Successfully reported this slideshow.
Your SlideShare is downloading. ×

Introduction to the Hadoop Ecosystem with Hadoop 2.0 aka YARN (Java Serbia Edition)

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 106 Ad

Introduction to the Hadoop Ecosystem with Hadoop 2.0 aka YARN (Java Serbia Edition)

Download to read offline

Talk held at the Java User Group on 05.09.2013 in Novi Sad, Serbia

Agenda:
- What is Big Data & Hadoop?
- Core Hadoop
- The Hadoop Ecosystem
- Use Cases
- What‘s next? Hadoop 2.0!

Talk held at the Java User Group on 05.09.2013 in Novi Sad, Serbia

Agenda:
- What is Big Data & Hadoop?
- Core Hadoop
- The Hadoop Ecosystem
- Use Cases
- What‘s next? Hadoop 2.0!

Advertisement
Advertisement

More Related Content

Slideshows for you (20)

Advertisement

Similar to Introduction to the Hadoop Ecosystem with Hadoop 2.0 aka YARN (Java Serbia Edition) (20)

More from Uwe Printz (19)

Advertisement

Recently uploaded (20)

Introduction to the Hadoop Ecosystem with Hadoop 2.0 aka YARN (Java Serbia Edition)

  1. 1. Novi Sad 05.09.2013 Introduction to the Hadoop Ecosystem uweseiler
  2. 2. Novi Sad 05.09.2013 About me Big Data Nerd TravelpiratePhotography Enthusiast Hadoop Trainer MongoDB Author
  3. 3. Novi Sad 05.09.2013 About us is a bunch of… Big Data Nerds Agile Ninjas Continuous Delivery Gurus Enterprise Java Specialists Performance Geeks Join us!
  4. 4. Novi Sad 05.09.2013 Agenda • What is Big Data & Hadoop? • Core Hadoop • The Hadoop Ecosystem • Use Cases • What‘s next? Hadoop 2.0!
  5. 5. Novi Sad 05.09.2013 Agenda • What is Big Data & Hadoop? • Core Hadoop • The Hadoop Ecosystem • Use Cases • What‘s next? Hadoop 2.0!
  6. 6. Novi Sad 05.09.2013 Let’s face it… Big Data is the latest …
  7. 7. Novi Sad 05.09.2013 But on the other hand… Data is an…
  8. 8. Novi Sad 05.09.2013 Think about it… Advertisements
  9. 9. Novi Sad 05.09.2013 Think about it… Recommendations
  10. 10. Novi Sad 05.09.2013 Think about it… Anything that sells
  11. 11. Novi Sad 05.09.2013 The 3 V’s of Big Data VarietyVolume Velocity
  12. 12. Novi Sad 05.09.2013 My favorite definition
  13. 13. Novi Sad 05.09.2013 Why Hadoop? Traditional dataStoresare expensive to scale and by Design difficultto Distribute Scale out is the way to go!
  14. 14. Novi Sad 05.09.2013 How to scale data? “Data“ r r “Result“ w w worker workerworker w r
  15. 15. Novi Sad 05.09.2013 But… Parallel processing is complicated!
  16. 16. Novi Sad 05.09.2013 But… Data storage is not trivial!
  17. 17. Novi Sad 05.09.2013 What is Hadoop? Distributed Storage and Computation Framework
  18. 18. Novi Sad 05.09.2013 What is Hadoop? «Big Data» != Hadoop
  19. 19. Novi Sad 05.09.2013 What is Hadoop? Hadoop != Database
  20. 20. Novi Sad 05.09.2013 What is Hadoop? “Swiss army knife of the 21st century” http://www.guardian.co.uk/technology/2011/mar/25/media-guardian-innovation-awards-apache-hadoop
  21. 21. Novi Sad 05.09.2013 The Hadoop App Store HDFS MapRed HCat Pig Hive HBase Ambari Avro Cassandra Chukwa Intel Sync Flume Hana HyperT Impala Mahout Nutch Oozie Scoop Scribe Tez Vertica Whirr ZooKee Horton Cloudera MapR EMC IBM Talend TeraData Pivotal Informat Microsoft. Pentaho Jasper Kognitio Tableau Splunk Platfora Rack Karma Actuate MicStrat
  22. 22. Novi Sad 05.09.2013 Functionalityless more Apache Hadoop Hadoop Distributions Big Data Suites • HDFS • MapReduce • Hadoop Ecosystem • Hadoop YARN • Test & Packaging • Installation • Monitoring • Business Support + • Integrated Environment • Visualization • (Near-)Realtime analysis • Modeling • ETL & Connectors + The Hadoop App Store
  23. 23. Novi Sad 05.09.2013 Agenda • What is Big Data & Hadoop? • Core Hadoop • The Hadoop Ecosystem • Use Cases • What‘s next? Hadoop 2.0!
  24. 24. Novi Sad 05.09.2013 Data Storage OK, first things first! I want to store all of my <<Big Data>>
  25. 25. Novi Sad 05.09.2013 Data Storage
  26. 26. Novi Sad 05.09.2013 Hadoop Distributed File System • Distributed file system for redundant storage • Designed to reliably store data on commodity hardware • Built to expect hardware failures
  27. 27. Novi Sad 05.09.2013 Hadoop Distributed File System Intended for • large files • batch inserts
  28. 28. Novi Sad 05.09.2013 HDFS Architecture NameNode Master Block Map Slave Slave Slave Rack 1 Rack 2 Journal Log DataNode DataNode DataNode File Client Secondary NameNode Helper periodical merges #1 #2 #1 #1 #1
  29. 29. Novi Sad 05.09.2013 Data Processing Data stored, check! Now I want to create insights from my data!
  30. 30. Novi Sad 05.09.2013 Data Processing
  31. 31. Novi Sad 05.09.2013 MapReduce • Programming model for distributed computations at a massive scale • Execution framework for organizing and performing such computations • Data locality is king
  32. 32. Novi Sad 05.09.2013 Typical large-data problem • Iterate over a large number of records • Extract something of interest from each • Shuffle and sort intermediate results • Aggregate intermediate results • Generate final output MapReduce
  33. 33. Novi Sad 05.09.2013 MapReduce Flow Combine Combine Combine Combine a b 2 c 9 a 3 c 2 b 7 c 8 Partition Partition Partition Partition Shuffle and Sort Map Map Map Map a b 2 c 3 c 6 a 3 c 2 b 7 c 8 a 1 3 b 7 c 2 8 9 Reduce Reduce Reduce a 4 b 9 c 19
  34. 34. Novi Sad 05.09.2013 Combined Hadoop Architecture Client NameNode Master Slave TaskTracker Secondary NameNode Helper JobTracker DataNode File Job Block Task Slave TaskTracker DataNode Block Task Slave TaskTracker DataNode Block Task
  35. 35. Novi Sad 05.09.2013 Word Count Mapper in Java public class WordCountMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); } } }
  36. 36. Novi Sad 05.09.2013 Word Count Reducer in Java public class WordCountReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator values, OutputCollector output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { IntWritable value = (IntWritable) values.next(); sum += value.get(); } output.collect(key, new IntWritable(sum)); } }
  37. 37. Novi Sad 05.09.2013 Agenda • What is Big Data & Hadoop? • Core Hadoop • The Hadoop Ecosystem • Use Cases • What‘s next? Hadoop 2.0!
  38. 38. Novi Sad 05.09.2013 Scripting for Hadoop Java for MapReduce? I dunno, dude… I’m more of a scripting guy…
  39. 39. Novi Sad 05.09.2013 Scripting for Hadoop
  40. 40. Novi Sad 05.09.2013 Apache Pig • High-level data flow language • Made of two components: • Data processing language Pig Latin • Compiler to translate Pig Latin to MapReduce
  41. 41. Novi Sad 05.09.2013 Pig in the Hadoop ecosystem HDFS Hadoop Distributed File System MapReduce Distributed Programming Framework HCatalog Metadata Management Pig Scripting
  42. 42. Novi Sad 05.09.2013 Pig Latin users = LOAD 'users.txt' USING PigStorage(',') AS (name, age); pages = LOAD 'pages.txt' USING PigStorage(',') AS (user, url); filteredUsers = FILTER users BY age >= 18 and age <=50; joinResult = JOIN filteredUsers BY name, pages by user; grouped = GROUP joinResult BY url; summed = FOREACH grouped GENERATE group, COUNT(joinResult) as clicks; sorted = ORDER summed BY clicks desc; top10 = LIMIT sorted 10; STORE top10 INTO 'top10sites';
  43. 43. Novi Sad 05.09.2013 Pig Execution Plan
  44. 44. Novi Sad 05.09.2013 Try that with Java…
  45. 45. Novi Sad 05.09.2013 SQL for Hadoop OK, Pig seems quite useful… But I’m more of a SQL person…
  46. 46. Novi Sad 05.09.2013 SQL for Hadoop
  47. 47. Novi Sad 05.09.2013 Apache Hive • Data Warehousing Layer on top of Hadoop • Allows analysis and queries using a SQL-like language
  48. 48. Novi Sad 05.09.2013 Hive in the Hadoop ecosystem HDFS Hadoop Distributed File System MapReduce Distributed Programming Framework HCatalog Metadata Management Pig Scripting Hive Query
  49. 49. Novi Sad 05.09.2013 Hive Architecture Hive Hive Engine HDFS MapReduce Meta- store Thrift Applications JDBC Applications ODBC Applications Hive Thrift Driver Hive JDBC Driver Hive ODBC Driver Hive Server Hive Shell
  50. 50. Novi Sad 05.09.2013 Hive Example CREATE TABLE users(name STRING, age INT); CREATE TABLE pages(user STRING, url STRING); LOAD DATA INPATH '/user/sandbox/users.txt' INTO TABLE 'users'; LOAD DATA INPATH '/user/sandbox/pages.txt' INTO TABLE 'pages'; SELECT pages.url, count(*) AS clicks FROM users JOIN pages ON (users.name = pages.user) WHERE users.age >= 18 AND users.age <= 50 GROUP BY pages.url SORT BY clicks DESC LIMIT 10;
  51. 51. Novi Sad 05.09.2013 But wait, there’s still more! More components of the Hadoop Ecosystem
  52. 52. Novi Sad 05.09.2013 HDFS Data storage MapReduce Data processing HCatalog Metadata Management Pig Scripting Hive SQL-like queries HBase NoSQLDatabase Mahout Machine Learning ZooKeeper ClusterCoordination Scoop Import & Export of relational data Ambari Clusterinstallation&management Oozie Workflowautomatization Flume Import & Export of data flows
  53. 53. Novi Sad 05.09.2013 Agenda • What is Big Data & Hadoop? • Core Hadoop • The Hadoop Ecosystem • Use Cases • What‘s next? Hadoop 2.0!
  54. 54. Novi Sad 05.09.2013 DataSourcesDataSystemsApplications Traditional Sources RDBMS OLTP OLAP … Traditional Systems RDBMS EDW MPP … Business Intelligence Business Applications Custom Applications Operation Manage & Monitor Dev Tools Build & Test Classical enterprise platform
  55. 55. Novi Sad 05.09.2013 DataSourcesDataSystemsApplications Traditional Sources RDBMS OLTP OLAP … Traditional Systems RDBMS EDW MPP … Business Intelligence Business Applications Custom Applications Operation Manage & Monitor Dev Tools Build & Test New Sources Logs Mails Sensor …Social Media Enterprise Hadoop Plattform Big Data Platform
  56. 56. Novi Sad 05.09.2013DataSourcesDataSystemsApplications Traditional Sources RDBMS OLTP OLAP … Traditional Systems RDBMS EDW MPP … Business Intelligence Business Applications Custom Applications New Sources Logs Mails Sensor …Social Media Enterprise Hadoop Plattform 1 2 3 4 1 2 3 4 Capture all data Process the data Exchange using traditional systems Process & Visualize with traditional applications Pattern #1: Refine data
  57. 57. Novi Sad 05.09.2013DataSourcesDataSystemsApplications Traditional Sources RDBMS OLTP OLAP … Traditional Systems RDBMS EDW MPP … Business Intelligence Business Applications Custom Applications New Sources Logs Mails Sensor …Social Media Enterprise Hadoop Plattform 1 2 3 1 2 3 Capture all data Process the data Explore the data using applications with support for Hadoop Pattern #2: Explore data
  58. 58. Novi Sad 05.09.2013DataSourcesDataSystemsApplications Traditional Sources RDBMS OLTP OLAP … Traditional Systems RDBMS EDW MPP … Business Applications Custom Applications New Sources Logs Mails Sensor …Social Media Enterprise Hadoop Plattform 1 3 1 2 3 Capture all data Process the data Directly ingest the data Pattern #3: Enrich data 2
  59. 59. Novi Sad 05.09.2013 Bringing it all together… One example…
  60. 60. Novi Sad 05.09.2013 Digital Advertising • 6 billion ad deliveries per day • Reports (and bills) for the advertising companies needed • Own C++ solution did not scale • Adding functions was a nightmare
  61. 61. Novi Sad 05.09.2013 Campaign Database FFM AMS TCP Interface TCP Interface Custom Flume Source Custom Flume Source Flume HDFS Sink Local files Campaign Data Hadoop Cluster Binary Log Format Synchronisation Pig Hive Temporäre Daten NAS Aggregated data Report Engine Direct Download Job Scheduler Config UI Job Config XML Start AdServer AdServer AdServing Architecture
  62. 62. Novi Sad 05.09.2013 What’s next? Hadoop 2.0 aka YARN
  63. 63. Novi Sad 05.09.2013 HDFS Built for web-scale batch apps HDFS HDFS Single App Batch Single App Batch Single App Batch Single App Batch Single App Batch Hadoop 1.0
  64. 64. Novi Sad 05.09.2013 MapReduce is good for… • Embarrassingly parallel algorithms • Summing, grouping, filtering, joining • Off-line batch jobs on massive data sets • Analyzing an entire large dataset
  65. 65. Novi Sad 05.09.2013 MapReduce is OK for… • Iterative jobs (i.e., graph algorithms) – Each iteration must read/write data to disk – I/O and latency cost of an iteration is high
  66. 66. Novi Sad 05.09.2013 MapReduce is not good for… • Jobs that need shared state/coordination – Tasks are shared-nothing – Shared-state requires scalable state store • Low-latency jobs • Jobs on small datasets • Finding individual records
  67. 67. Novi Sad 05.09.2013 MapReduce limitations • Scalability – Maximum cluster size ~ 4,500 nodes – Maximum concurrent tasks – 40,000 – Coarse synchronization in JobTracker • Availability – Failure kills all queued and running jobs • Hard partition of resources into map & reduce slots – Low resource utilization • Lacks support for alternate paradigms and services – Iterative applications implemented using MapReduce are 10x slower
  68. 68. Novi Sad 05.09.2013 Hadoop 1.0 HDFS Redundant, reliable storage Hadoop 2.0: Next-gen platform MapReduce Cluster resource mgmt. + data processing Hadoop 2.0 HDFS 2.0 Redundant, reliable storage MapReduce Data processing Single use system Batch Apps Multi-purpose platform Batch, Interactive, Streaming, … YARN Cluster resource management Others Data processing
  69. 69. Novi Sad 05.09.2013 Taking Hadoop beyond batch Applications run natively in Hadoop HDFS 2.0 Redundant, reliable storage Batch MapReduce Store all data in one place Interact with data in multiple ways YARN Cluster resource management Interactive Tez Online HOYA Streaming Storm, … Graph Giraph In-Memory Spark Other Search, …
  70. 70. Novi Sad 05.09.2013 A brief history of Hadoop 2.0 • Originally conceived & architected by the team at Yahoo! – Arun Murthy created the original JIRA in 2008 and now is the YARN release manager • The team at Hortonworks has been working on YARN for 4 years: – 90% of code from Hortonworks & Yahoo! • Hadoop 2.0 based architecture running at scale at Yahoo! – Deployed on 35,000 nodes for 6+ months
  71. 71. Novi Sad 05.09.2013 Hadoop 2.0 Projects • YARN • HDFS Federation aka HDFS 2.0 • Stinger & Tez aka Hive 2.0
  72. 72. Novi Sad 05.09.2013 Hadoop 2.0 Projects • YARN • HDFS Federation aka HDFS 2.0 • Stinger & Tez aka Hive 2.0
  73. 73. Novi Sad 05.09.2013 YARN: Architecture Split up the two major functions of the JobTracker Cluster resource management & Application life-cycle management ResourceManager NodeManager NodeManager NodeManager NodeManager NodeManager NodeManager NodeManager NodeManager Scheduler AM 1 Container 1.2 Container 1.1 AM 2 Container 2.1 Container 2.2 Container 2.3
  74. 74. Novi Sad 05.09.2013 YARN: Architecture • Resource Manager – Global resource scheduler – Hierarchical queues • Node Manager – Per-machine agent – Manages the life-cycle of container – Container resource monitoring • Application Master – Per-application – Manages application scheduling and task execution – e.g. MapReduce Application Master
  75. 75. Novi Sad 05.09.2013 YARN: Architecture ResourceManager NodeManager NodeManager NodeManager NodeManager NodeManager NodeManager NodeManager NodeManager Scheduler MapReduce 1 map 1.2 map 1.1 MapReduce 2 map 2.1 map 2.2 reduce 2.1 NodeManager NodeManager NodeManager NodeManager reduce 1.1 Tez map 2.3 reduce 2.2 vertex 1 vertex 2 vertex 3 vertex 4 HOYA HBase Master Region server 1 Region server 2 Region server 3 Storm nimbus 1 nimbus 2
  76. 76. Novi Sad 05.09.2013 Hadoop 2.0 Projects • YARN • HDFS Federation aka HDFS 2.0 • Stinger & Tez aka Hive 2.0
  77. 77. Novi Sad 05.09.2013 HDFS Federation • Removes tight coupling of Block Storage and Namespace • Scalability & Isolation • High Availability • Increased performance Details: https://issues.apache.org/jira/browse/HDFS-1052
  78. 78. Novi Sad 05.09.2013 HDFS Federation: Architecture NameNodes do not talk to each other NameNodes manages only slice of namespace DataNodes can store blocks managed by any NameNode NameNode 1 Namespace 1 logs finance Block Management 1 1 2 43 NameNode 2 Namespace 2 insights reports Block Management 2 5 6 87 DataNode 1 DataNode 2 DataNode 3 DataNode 4
  79. 79. Novi Sad 05.09.2013 HDFS: Quorum based storage Active NameNode Standby NameNode DataNodeDataNodeDataNode DataNode DataNode Journal Node Journal Node Journal NodeOnly the active writes edits The state is shared on a quorum of journal nodes The Standby simultaneously reads and applies the edits DataNodes report to both NameNodes but listen only to the orders from the active one Block Map Edits File Block Map Edits File
  80. 80. Novi Sad 05.09.2013 Hadoop 2.0 Projects • YARN • HDFS Federation aka HDFS 2.0 • Stinger & Tez aka Hive 2.0
  81. 81. Novi Sad 05.09.2013 Hive: Current Focus Area • Online systems • R-T analytics • CEP Real-Time Interactive Batch • Parameterized Reports • Drilldown • Visualization • Exploration • Operational batch processing • Enterprise Reports • Data Mining Data SizeData Size 0-5s 5s – 1m 1m – 1h 1h+ Non- Interactive • Data preparation • Incremental batch processing • Dashboards / Scorecards Current Hive Sweet Spot
  82. 82. Novi Sad 05.09.2013 Stinger: Extending the sweet spot • Online systems • R-T analytics • CEP Real-Time Interactive Batch • Parameterized Reports • Drilldown • Visualization • Exploration • Operational batch processing • Enterprise Reports • Data Mining Data SizeData Size 0-5s 5s – 1m 1m – 1h 1h+ Non- Interactive • Data preparation • Incremental batch processing • Dashboards / Scorecards Future Hive Expansion Improve Latency & Throughput • Query engine improvements • New “Optimized RCFile” column store • Next-gen runtime (elim’s M/R latency) Extend Deep Analytical Ability • Analytics functions • Improved SQL coverage • Continued focus on core Hive use cases
  83. 83. Novi Sad 05.09.2013 Stinger Initiative at a glance
  84. 84. Novi Sad 05.09.2013 Tez: The Execution Engine • Low level data-processing execution engine • Use it for the base of MapReduce, Hive, Pig, etc. • Enables pipelining of jobs • Removes task and job launch times • Hive and Pig jobs no longer need to move to the end of the queue between steps in the pipeline • Does not write intermediate output to HDFS – Much lighter disk and network usage • Built on YARN
  85. 85. Novi Sad 05.09.2013 Pig/Hive MR vs. Pig/Hive Tez SELECT a.state, COUNT(*), AVERAGE(c.price) FROM a JOIN b ON (a.id = b.id) JOIN c ON (a.itemId = c.itemId) GROUP BY a.state Pig/Hive - MR Pig/Hive - Tez I/O Synchronization Barrier I/O Synchronization Barrier Job 1 Job 2 Job 3 Single Job
  86. 86. Novi Sad 05.09.2013 Tez Service • MapReduce Query Startup is expensive: – Job launch & task-launch latencies are fatal for short queries (in order of 5s to 30s) • Solution: – Tez Service (= Preallocated Application Master) • Removes job-launch overhead (Application Master) • Removes task-launch overhead (Pre-warmed Containers) – Hive/Pig • Submit query-plan to Tez Service – Native Hadoop service, not ad-hoc
  87. 87. Novi Sad 05.09.2013 Tez: Low latency SELECT a.state, COUNT(*), AVERAGE(c.price) FROM a JOIN b ON (a.id = b.id) JOIN c ON (a.itemId = c.itemId) GROUP BY a.state Existing Hive Parse Query 0.5s Create Plan 0.5s Launch Map- Reduce 20s Process Map- Reduce 10s Total 31s Hive/Tez Parse Query 0.5s Create Plan 0.5s Launch Map- Reduce 20s Process Map- Reduce 2s Total 23s Tez & Tez Service Parse Query 0.5s Create Plan 0.5s Submit to Tez Service 0.5s Process Map-Reduce 2s Total 3.5s * No exact numbers, for illustration only
  88. 88. Novi Sad 05.09.2013 Stinger: Summary * Real numbers, but handle with care!
  89. 89. Novi Sad 05.09.2013 Hadoop 2.0 Applications • MapReduce 2.0 • HOYA - HBase on YARN • Storm, Spark, Apache S4 • Hamster (MPI on Hadoop) • Apache Giraph • Apache Hama • Distributed Shell • Tez
  90. 90. Novi Sad 05.09.2013 Hadoop 2.0 Applications • MapReduce 2.0 • HOYA - HBase on YARN • Storm, Spark, Apache S4 • Hamster (MPI on Hadoop) • Apache Giraph • Apache Hama • Distributed Shell • Tez
  91. 91. Novi Sad 05.09.2013 MapReduce 2.0 • Basically a porting to the YARN architecture • MapReduce becomes a user-land library • No need to rewrite MapReduce jobs • Increased scalability & availability • Better cluster utilization
  92. 92. Novi Sad 05.09.2013 Hadoop 2.0 Applications • MapReduce 2.0 • HOYA - HBase on YARN • Storm, Spark, Apache S4 • Hamster (MPI on Hadoop) • Apache Giraph • Apache Hama • Distributed Shell • Tez
  93. 93. Novi Sad 05.09.2013 HOYA: HBase on YARN • Create on-demand HBase clusters • Configure different HBase instances differently • Better isolation • Create (transient) HBase clusters from MapReduce jobs • Elasticity of clusters for analytic / batch workload processing • Better cluster resources utilization
  94. 94. Novi Sad 05.09.2013 Hadoop 2.0 Applications • MapReduce 2.0 • HOYA - HBase on YARN • Storm, Spark, Apache S4 • Hamster (MPI on Hadoop) • Apache Giraph • Apache Hama • Distributed Shell • Tez
  95. 95. Novi Sad 05.09.2013 Twitter Storm • Stream-processing • Real-time processing • Developed as standalone application • https://github.com/nathanmarz/storm • Ported on YARN • https://github.com/yahoo/storm-yarn
  96. 96. Novi Sad 05.09.2013 Storm: Conceptual view Spout Spout Spout: Source of streams Bolt Bolt Bolt Bolt Bolt Bolt: Consumer of streams, Processing of tuples, Possibly emits new tuples Tuple Tuple Tuple Tuple: List of name-value pairs Stream: Unbound sequence of tuples Topology: Network of Spouts & Bolts as the nodes and stream as the edge
  97. 97. Novi Sad 05.09.2013 Hadoop 2.0 Applications • MapReduce 2.0 • HOYA - HBase on YARN • Storm, Spark, Apache S4 • Hamster (MPI on Hadoop) • Apache Giraph • Apache Hama • Distributed Shell • Tez
  98. 98. Novi Sad 05.09.2013 Spark • High-speed in-memory analytics over Hadoop and Hive • Separate MapReduce-like engine – Speedup of up to 100x – On-disk queries 5-10x faster • Compatible with Hadoop‘s Storage API • Available as standalone application – https://github.com/mesos/spark • Experimental support for YARN since 0.6 – http://spark.incubator.apache.org/docs/0.6.0/running-on-yarn.html
  99. 99. Novi Sad 05.09.2013 Data Sharing in Spark
  100. 100. Novi Sad 05.09.2013 Hadoop 2.0 Applications • MapReduce 2.0 • HOYA - HBase on YARN • Storm, Spark, Apache S4 • Hamster (MPI on Hadoop) • Apache Giraph • Apache Hama • Distributed Shell • Tez
  101. 101. Novi Sad 05.09.2013 Apache Giraph • Giraph is a framework for processing semi- structured graph data on a massive scale. • Giraph is loosely based upon Google's Pregel • Giraph performs iterative calculations on top of an existing Hadoop cluster. • Available on GitHub – https://github.com/apache/giraph
  102. 102. Novi Sad 05.09.2013 Hadoop 2.0 Summary 1. Scale 2. New programming models & Services 3. Improved cluster utilization 4. Agility 5. Beyond Java
  103. 103. Novi Sad 05.09.2013 Getting started… One more thing…
  104. 104. Novi Sad 05.09.2013 Hortonworks Sandbox http://hortonworks.com/products/hortonworsk-sandbox
  105. 105. Novi Sad 05.09.2013 Books about Hadoop 1. Hadoop - The Definite Guide, Tom White, 3rd ed., O’Reilly, 2012. 2. Hadoop in Action, Chuck Lam, Manning, 2011 Programming Pig, Alan Gates O’Reilly, 2011 1. Hadoop Operations, Eric Sammer, O’Reilly, 2012
  106. 106. Novi Sad 05.09.2013 The end…or the beginning?

×