Published on

Marketing Research: An Applied Orientation: Global Edition, 6/E

  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide


  1. 1. Chapter Eleven Sampling: Design and Procedures
  2. 2. 11-2Chapter Outline1) Overview2) Sample or Census3) The Sampling Design Process i. Define the Target Population ii. Determine the Sampling Frame iii. Select a Sampling Technique iv. Determine the Sample Size v. Execute the Sampling Process
  3. 3. 11-3Chapter Outline4) A Classification of Sampling Techniques i. Nonprobability Sampling Techniques a. Convenience Sampling b. Judgmental Sampling c. Quota Sampling d. Snowball Sampling ii. Probability Sampling Techniques a. Simple Random Sampling b. Systematic Sampling c. Stratified Sampling d. Cluster Sampling e. Other Probability Sampling Techniques
  4. 4. 11-4Chapter Outline5. Choosing Nonprobability versus Probability Sampling6. Uses of Nonprobability versus Probability Sampling7. International Marketing Research8. Ethics in Marketing Research9. Internet and Computer Applications10. Focus On Burke11. Summary12. Key Terms and Concepts
  5. 5. 11-5 Sample vs. Census Table 11.1 Condit ions Favor ing t he Use ofType of St udy Sam ple Census1. Budget Sm all Large2. Tim e available Short Long3. Populat ion size Large Sm all4. Variance in t he charact erist ic Sm all Large5. Cost of sam pling errors Low High6. Cost of nonsam pling errors High Low7. Nat ure of m easurem ent Dest ruct ive Nondest ruct ive8. At t ent ion t o individual cases Yes No
  6. 6. 11-6The Sampling Design ProcessFig. 11.1 Define the Population Determine the Sampling Frame Select Sampling Technique(s) Determine the Sample Size Execute the Sampling Process
  7. 7. 11-7Define the Target Population The target population is the collection of elements or objects that possess the information sought by the researcher and about which inferences are to be made. The target population should be defined in terms of elements, sampling units, extent, and time.  An element is the object about which or from which the information is desired, e.g., the respondent.  A sampling unit is an element, or a unit containing the element, that is available for selection at some stage of the sampling process.  Extent refers to the geographical boundaries.  Time is the time period under consideration.
  8. 8. 11-8Define the Target Population Important qualitative factors in determining the sample size  the importance of the decision  the nature of the research  the number of variables  the nature of the analysis  sample sizes used in similar studies  incidence rates  completion rates  resource constraints
  9. 9. Sample Sizes Used in Marketing 11-9 Research Studies Table 11.2Type of St udy Minim um Size Typical RangeProblem ident if icat ion r esear ch 500 1,000- 2,500( e.g. m ar ket pot ent ial)Problem -solving r esear ch ( e.g. 200 300- 500pricing)Product t est s 200 300- 500Test m ar ket ing st udies 200 300- 500TV, radio, or prin t adver t ising ( per 150 200- 300com m ercial or ad t est ed)Test -m arket audit s 10 st or es 10- 20 st oresFocus gr oups 2 gr oups 4- 12 gr oups
  10. 10. Classification of Sampling 11-10 Techniques Fig. 11.2 Sampling Techniques Nonprobability Probability Sampling Techniques Sampling TechniquesConvenience Judgmental Quota Snowball Sampling Sampling Sampling Sampling Simple Systematic Stratified Cluster Other Sampling Random Sampling Sampling Sampling Techniques Sampling
  11. 11. 11-11Convenience Sampling Convenience sampling attempts to obtain a sample of convenient elements. Often, respondents are selected because they happen to be in the right place at the right time.  use of students, and members of social organizations  mall intercept interviews without qualifying the respondents  department stores using charge account lists  “people on the street” interviews
  12. 12. 11-12Judgmental Sampling Judgmental sampling is a form of convenience sampling in which the population elements are selected based on the judgment of the researcher.  test markets  purchase engineers selected in industrial marketing research  bellwether precincts selected in voting behavior research  expert witnesses used in court
  13. 13. 11-13 Quota SamplingQuota sampling may be viewed as two-stage restricted judgmentalsampling.  The first stage consists of developing control categories, or quotas, of population elements.  In the second stage, sample elements are selected based on convenience or judgment. Population Sample composition composition Control Characteristic Percentage Percentage Number Sex Male 48 48 480 Female 52 52 520 ____ ____ ____ 100 100 1000
  14. 14. 11-14Snowball Sampling In snowball sampling, an initial group of respondents is selected, usually at random.  After being interviewed, these respondents are asked to identify others who belong to the target population of interest.  Subsequent respondents are selected based on the referrals.
  15. 15. 11-15Simple Random Sampling Each element in the population has a known and equal probability of selection. Each possible sample of a given size (n) has a known and equal probability of being the sample actually selected. This implies that every element is selected independently of every other element.
  16. 16. 11-16Systematic Sampling The sample is chosen by selecting a random starting point and then picking every ith element in succession from the sampling frame. The sampling interval, i, is determined by dividing the population size N by the sample size n and rounding to the nearest integer. When the ordering of the elements is related to the characteristic of interest, systematic sampling increases the representativeness of the sample. If the ordering of the elements produces a cyclical pattern, systematic sampling may decrease the representativeness of the sample. For example, there are 100,000 elements in the population and a sample of 1,000 is desired. In this case the sampling interval, i, is 100. A random number between 1 and 100 is selected. If, for example, this number is 23, the sample consists of elements 23, 123, 223, 323, 423, 523, and so on.
  17. 17. 11-17Stratified Sampling A two-step process in which the population is partitioned into subpopulations, or strata. The strata should be mutually exclusive and collectively exhaustive in that every population element should be assigned to one and only one stratum and no population elements should be omitted. Next, elements are selected from each stratum by a random procedure, usually SRS. A major objective of stratified sampling is to increase precision without increasing cost.
  18. 18. 11-18Stratified Sampling The elements within a stratum should be as homogeneous as possible, but the elements in different strata should be as heterogeneous as possible. The stratification variables should also be closely related to the characteristic of interest. Finally, the variables should decrease the cost of the stratification process by being easy to measure and apply. In proportionate stratified sampling, the size of the sample drawn from each stratum is proportionate to the relative size of that stratum in the total population. In disproportionate stratified sampling, the size of the sample from each stratum is proportionate to the relative size of that stratum and to the standard deviation of the distribution of the characteristic of interest among all the elements in that stratum.
  19. 19. 11-19Cluster Sampling The target population is first divided into mutually exclusive and collectively exhaustive subpopulations, or clusters. Then a random sample of clusters is selected, based on a probability sampling technique such as SRS. For each selected cluster, either all the elements are included in the sample (one-stage) or a sample of elements is drawn probabilistically (two-stage). Elements within a cluster should be as heterogeneous as possible, but clusters themselves should be as homogeneous as possible. Ideally, each cluster should be a small-scale representation of the population. In probability proportionate to size sampling, the clusters are sampled with probability proportional to size. In the second stage, the probability of selecting a sampling unit in a selected cluster varies inversely with the size of the cluster.
  20. 20. 11-20 Types of Cluster Sampling Fig. 11.3 Cluster SamplingOne-Stage Two-Stage MultistageSampling Sampling Sampling Simple Cluster Probability Sampling Proportionate to Size Sampling
  21. 21. Strengths and Weaknesses of 11-21Basic Sampling Techniques Table 11.3Technique Strengths WeaknessesNonprobability Sampling Least expensive, least Selection bias, sample notConvenience sampling time-consuming, most representative, not recommended for convenient descriptive or causal researchJudgmental sampling Low cost, convenient, Does not allow generalization, not time-consuming subjectiveQuota sampling Sample can be controlled Selection bias, no assurance of for certain characteristics representativenessSnowball sampling Can estimate rare Time-consuming characteristicsProbability sampling Easily understood, Difficult to construct samplingSimple random sampling results projectable frame, expensive, lower precision,(SRS) no assurance of representativeness.Systematic sampling Can increase Can decrease representativeness representativeness, easier to implement than SRS, sampling frame not necessaryStratified sampling Include all important Difficult to select relevant subpopulations, stratification variables, not feasible to precision stratify on many variables, expensiveCluster sampling Easy to implement, cost Imprecise, difficult to compute and effective interpret results
  22. 22. 11-22 Procedures for Drawing Probability Samples Fig. 11.4 Simple Random Sampling1. Select a suitable sampling frame2. Each element is assigned a number from 1 to N (pop. size)3. Generate n (sample size) different random numbers between 1 and N4. The numbers generated denote the elements that should be included in the sample
  23. 23. Procedures for Drawing 11-23 Probability Samples Fig. 11.4 cont. Systematic Sampling1. Select a suitable sampling frame2. Each element is assigned a number from 1 to N (pop. size)3. Determine the sampling interval i:i=N/n. If i is a fraction, round to the nearest integer4. Select a random number, r, between 1 and i, as explained in simple random sampling5. The elements with the following numbers will comprise the systematic random sample: r, r+i,r+2i,r+3i,r+4i,...,r+(n-1)i
  24. 24. Procedures for Drawing 11-24 Probability Samples Fig. 11.4 cont. Stratified Sampling1. Select a suitable frame2. Select the stratification variable(s) and the number of strata, H3. Divide the entire population into H strata. Based on the classification variable, each element of the population is assigned to one of the H strata4. In each stratum, number the elements from 1 to Nh (the pop. size of stratum h)5. Determine the sample size of each stratum, nh, based on proportionate or disproportionate stratified sampling, where H nh = n h=16. In each stratum, select a simple random sample of size nh
  25. 25. Procedures for Drawing 11-25 Probability Samples Cluster Fig. 11.4 cont. Sampling1. Assign a number from 1 to N to each element in the population2. Divide the population into C clusters of which c will be included in the sample3. Calculate the sampling interval i, i=N/c (round to nearest integer)4. Select a random number r between 1 and i, as explained in simple random sampling5. Identify elements with the following numbers: r,r+i,r+2i,... r+(c-1)i6. Select the clusters that contain the identified elements7. Select sampling units within each selected cluster based on SRS or systematic sampling8. Remove clusters exceeding sampling interval i. Calculate new population size N*, number of clusters to be selected C*= C-1, and new sampling interval i*.
  26. 26. 11-26Procedures for Drawing Probability SamplesFig. 11.4 cont. Cluster Sampling Repeat the process until each of the remaining clusters has a population less than the sampling interval. If b clusters have been selected with certainty, select the remaining c-b clusters according to steps 1 through 7. The fraction of units to be sampled with certainty is the overall sampling fraction = n/N. Thus, for clusters selected with certainty, we would select ns=(n/N)(N1+N2+...+Nb) units. The units selected from clusters selected under PPS sampling will therefore be n*=n- ns.
  27. 27. Choosing Nonprobability vs. 11-27 Probability Sampling Table 11.4 cont. Condit ions Favoring t he Use ofFact or s Nonprobabilit y Probabilit y sam pling sam plingNat ur e of resear ch Explorat ory ConclusiveRelat ive m agnit ude of sam pling Nonsam pling Sam plingand nonsam pling errors errors ar e errors are larger largerVariabilit y in t he populat ion Hom ogeneous Het er ogeneous ( low ) ( high)St at ist ical considerat ions Unf avorable FavorableOperat ional considerat ions Favorable Unfavorable
  28. 28. 11-28Tennis Systematic Sampling Returns a Smash Tennis magazine conducted a mail survey of its subscribers to gain a better understanding of its market. Systematic sampling was employed to select a sample of 1,472 subscribers from the publications domestic circulation list. If we assume that the subscriber list had 1,472,000 names, the sampling interval would be 1,000 (1,472,000/1,472). A number from 1 to 1,000 was drawn at random. Beginning with that number, every 1,000th subscriber was selected. A brand-new dollar bill was included with the questionnaire as an incentive to respondents. An alert postcard was mailed one week before the survey. A second, follow-up, questionnaire was sent to the whole sample ten days after the initial questionnaire. There were 76 post office returns, so the net effective mailing was 1,396. Six weeks after the first mailing, 778 completed questionnaires were returned, yielding a response rate of 56%.