Successfully reported this slideshow.
Your SlideShare is downloading. ×

深層学習で切り拓くパーソナルロボットの未来

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Upcoming SlideShare
R for Python Users
R for Python Users
Loading in …3
×

Check these out next

1 of 69 Ad
Advertisement

More Related Content

More from Yuya Unno (20)

Advertisement

Recently uploaded (20)

深層学習で切り拓くパーソナルロボットの未来

  1. 1. 0 1Preferred Networks
  2. 2. l l Chainer CuPy OSS l 2
  3. 3. Preferred Networks (PFN) l 2014 3 l l l 3
  4. 4. 6 G CEATEC JAPAN 2018@幕張メッセ 2018年10月16日
  5. 5. 5
  6. 6. × l l 6
  7. 7. CEATEC JAPAN 2018 (Oct 16–19, 2018) 8
  8. 8. 9
  9. 9. 10
  10. 10. 11
  11. 11. 12
  12. 12. 0 1 l l 2012 l He. et.al, Deep Residual Learning for Image Recognition. CVPR 2016.
  13. 13. 14
  14. 14. 2 3 2 3 15
  15. 15. 2 3 16
  16. 16. 17
  17. 17. 18
  18. 18. 19
  19. 19. 20 /
  20. 20. l l l l l l 21
  21. 21. l l (RGBD) l (RGB) l 4 (RGB) l l 300 22
  22. 22. 23 Sparse Dense
  23. 23. 2 3 24
  24. 24. 25
  25. 25. 26
  26. 26. 27
  27. 27. Needs English subtitles
  28. 28. 29
  29. 29. Needs English subtitles
  30. 30. 31
  31. 31. 32
  32. 32. 33
  33. 33. 34
  34. 34. 35
  35. 35. 36 AR
  36. 36. PFDet l Google 2 l 170 1200 l NVIDIA Tesla V100 512 37 T. Akiba, et.al. PFDet: 2nd Place Solution to Open Images Challenge 2018 Object Detection Track. ECCV2018.
  37. 37. l l 38 K. Takahashi, J. Tan. Deep Visuo-Tactile Learning: Estimation of Tactile Properties from Images. ICRA2019.
  38. 38. l l 39 J. Hatori, et.al. Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions. ICRA2018.
  39. 39. 40
  40. 40. 41 NVIDIA Tesla V100 (32GB) 512 Infiniband P
  41. 41. 42
  42. 42. 43
  43. 43. 44
  44. 44. l 2 3 l 45
  45. 45. l G l l 46
  46. 46. l 2 l l l l 47
  47. 47. 48
  48. 48. 50 55
  49. 49. l l l l 0 1 l 0 1 l l l 51
  50. 50. l l l 52
  51. 51. × l 0 1 l 0 1 l 53
  52. 52. 15 l l 2 3 l 54
  53. 53. 55 Photo by Kuha455405 / CC BY-SA 3.0
  54. 54. × l MD l MP3 1, 2 1 l × l × 9 01 56
  55. 55. l G l 57 250 8 3
  56. 56. 0 1 1 100 58 l l 0 1 U l l 0 1
  57. 57. l l l l l l 59
  58. 58. 60
  59. 59. l l l × 61
  60. 60. 62
  61. 61. 1 l l 4 l 63
  62. 62. PFI/PFN 64 OSS Blog TechTalk
  63. 63. × l l l 2 3 l 2 3 65
  64. 64. l 1 l G 2 66
  65. 65. l l l l 295 3 l 25 3 l l 67
  66. 66. l l l 68

×