I. ‒ Physical Review. Vol. 85, No 2, 166-179 − http://dieumsnh.qfb.umich.mx/archivoshistoricosMQ/ModernaHist/david%20bohm%20I.pdf .Bohm, D. 1952. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden”Variables. II. ‒ Physical Review. Vol. 85, No 2, 180-193. − http://dieumsnh.qfb.umich.mx/archivoshistoricosMQ/ModernaHist/david%20bohm%20II.pdf .Cornell, G., J. Silverman, G. Stevens (eds.). 1997. Modular forms and Fermat’s last theorem.New York: Springer.Kochen, S., E. Specker. 1967. The Problem of Hidden Variables in Qunatum Mechanics. – Jour-nal of Mathematics and Mechanics. Vol. 17, No 1, 59-87 − http://viper.princeton.edu/~mcdonald/examples/QM/kochen_iumj_17_59_68.pdf .Einstein, A. 1918. Prinziplelles zur allgemeinen Relativitätstheorie. – Annnalen der Physik. Bd. 55,№ 4, 241-244. − http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1918_55_241-244.pdf .Feyerabend, P. 1975. Reichenbach’s interpretation of quantum mechanics. − In: C. Hooker (ed.)The Logico-Algebraic Approach in Quantum mechanics. Vol. 1. Historical Evolution. Dordrecht:D. Reidel, 109-121 (books.google.com). 19
- 20. Gleason, A. 1957. Measures on the Closed Subspaces of a Hilbert Space. ‒ Journal of Mathematicsand Mechanics. Vol. 6, No 6, 885-893 (books.google.com).Groenewold, H. 1946. On the principles of elementary quantum mechanics. – Physica. Vol. 12,No 7 (October 1946), 405-460.Hermann, G. 1935. The circularity in von Neumanns proof. (Translation by Michiel Seevinck of"Der Zirkel in NEUMANNs Beweis", section 7 from the essay by Grete Hermann, DieNaturphilosophischen Grundlagen de Quantenmechanik. Abhandlungen der friesschen Schule, 6,1935.) ‒ http://www.phys.uu.nl/igg/seevinck/trans.pdf ).McLarty, C. 2010. What does it take to prove Fermat’s last theorem. Grothendieck and the logic ofnumber theory. – The Bulletin of Symbolic Logic. Vol. 16, No 3, 359-377. (http://www.cwru.edu/artsci/phil/Proving_FLT.pdf ).Moyal, J. 1949. Quantum mechanics as a statistical theory. – Proceedings of the Cambridge Philo-sophical Society. Vol. 45, No 1, 99-124. – http://epress.anu.edu.au/maverick/mobile_devices/apc.html .Neumann, J. von. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Verlag vonJulius Springer (http://www.calameo.com/read/000187019bb347837a6bf ). In English: J. vonNeumann. 1955. Mathematical Foundations of Quantum Mechanics. Princeton: University Press. InRussian: Й. фон Нейман. 1964. Математические основы квантовой механики. Москва: „Нау-ка”.Peter, F., H. Weyl. 1927. Die Vollständigkeit der primitiven Darstellungen einer geschlossenenkontinuierlichen Gruppe. − Mathematische Annalen. Vol. 97, No 1, 737–755.Reichenbach, H. 1975. Three-valued logic and the interpretation of quantum mechanics. − In: C.Hooker (ed.) The Logico-Algebraic Approach in Quantum mechanics. Vol. 1. Historical Evolution.Dordrecht: D. Reidel, 53-97.Riesz, F. 1907. Sur une espèce de géométrie analytiques des systèmes de fonctions sommables. –Comptes rendus de lAcadémie des sciences. Paris. T. 144, 1409–1411.Schrödinger, E. 1935. Die gegenwärtige situation in der Quantenmechanik. – DieNaturwissenschaften, Bd. 48, 807-812; Bd. 49, 823-828, Bd. 50, 844-849. (In English:http://www.tu-harburg.de/rzt/rzt/it/QM/cat.html; превод на руски: Шредингер, Э. 1971. Совре-менное положение в квантовой механике. – В: Э. Шредингер. Новые путы в физике. Москва:„Наука”, 1971, 66-106.)Specker, E. 1975. The logic of propositions which are not simultaneously decidable. – In: C.Hooker (ed.) The Logico-Algebraic Approach in Quantum mechanics. Vol. 1. Historical Evolution.Dordrecht: D. Reidel, 135-140 (books.google.com).Taylor R., A., Wiles. 1995. Ring theoretic properties of certain Hecke algebras. − Annals of Math-ematics. Vol. 141, No 3 (May, 1995), 553–572 ( http://www.math.harvard.edu/~rtaylor/hecke.ps ).Weyl, H. 1927. Quantenmechanik und Gruppentheorie. – Zeitschrift für Physik. Vol. 46, No 1-2,1-46. (H. Weyl. Gesammelte Abhandlungen. B. III. Berlin – Heidelberg – New York: Springer.)Wigner, E. 1932. On the quantum correction for thermodynamic equilibrium. – Physical Review.Vol. 40, No 5 (June 1932), 749-759.Wiles, A. 1995. Modular eliptic curves and Fermat’s Last Theorem. – Annals of Mathematics. Vol.141, No 3 (May, 1995) 443-551. (http://www.math.virginia.edu/~lls2l/modular_elliptic_curves_by_wiles.pdf ; http://math.stanford.edu/~lekheng/flt/wiles.pdf ).Дмитриев, Н. 2005. Теорема фон Неймана о невозможности введения в квантовую механикускритых параметров. ‒ Теоретическая и математическая физика. Т. 143, No 3, 431-436. 20
- 21. Пенчев, В. 2005. Квантовият компютър: квантовите ординали и типовете алгоритмична не-разрешимост. – Философски алтернативи, 2005, № 6, 59-71.Пенчев, В. 2007. Мъртвият Бог? Хегел – Ницше – Хайдегер. С.: Булгед.Пенчев, В. 2009Х. Хайдегер за Ницше в контекста на „Феноменология на духа“. – Философ-ски алтернативи, 2009, № 1-2, 45-52.Пенчев, В. 2009. Философия на квантовата информация. Т. 1. Айнщайн и Гьодел. С., ИФИ-БАН.Пенчев, В. 2010. Онтология и фундаментална история. − В: Онтологични ситуации. Сбор-ник доклади от конференцията в чест на шестдесетгодишния юбилей на проф. АлександърАндонов. С.: УИ Св. Климент Охридски“, 113‐129. 21

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment