SlideShare a Scribd company logo
ELLA: An Efficient Lifelong
Learning Algorithm
株式会社Preferred Infrastructure
海野  裕也  (@unnonouno)
2013/07/09
ICML2013読み会@東大
⾃自⼰己紹介
l  海野  裕也 (@unnonouno)
l  プリファードインフラストラクチャー
l  情報検索索、レコメンド
l  機械学習・データ解析研究開発
l  Jubatusチームリーダー
l  分散オンライン機械学習フレームワーク
l  専⾨門
l  ⾃自然⾔言語処理理
l  テキストマイニング
2
要旨
l  Lifelong learningのためにGO-MTLの精度度をほとんど落落
とさずに、1000倍早くした
l  ⼿手法の要旨は以下の2点
l  テーラー展開して元の最適化の式を簡略略化
l  再計算の必要な項の計算を簡略略化
3
Lifelong learning
4
Lifelong learning
l  タスクが次々やってくる
l  Z(1), …, Z(Tmax)
l  学習者はタスクの数も順番も知らない
l  各Zは教師有りの問題(分類か回帰)
l  各タスクにはnt個の教師ありデータが与えられる
マルチタスクで、タスクが次々やってくるイメージ
5
Lifelong learningのキモチ(ホントか?)
l  ずっと学習し続ける
l  データセットはオンラインでやってくる
l  過去の学習結果をうまく活かしたい(似たような問題、
組み合わせの問題が多い)
例例えば将来的に、ずっと学習し続けるインフラのようなモ
ノができた時を想定している(のかも)
6
Grouping and Overlap in Multi-Task Learning
(GO-MTL) [Kumar&Daume III ’12]
l  L: 損失関数
l  w = Ls: モデルパラメータ
l  L: k個の隠れタスクの重み
l  s: 各タスクをLの線形和で表現する役割
l  sは疎にしたいのでL1正則化
7	
収束の証明のために
ちょっと変えてある
GO-MTLが遅い
l  GO-MTL⾃自体はマルチタスクのバッチ学習⼿手法なので
データが次々やってくるLifelong learningに適⽤用しよう
とすると遅い
l  2重ループが明らかに遅そう
8
⼯工夫1: 損失関数の部分をテーラー展開
9	
θ(t)の周りで2次の
テーラー展開
⼯工夫2: 全てのtに対するs(t)の最適化を⾏行行うのは⾮非効
率率率
10	
s(t)の最適化を
順次行う
実際の更更新式
l  L = A-1b
l  実際に計算するときは、Aとbは差分更更新できるような⼯工
夫が⼊入っている
11
実験結果
12	
バッチとほとんど同じ精度度で1000倍以上速い!!
あれ、よく⾒見見ると・・・
13	
Single Task Leaning (STL) でもそこそこだし、
当然もっと速い・・・
まとめ
l  マルチタスクのバッチ学習であるGO-MTLをLifelong
learningに適⽤用するために、⾮非効率率率な部分を効率率率化した
l  ほとんど精度度を下げずに、1000倍以上⾼高速化した
l  タスクを独⽴立立に解いてもそこそこの精度度が出ていて、実
験設定はもう少し考慮しても良良かったのかも
14

More Related Content

What's hot

情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜Yuya Unno
 
Facebookの人工知能アルゴリズム「memory networks」について調べてみた
Facebookの人工知能アルゴリズム「memory networks」について調べてみたFacebookの人工知能アルゴリズム「memory networks」について調べてみた
Facebookの人工知能アルゴリズム「memory networks」について調べてみた株式会社メタップスホールディングス
 
ICML2013読み会 開会宣言
ICML2013読み会 開会宣言ICML2013読み会 開会宣言
ICML2013読み会 開会宣言Shohei Hido
 
子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得Yuya Unno
 
深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーションYuya Unno
 
形態素解析の過去・現在・未来
形態素解析の過去・現在・未来形態素解析の過去・現在・未来
形態素解析の過去・現在・未来Preferred Networks
 
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Yuya Unno
 
全脳アーキテクチャ若手の会20170131
全脳アーキテクチャ若手の会20170131全脳アーキテクチャ若手の会20170131
全脳アーキテクチャ若手の会20170131Hangyo Masatsugu
 
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...Yuya Unno
 
言語資源と付き合う
言語資源と付き合う言語資源と付き合う
言語資源と付き合うYuya Unno
 
大規模データ時代に求められる自然言語処理
大規模データ時代に求められる自然言語処理大規模データ時代に求められる自然言語処理
大規模データ時代に求められる自然言語処理Preferred Networks
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた卓也 安東
 
A Chainer MeetUp Talk
A Chainer MeetUp TalkA Chainer MeetUp Talk
A Chainer MeetUp TalkYusuke Oda
 
深層学習時代の自然言語処理
深層学習時代の自然言語処理深層学習時代の自然言語処理
深層学習時代の自然言語処理Yuya Unno
 
Jubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCTJubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCTYuya Unno
 
自然言語処理における意味解析と意味理解
自然言語処理における意味解析と意味理解自然言語処理における意味解析と意味理解
自然言語処理における意味解析と意味理解Kanji Takahashi
 
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17Yuya Unno
 
Development and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafDevelopment and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafKenta Oono
 

What's hot (19)

情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜情報抽出入門 〜非構造化データを構造化させる技術〜
情報抽出入門 〜非構造化データを構造化させる技術〜
 
Facebookの人工知能アルゴリズム「memory networks」について調べてみた
Facebookの人工知能アルゴリズム「memory networks」について調べてみたFacebookの人工知能アルゴリズム「memory networks」について調べてみた
Facebookの人工知能アルゴリズム「memory networks」について調べてみた
 
ICML2013読み会 開会宣言
ICML2013読み会 開会宣言ICML2013読み会 開会宣言
ICML2013読み会 開会宣言
 
子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得
 
深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション
 
形態素解析の過去・現在・未来
形態素解析の過去・現在・未来形態素解析の過去・現在・未来
形態素解析の過去・現在・未来
 
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
 
全脳アーキテクチャ若手の会20170131
全脳アーキテクチャ若手の会20170131全脳アーキテクチャ若手の会20170131
全脳アーキテクチャ若手の会20170131
 
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...
NIPS2013読み会: Distributed Representations of Words and Phrases and their Compo...
 
Emnlp読み会資料
Emnlp読み会資料Emnlp読み会資料
Emnlp読み会資料
 
言語資源と付き合う
言語資源と付き合う言語資源と付き合う
言語資源と付き合う
 
大規模データ時代に求められる自然言語処理
大規模データ時代に求められる自然言語処理大規模データ時代に求められる自然言語処理
大規模データ時代に求められる自然言語処理
 
ディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみたディープラーニングで株価予測をやってみた
ディープラーニングで株価予測をやってみた
 
A Chainer MeetUp Talk
A Chainer MeetUp TalkA Chainer MeetUp Talk
A Chainer MeetUp Talk
 
深層学習時代の自然言語処理
深層学習時代の自然言語処理深層学習時代の自然言語処理
深層学習時代の自然言語処理
 
Jubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCTJubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCT
 
自然言語処理における意味解析と意味理解
自然言語処理における意味解析と意味理解自然言語処理における意味解析と意味理解
自然言語処理における意味解析と意味理解
 
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
 
Development and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafDevelopment and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and maf
 

Viewers also liked

ICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic modelsICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic modelssleepy_yoshi
 
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM PredictionICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM PredictionSeiya Tokui
 
ICML2013読み会 Large-Scale Learning with Less RAM via Randomization
ICML2013読み会 Large-Scale Learning with Less RAM via RandomizationICML2013読み会 Large-Scale Learning with Less RAM via Randomization
ICML2013読み会 Large-Scale Learning with Less RAM via RandomizationHidekazu Oiwa
 
Vanishing Component Analysis
Vanishing Component AnalysisVanishing Component Analysis
Vanishing Component AnalysisKoji Matsuda
 
論文紹介 Fast imagetagging
論文紹介 Fast imagetagging論文紹介 Fast imagetagging
論文紹介 Fast imagetaggingTakashi Abe
 
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...Koji Matsuda
 
いまさら聞けない “モデル” の話 @DSIRNLP#5
いまさら聞けない “モデル” の話 @DSIRNLP#5いまさら聞けない “モデル” の話 @DSIRNLP#5
いまさら聞けない “モデル” の話 @DSIRNLP#5Koji Matsuda
 
基調講演:「多様化する情報を支える技術」/西川徹
基調講演:「多様化する情報を支える技術」/西川徹基調講演:「多様化する情報を支える技術」/西川徹
基調講演:「多様化する情報を支える技術」/西川徹Preferred Networks
 
Vanishing Component Analysisの試作と簡単な実験
Vanishing Component Analysisの試作と簡単な実験Vanishing Component Analysisの試作と簡単な実験
Vanishing Component Analysisの試作と簡単な実験Hiroshi Tsukahara
 
SGD+α: 確率的勾配降下法の現在と未来
SGD+α: 確率的勾配降下法の現在と未来SGD+α: 確率的勾配降下法の現在と未来
SGD+α: 確率的勾配降下法の現在と未来Hidekazu Oiwa
 
Practical recommendations for gradient-based training of deep architectures
Practical recommendations for gradient-based training of deep architecturesPractical recommendations for gradient-based training of deep architectures
Practical recommendations for gradient-based training of deep architecturesKoji Matsuda
 

Viewers also liked (11)

ICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic modelsICML2013読み会: Distributed training of Large-scale Logistic models
ICML2013読み会: Distributed training of Large-scale Logistic models
 
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM PredictionICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
ICML2013読み会 Local Deep Kernel Learning for Efficient Non-linear SVM Prediction
 
ICML2013読み会 Large-Scale Learning with Less RAM via Randomization
ICML2013読み会 Large-Scale Learning with Less RAM via RandomizationICML2013読み会 Large-Scale Learning with Less RAM via Randomization
ICML2013読み会 Large-Scale Learning with Less RAM via Randomization
 
Vanishing Component Analysis
Vanishing Component AnalysisVanishing Component Analysis
Vanishing Component Analysis
 
論文紹介 Fast imagetagging
論文紹介 Fast imagetagging論文紹介 Fast imagetagging
論文紹介 Fast imagetagging
 
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...Align, Disambiguate and Walk  : A Unified Approach forMeasuring Semantic Simil...
Align, Disambiguate and Walk : A Unified Approach forMeasuring Semantic Simil...
 
いまさら聞けない “モデル” の話 @DSIRNLP#5
いまさら聞けない “モデル” の話 @DSIRNLP#5いまさら聞けない “モデル” の話 @DSIRNLP#5
いまさら聞けない “モデル” の話 @DSIRNLP#5
 
基調講演:「多様化する情報を支える技術」/西川徹
基調講演:「多様化する情報を支える技術」/西川徹基調講演:「多様化する情報を支える技術」/西川徹
基調講演:「多様化する情報を支える技術」/西川徹
 
Vanishing Component Analysisの試作と簡単な実験
Vanishing Component Analysisの試作と簡単な実験Vanishing Component Analysisの試作と簡単な実験
Vanishing Component Analysisの試作と簡単な実験
 
SGD+α: 確率的勾配降下法の現在と未来
SGD+α: 確率的勾配降下法の現在と未来SGD+α: 確率的勾配降下法の現在と未来
SGD+α: 確率的勾配降下法の現在と未来
 
Practical recommendations for gradient-based training of deep architectures
Practical recommendations for gradient-based training of deep architecturesPractical recommendations for gradient-based training of deep architectures
Practical recommendations for gradient-based training of deep architectures
 

Similar to ICML2013読み会 ELLA: An Efficient Lifelong Learning Algorithm

深層学習と音響信号処理
深層学習と音響信号処理深層学習と音響信号処理
深層学習と音響信号処理Yuma Koizumi
 
大規模言語モデル開発を支える分散学習技術 - 東京工業大学横田理央研究室の藤井一喜さん
大規模言語モデル開発を支える分散学習技術 - 東京工業大学横田理央研究室の藤井一喜さん大規模言語モデル開発を支える分散学習技術 - 東京工業大学横田理央研究室の藤井一喜さん
大規模言語モデル開発を支える分散学習技術 - 東京工業大学横田理央研究室の藤井一喜さんAkira Shibata
 
ジャストシステムの形態素解析技術 その2 機械学習編
ジャストシステムの形態素解析技術 その2 機械学習編ジャストシステムの形態素解析技術 その2 機械学習編
ジャストシステムの形態素解析技術 その2 機械学習編JustSystems Corporation
 
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」tokyorgirls
 
Machine learning 15min TensorFlow hub
Machine learning 15min TensorFlow hubMachine learning 15min TensorFlow hub
Machine learning 15min TensorFlow hubJunya Kamura
 
TensorFlowで遊んでみよう!
TensorFlowで遊んでみよう!TensorFlowで遊んでみよう!
TensorFlowで遊んでみよう!Kei Hirata
 
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)Toshinori Sato
 
第3回メドレー読書会前半
第3回メドレー読書会前半第3回メドレー読書会前半
第3回メドレー読書会前半Shengbo Xu
 
Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Shohei Hido
 
Jubatusの特徴変換と線形分類器の仕組み
Jubatusの特徴変換と線形分類器の仕組みJubatusの特徴変換と線形分類器の仕組み
Jubatusの特徴変換と線形分類器の仕組みJubatusOfficial
 
機械学習のマイクロサービスでの運用の実験について #mlops
機械学習のマイクロサービスでの運用の実験について #mlops機械学習のマイクロサービスでの運用の実験について #mlops
機械学習のマイクロサービスでの運用の実験について #mlopsHiroaki Kudo
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual TalksYuya Unno
 
先駆者に学ぶ MLOpsの実際
先駆者に学ぶ MLOpsの実際先駆者に学ぶ MLOpsの実際
先駆者に学ぶ MLOpsの実際Tetsutaro Watanabe
 
Dots deep learning部_20161221
Dots deep learning部_20161221Dots deep learning部_20161221
Dots deep learning部_20161221陽平 山口
 
LLM+LangChainで特許調査・分析に取り組んでみた
LLM+LangChainで特許調査・分析に取り組んでみたLLM+LangChainで特許調査・分析に取り組んでみた
LLM+LangChainで特許調査・分析に取り組んでみたKunihiroSugiyama1
 
機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPythonKimikazu Kato
 
人工知能ハンズオン
人工知能ハンズオン人工知能ハンズオン
人工知能ハンズオンyaju88
 
Python による 「スクレイピング & 自然言語処理」入門
Python による 「スクレイピング & 自然言語処理」入門Python による 「スクレイピング & 自然言語処理」入門
Python による 「スクレイピング & 自然言語処理」入門Tatsuya Tojima
 

Similar to ICML2013読み会 ELLA: An Efficient Lifelong Learning Algorithm (20)

深層学習と音響信号処理
深層学習と音響信号処理深層学習と音響信号処理
深層学習と音響信号処理
 
大規模言語モデル開発を支える分散学習技術 - 東京工業大学横田理央研究室の藤井一喜さん
大規模言語モデル開発を支える分散学習技術 - 東京工業大学横田理央研究室の藤井一喜さん大規模言語モデル開発を支える分散学習技術 - 東京工業大学横田理央研究室の藤井一喜さん
大規模言語モデル開発を支える分散学習技術 - 東京工業大学横田理央研究室の藤井一喜さん
 
ジャストシステムの形態素解析技術 その2 機械学習編
ジャストシステムの形態素解析技術 その2 機械学習編ジャストシステムの形態素解析技術 その2 機械学習編
ジャストシステムの形態素解析技術 その2 機械学習編
 
MLOpsはバズワード
MLOpsはバズワードMLOpsはバズワード
MLOpsはバズワード
 
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
Tokyo.R女子部発表スライド「Rではじめるデータ解析の超基礎」
 
Machine learning 15min TensorFlow hub
Machine learning 15min TensorFlow hubMachine learning 15min TensorFlow hub
Machine learning 15min TensorFlow hub
 
TensorFlowで遊んでみよう!
TensorFlowで遊んでみよう!TensorFlowで遊んでみよう!
TensorFlowで遊んでみよう!
 
Elastic ML Introduction
Elastic ML IntroductionElastic ML Introduction
Elastic ML Introduction
 
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
🍻(Beer Mug)の読み方を考える(mecab-ipadic-NEologdのUnicode 絵文字対応)
 
第3回メドレー読書会前半
第3回メドレー読書会前半第3回メドレー読書会前半
第3回メドレー読書会前半
 
Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門
 
Jubatusの特徴変換と線形分類器の仕組み
Jubatusの特徴変換と線形分類器の仕組みJubatusの特徴変換と線形分類器の仕組み
Jubatusの特徴変換と線形分類器の仕組み
 
機械学習のマイクロサービスでの運用の実験について #mlops
機械学習のマイクロサービスでの運用の実験について #mlops機械学習のマイクロサービスでの運用の実験について #mlops
機械学習のマイクロサービスでの運用の実験について #mlops
 
機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks機械学習チュートリアル@Jubatus Casual Talks
機械学習チュートリアル@Jubatus Casual Talks
 
先駆者に学ぶ MLOpsの実際
先駆者に学ぶ MLOpsの実際先駆者に学ぶ MLOpsの実際
先駆者に学ぶ MLOpsの実際
 
Dots deep learning部_20161221
Dots deep learning部_20161221Dots deep learning部_20161221
Dots deep learning部_20161221
 
LLM+LangChainで特許調査・分析に取り組んでみた
LLM+LangChainで特許調査・分析に取り組んでみたLLM+LangChainで特許調査・分析に取り組んでみた
LLM+LangChainで特許調査・分析に取り組んでみた
 
機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython機械学習ゴリゴリ派のための数学とPython
機械学習ゴリゴリ派のための数学とPython
 
人工知能ハンズオン
人工知能ハンズオン人工知能ハンズオン
人工知能ハンズオン
 
Python による 「スクレイピング & 自然言語処理」入門
Python による 「スクレイピング & 自然言語処理」入門Python による 「スクレイピング & 自然言語処理」入門
Python による 「スクレイピング & 自然言語処理」入門
 

More from Yuya Unno

深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来Yuya Unno
 
深層学習時代の 自然言語処理ビジネス
深層学習時代の自然言語処理ビジネス深層学習時代の自然言語処理ビジネス
深層学習時代の 自然言語処理ビジネスYuya Unno
 
ベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をするベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をするYuya Unno
 
PFNにおける セミナー活動
PFNにおけるセミナー活動PFNにおけるセミナー活動
PFNにおける セミナー活動Yuya Unno
 
深層学習フレームワーク Chainerとその進化
深層学習フレームワークChainerとその進化深層学習フレームワークChainerとその進化
深層学習フレームワーク Chainerとその進化Yuya Unno
 
進化するChainer
進化するChainer進化するChainer
進化するChainerYuya Unno
 
予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアルYuya Unno
 
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...Yuya Unno
 
Chainer, Cupy入門
Chainer, Cupy入門Chainer, Cupy入門
Chainer, Cupy入門Yuya Unno
 
NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」Yuya Unno
 
Chainer入門と最近の機能
Chainer入門と最近の機能Chainer入門と最近の機能
Chainer入門と最近の機能Yuya Unno
 
Chainerの使い方と 自然言語処理への応用
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と 自然言語処理への応用Yuya Unno
 
GPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装についてGPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装についてYuya Unno
 
企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端Yuya Unno
 
「知識」のDeep Learning
「知識」のDeep Learning「知識」のDeep Learning
「知識」のDeep LearningYuya Unno
 
自然言語処理@春の情報処理祭
自然言語処理@春の情報処理祭自然言語処理@春の情報処理祭
自然言語処理@春の情報処理祭Yuya Unno
 
大規模データ時代に求められる自然言語処理 -言語情報から世界を捉える-
大規模データ時代に求められる自然言語処理 -言語情報から世界を捉える-大規模データ時代に求められる自然言語処理 -言語情報から世界を捉える-
大規模データ時代に求められる自然言語処理 -言語情報から世界を捉える-Yuya Unno
 
EMNLP2014読み会 "Efficient Non-parametric Estimation of Multiple Embeddings per ...
EMNLP2014読み会 "Efficient Non-parametric Estimation of Multiple Embeddings per ...EMNLP2014読み会 "Efficient Non-parametric Estimation of Multiple Embeddings per ...
EMNLP2014読み会 "Efficient Non-parametric Estimation of Multiple Embeddings per ...Yuya Unno
 
表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめ表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめYuya Unno
 
形態素列パターンマッチャー MIURAをつくりました @DSIRNLP#6
形態素列パターンマッチャーMIURAをつくりました @DSIRNLP#6形態素列パターンマッチャーMIURAをつくりました @DSIRNLP#6
形態素列パターンマッチャー MIURAをつくりました @DSIRNLP#6Yuya Unno
 

More from Yuya Unno (20)

深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来
 
深層学習時代の 自然言語処理ビジネス
深層学習時代の自然言語処理ビジネス深層学習時代の自然言語処理ビジネス
深層学習時代の 自然言語処理ビジネス
 
ベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をするベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をする
 
PFNにおける セミナー活動
PFNにおけるセミナー活動PFNにおけるセミナー活動
PFNにおける セミナー活動
 
深層学習フレームワーク Chainerとその進化
深層学習フレームワークChainerとその進化深層学習フレームワークChainerとその進化
深層学習フレームワーク Chainerとその進化
 
進化するChainer
進化するChainer進化するChainer
進化するChainer
 
予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル
 
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
 
Chainer, Cupy入門
Chainer, Cupy入門Chainer, Cupy入門
Chainer, Cupy入門
 
NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」
 
Chainer入門と最近の機能
Chainer入門と最近の機能Chainer入門と最近の機能
Chainer入門と最近の機能
 
Chainerの使い方と 自然言語処理への応用
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と 自然言語処理への応用
 
GPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装についてGPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装について
 
企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端
 
「知識」のDeep Learning
「知識」のDeep Learning「知識」のDeep Learning
「知識」のDeep Learning
 
自然言語処理@春の情報処理祭
自然言語処理@春の情報処理祭自然言語処理@春の情報処理祭
自然言語処理@春の情報処理祭
 
大規模データ時代に求められる自然言語処理 -言語情報から世界を捉える-
大規模データ時代に求められる自然言語処理 -言語情報から世界を捉える-大規模データ時代に求められる自然言語処理 -言語情報から世界を捉える-
大規模データ時代に求められる自然言語処理 -言語情報から世界を捉える-
 
EMNLP2014読み会 "Efficient Non-parametric Estimation of Multiple Embeddings per ...
EMNLP2014読み会 "Efficient Non-parametric Estimation of Multiple Embeddings per ...EMNLP2014読み会 "Efficient Non-parametric Estimation of Multiple Embeddings per ...
EMNLP2014読み会 "Efficient Non-parametric Estimation of Multiple Embeddings per ...
 
表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめ表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめ
 
形態素列パターンマッチャー MIURAをつくりました @DSIRNLP#6
形態素列パターンマッチャーMIURAをつくりました @DSIRNLP#6形態素列パターンマッチャーMIURAをつくりました @DSIRNLP#6
形態素列パターンマッチャー MIURAをつくりました @DSIRNLP#6
 

Recently uploaded

論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayersToru Tamaki
 
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...atsushi061452
 
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptxssuserbefd24
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521Satoshi Makita
 
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizesatsushi061452
 
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)keikoitakurag
 
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose EstimationToru Tamaki
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )iwashiira2ctf
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一瑛一 西口
 
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptxyassun7010
 
20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdf20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdfAyachika Kitazaki
 

Recently uploaded (11)

論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
論文紹介:Deep Occlusion-Aware Instance Segmentation With Overlapping BiLayers
 
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...
論文紹介: Exploiting semantic segmentation to boost reinforcement learning in vid...
 
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx
2024年5月25日Serverless Meetup大阪 アプリケーションをどこで動かすべきなのか.pptx
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
 
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
論文紹介: Offline Q-Learning on diverse Multi-Task data both scales and generalizes
 
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
Amazon Cognitoで実装するパスキー (Security-JAWS【第33回】 勉強会)
 
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
論文紹介:ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
 
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
2024年度_サイバーエージェント_新卒研修「データベースの歴史」.pptx
 
20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdf20240523_IoTLT_vol111_kitazaki_v1___.pdf
20240523_IoTLT_vol111_kitazaki_v1___.pdf
 

ICML2013読み会 ELLA: An Efficient Lifelong Learning Algorithm