SlideShare a Scribd company logo
1 of 58
Download to read offline
2014/02/06 PFI

Statistical Semantic
~
word2vec
Preferred Infrastructure
(@unnonouno)

~
(@unnonouno)

! 
! 
! 
! 

! 

IBM

PFI
Semantics
[Bird+10]
10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
[

+96]
5.
5.1
5.2
5.3
5.4
Wikipedia

! 
! 
! 
! 
! 
! 
! 

! 

! 

Statistical Semantics

Statistical Semantics
Statistical Semantics Distributional Semantics

! 
! 
! 
[Evert10]

NAACL2010 Stefan Evert
Semantic Models

Distributional
???

[Evert10]
???
2 cat

pig

knife

[Evert10]
dog

[Evert10]
(Distributional Hypothesis)
The Distributional Hypothesis is that words
that occur in the same contexts tend to have
similar meanings (Harris, 1954). (ACL wiki
)

! 
! 
(Statistical Semantics)
Statistical Semantics is the study of "how the
statistical patterns of human word usage can be
used to figure out what people mean, at least to
a level sufficient for information access” (ACL
wiki
)

! 
! 
[

13]
! 
! 

! 
! 
! 

! 
! 

! 
! 

! 
! 
! 

! 

PFI
! 
! 
! 

! 

1
3
! 
! 

ex:

! 

etc…

ex:

! 

-

etc…

! 
! 
! 

ex:

NN
NN

etc…
: Latent Semantic Indexing (LSI),
Latent Semantic Analysis (LSA) [Deerwester+90]
! 
! 

! 

! 
LSI

k:

(SVD)
U

=

x

∑

x

i
i k

V
LSI
! 
! 
! 

! 

SVD
! 

-

-

etc.
etc.

! 

-

! 

etc.
LSI

NMF

PLSI

LDA

NNLM

RNNLM

NTF

Skipgram

NN
! 

LSI

! 

Good
! 
! 

Bad
! 
! 

! 

! 
Probabilistic Latent Semantic
Indexing (PLSI) [Hofmann99]
! 

LSI

! 
! 

! 

ex:

LSI
PLSI
! 
! 

! 
! 
! 

! 

ex:
Latent Dirichlet Allocation (LDA) [Blei03]

PLSI
!  PLSI
LDA
! 
LDA
! 

NLP

! 

! 

1
! 
! 
! 

ex:

etc.

! 
! 

! 

1.0
! 
! 

Good
! 

Bad
! 
! 

LSI

SVD
Non-negative Matrix Factorization (NMF) [Lee
+99]
! 

SVD

! 
! 

[Lee+99]
NMF = PLSI [Dinga+08]
! 

NMF

PLSI

! 

NMF

PLSI
Non-negative Tensor Factorization (NTF)
[Cruys10]

3

! 
! 

2

3
! 
! 

SVD
! 
! 

Good
! 

Bad
! 
! 

word2vec
Neural Network Language Model (NNLM) [Bengio
+03]
! 
! 

N
NN
N-1
Recurrent Neural Network Language Model
(RNNLM) [Mikolov+10]
! 

t-1
t
! 

NNLM

N

! 

! 

http://rnnlm.org
RNNLM
! 

[Mikolov+13a]
RNNLM

! 

Transition-based parser

RNNLM
! 

! 
! 

Stack recurrent

Transition-based parser
Skip-gram

(word2vec) [Mikolov+13b]
! 
! 

CBOW
! 

Analogical reasoning

! 

Parser
Skip-gram

[Mikolov+13b]
: w1, w2, …, wT

! 

wi

c

vw

w

5
! 
[Mikolov+13c]
! 
word2vec
! 
! 
! 

! 

! 

NMF
[Kim+13]
! 

“good”

”best”

”better”
[Mikolov+13d]
! 
! 
NN
! 
! 

! 

2013

! 
! 
! 

Mikolov

15
! 

N

! 
! 
! 

NN

! 
! 
! 
! 

NN

N
! 

NN
! 

! 
! 

! 
! 
! 
! 

Statistical Semantics
! 

3

! 
! 

! 

NN
! 
! 

NN
1
! 

! 

! 
! 

! 

[Bird+10] Steven Bird, Ewan Klein, Edward Loper,
,
,
.
.
, 2010.
[
+96]
.
.
, 1996.
[Evert10] Stefan Evert.
Distributional Semantic Models. NAACL 2010 Tutorial.
[
13]
.
.
, 2013.
[Deerwester+90] Scott Deerwester, Susan T. Dumais, George W.
Furnas, Thomas K. Landauer, Richard Harshman.
Indexing by Latent Semantic Analysis. JASIS, 1990.
2
! 
! 

! 

! 

! 

[Hofmann99] Thomas Hofmann.
Probabilistic Latent Semantic Indexing. SIGIR, 1999.
[Blei+03] David M. Blei, Andrew Y. Ng, Michael I. Jordan.
Latent Dirichlet Allocation. JMLR, 2003.
[Lee+99] Daniel D. Lee, H. Sebastian Seung.
Learning the parts of objects by non-negative matrix factorization.
Nature, vol 401, 1999.
[Ding+08] Chris Ding, Tao Li, Wei Peng.
On the equivalence between Non-negative Matrix Factorization and
Probabilistic Latent Semantic Indexing. Computational Statistics &
Data Analysis, 52(8), 2008.
[Cruys10] Tim Van de Cruys.
A Non-negative Tensor Factorization Model for Selectional Preference
Induction. Natural Language Engineering, 16(4), 2010.
3
! 

! 

! 

! 

NN 1

[Bengio+03] Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
Christian Jauvin.
A Neural Probabilistic Language Model. JMLR, 2003.
[Mikolov+10] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan
"Honza" Cernocky, Sanjeev Khudanpur.
Recurrent neural network based language model.
Interspeech, 2010.
[Mikolov+13a] Tomas Mikolov, Wen-tau Yih, Geoffrey Zweig.
Linguistic Regularities in Continuous Space Word
Representations. HLT-NAACL, 2013.
[Mikolov+13b] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey
Dean.
Efficient Estimation of Word Representations in Vector Space.
CoRR, 2013.
4
! 

! 

! 

NN 2

[Mikolov+13c] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory
S. Corrado, Jeffrey Dean.
Distributed Representations of Words and Phrases and their
Compositionality. NIPS, 2013.
[Kim+13] Joo-Kyung Kim, Marie-Catherine de Marneffe.
Deriving adjectival scales from continuous space word
representations. EMNLP 2013.
,
[Mikolov+13d] Tomas Mikolov, Quoc V. Le, Ilya Sutskever.
Exploiting Similarities among Languages for Machine
Translation. CoRR, 2013.

More Related Content

What's hot

画像キャプションの自動生成
画像キャプションの自動生成画像キャプションの自動生成
画像キャプションの自動生成Yoshitaka Ushiku
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門Kawamoto_Kazuhiko
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデルMasahiro Suzuki
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language ModelsDeep Learning JP
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoderSho Tatsuno
 
Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Yoshitaka Ushiku
 
MS COCO Dataset Introduction
MS COCO Dataset IntroductionMS COCO Dataset Introduction
MS COCO Dataset IntroductionShinagawa Seitaro
 
変分推論と Normalizing Flow
変分推論と Normalizing Flow変分推論と Normalizing Flow
変分推論と Normalizing FlowAkihiro Nitta
 
研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有Naoaki Okazaki
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門Shuyo Nakatani
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用Yoshitaka Ushiku
 
[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]Flow-based Deep Generative Models[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]Flow-based Deep Generative ModelsDeep Learning JP
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情Yuta Kikuchi
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化gree_tech
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門joisino
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII
 
マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向Koichiro Mori
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!TransformerArithmer Inc.
 

What's hot (20)

画像キャプションの自動生成
画像キャプションの自動生成画像キャプションの自動生成
画像キャプションの自動生成
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
 
深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデル
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models
 
研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
 
Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)Curriculum Learning (関東CV勉強会)
Curriculum Learning (関東CV勉強会)
 
MS COCO Dataset Introduction
MS COCO Dataset IntroductionMS COCO Dataset Introduction
MS COCO Dataset Introduction
 
変分推論と Normalizing Flow
変分推論と Normalizing Flow変分推論と Normalizing Flow
変分推論と Normalizing Flow
 
研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有研究室における研究・実装ノウハウの共有
研究室における研究・実装ノウハウの共有
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
 
[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]Flow-based Deep Generative Models[DL輪読会]Flow-based Deep Generative Models
[DL輪読会]Flow-based Deep Generative Models
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
 
マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 

Viewers also liked

表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめ表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめYuya Unno
 
ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望maruyama097
 
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98thYoichi Motomura
 
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用Kota Abe
 
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術Yoichi Motomura
 
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性Yuichi Yoshida
 
Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Keigo Nishida
 
パターン認識と機械学習入門
パターン認識と機械学習入門パターン認識と機械学習入門
パターン認識と機械学習入門Momoko Hayamizu
 

Viewers also liked (8)

表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめ表現学習時代の生成語彙論ことはじめ
表現学習時代の生成語彙論ことはじめ
 
ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望ニューラル・ネットワークと技術革新の展望
ニューラル・ネットワークと技術革新の展望
 
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
行動計量シンポジウム20140321 http://lab.synergy-marketing.co.jp/activity/bsj_98th
 
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
距離が付加された要素集合をコンパクトに表現できるDistance Bloom Filterの提案とP2Pネットワークにおける最短経路探索への応用
 
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
ベイジアンネット技術とサービス工学におけるビッグデータ活用技術
 
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
 
Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西
 
パターン認識と機械学習入門
パターン認識と機械学習入門パターン認識と機械学習入門
パターン認識と機械学習入門
 

Similar to Statistical Semantic入門 ~分布仮説からword2vecまで~

Cognitive science
Cognitive scienceCognitive science
Cognitive sciencemuberraoz
 
Wei Xu - Innovative Applications of AI Panel
Wei Xu - Innovative Applications of AI PanelWei Xu - Innovative Applications of AI Panel
Wei Xu - Innovative Applications of AI PanelRehgan Avon
 
Morse, Christian - LIBR 202 - The Future of Natural Language Processing
Morse, Christian - LIBR 202 - The Future of Natural Language ProcessingMorse, Christian - LIBR 202 - The Future of Natural Language Processing
Morse, Christian - LIBR 202 - The Future of Natural Language ProcessingChristian Morse
 
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...Tadahiro Taniguchi
 
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...MLconf
 
April 2020 most read artilce in contro theory & computer controlling
April 2020 most read artilce in contro theory & computer controllingApril 2020 most read artilce in contro theory & computer controlling
April 2020 most read artilce in contro theory & computer controllingijctcm
 
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Bhaskar Mitra
 
Nlp Sentemental analysis of Tweetr And CaseStudy
Nlp Sentemental analysis of Tweetr And CaseStudyNlp Sentemental analysis of Tweetr And CaseStudy
Nlp Sentemental analysis of Tweetr And CaseStudyRaza Azeem
 
SciDataCon 2014 TDM Workshop Intro Slides
SciDataCon 2014 TDM Workshop Intro SlidesSciDataCon 2014 TDM Workshop Intro Slides
SciDataCon 2014 TDM Workshop Intro SlidesJenny Molloy
 
Deep learning for natural language embeddings
Deep learning for natural language embeddingsDeep learning for natural language embeddings
Deep learning for natural language embeddingsRoelof Pieters
 
Simulating meaning: a neural theory of discourse coherence
Simulating meaning: a neural theory of discourse coherenceSimulating meaning: a neural theory of discourse coherence
Simulating meaning: a neural theory of discourse coherenceTerry McDonough
 
Using Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalUsing Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalBhaskar Mitra
 
Deep misconceptions and the myth of data driven NLU
Deep misconceptions and the myth of data driven NLUDeep misconceptions and the myth of data driven NLU
Deep misconceptions and the myth of data driven NLUWalid Saba
 
___ __ Newlanguage evolution ___ BernabeuatLangUE.pdf
___ __ Newlanguage evolution ___  BernabeuatLangUE.pdf___ __ Newlanguage evolution ___  BernabeuatLangUE.pdf
___ __ Newlanguage evolution ___ BernabeuatLangUE.pdftkobelt
 
Language Variety Identification using Distributed Representations of Words an...
Language Variety Identification using Distributed Representations of Words an...Language Variety Identification using Distributed Representations of Words an...
Language Variety Identification using Distributed Representations of Words an...Francisco Manuel Rangel Pardo
 

Similar to Statistical Semantic入門 ~分布仮説からword2vecまで~ (16)

Cognitive science
Cognitive scienceCognitive science
Cognitive science
 
Wei Xu - Innovative Applications of AI Panel
Wei Xu - Innovative Applications of AI PanelWei Xu - Innovative Applications of AI Panel
Wei Xu - Innovative Applications of AI Panel
 
Morse, Christian - LIBR 202 - The Future of Natural Language Processing
Morse, Christian - LIBR 202 - The Future of Natural Language ProcessingMorse, Christian - LIBR 202 - The Future of Natural Language Processing
Morse, Christian - LIBR 202 - The Future of Natural Language Processing
 
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
Symbol Emergence in Robotics: Language Acquisition via Real-world Sensorimoto...
 
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
Jacob Eisenstein, Assistant Professor, School of Interactive Computing, Georg...
 
April 2020 most read artilce in contro theory & computer controlling
April 2020 most read artilce in contro theory & computer controllingApril 2020 most read artilce in contro theory & computer controlling
April 2020 most read artilce in contro theory & computer controlling
 
BEA12_sakaguchi
BEA12_sakaguchiBEA12_sakaguchi
BEA12_sakaguchi
 
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)
 
Nlp Sentemental analysis of Tweetr And CaseStudy
Nlp Sentemental analysis of Tweetr And CaseStudyNlp Sentemental analysis of Tweetr And CaseStudy
Nlp Sentemental analysis of Tweetr And CaseStudy
 
SciDataCon 2014 TDM Workshop Intro Slides
SciDataCon 2014 TDM Workshop Intro SlidesSciDataCon 2014 TDM Workshop Intro Slides
SciDataCon 2014 TDM Workshop Intro Slides
 
Deep learning for natural language embeddings
Deep learning for natural language embeddingsDeep learning for natural language embeddings
Deep learning for natural language embeddings
 
Simulating meaning: a neural theory of discourse coherence
Simulating meaning: a neural theory of discourse coherenceSimulating meaning: a neural theory of discourse coherence
Simulating meaning: a neural theory of discourse coherence
 
Using Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalUsing Text Embeddings for Information Retrieval
Using Text Embeddings for Information Retrieval
 
Deep misconceptions and the myth of data driven NLU
Deep misconceptions and the myth of data driven NLUDeep misconceptions and the myth of data driven NLU
Deep misconceptions and the myth of data driven NLU
 
___ __ Newlanguage evolution ___ BernabeuatLangUE.pdf
___ __ Newlanguage evolution ___  BernabeuatLangUE.pdf___ __ Newlanguage evolution ___  BernabeuatLangUE.pdf
___ __ Newlanguage evolution ___ BernabeuatLangUE.pdf
 
Language Variety Identification using Distributed Representations of Words an...
Language Variety Identification using Distributed Representations of Words an...Language Variety Identification using Distributed Representations of Words an...
Language Variety Identification using Distributed Representations of Words an...
 

More from Yuya Unno

深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来Yuya Unno
 
深層学習時代の 自然言語処理ビジネス
深層学習時代の自然言語処理ビジネス深層学習時代の自然言語処理ビジネス
深層学習時代の 自然言語処理ビジネスYuya Unno
 
ベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をするベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をするYuya Unno
 
PFNにおける セミナー活動
PFNにおけるセミナー活動PFNにおけるセミナー活動
PFNにおける セミナー活動Yuya Unno
 
深層学習フレームワーク Chainerとその進化
深層学習フレームワークChainerとその進化深層学習フレームワークChainerとその進化
深層学習フレームワーク Chainerとその進化Yuya Unno
 
進化するChainer
進化するChainer進化するChainer
進化するChainerYuya Unno
 
予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアルYuya Unno
 
深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーションYuya Unno
 
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...Yuya Unno
 
Chainer, Cupy入門
Chainer, Cupy入門Chainer, Cupy入門
Chainer, Cupy入門Yuya Unno
 
Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用Yuya Unno
 
深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴Yuya Unno
 
子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得Yuya Unno
 
NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」Yuya Unno
 
Chainer入門と最近の機能
Chainer入門と最近の機能Chainer入門と最近の機能
Chainer入門と最近の機能Yuya Unno
 
Chainerの使い方と 自然言語処理への応用
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と 自然言語処理への応用Yuya Unno
 
GPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装についてGPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装についてYuya Unno
 
言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクールYuya Unno
 
企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端Yuya Unno
 
「知識」のDeep Learning
「知識」のDeep Learning「知識」のDeep Learning
「知識」のDeep LearningYuya Unno
 

More from Yuya Unno (20)

深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来深層学習で切り拓くパーソナルロボットの未来
深層学習で切り拓くパーソナルロボットの未来
 
深層学習時代の 自然言語処理ビジネス
深層学習時代の自然言語処理ビジネス深層学習時代の自然言語処理ビジネス
深層学習時代の 自然言語処理ビジネス
 
ベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をするベンチャー企業で言葉を扱うロボットの研究開発をする
ベンチャー企業で言葉を扱うロボットの研究開発をする
 
PFNにおける セミナー活動
PFNにおけるセミナー活動PFNにおけるセミナー活動
PFNにおける セミナー活動
 
深層学習フレームワーク Chainerとその進化
深層学習フレームワークChainerとその進化深層学習フレームワークChainerとその進化
深層学習フレームワーク Chainerとその進化
 
進化するChainer
進化するChainer進化するChainer
進化するChainer
 
予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル予測型戦略を知るための機械学習チュートリアル
予測型戦略を知るための機械学習チュートリアル
 
深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション深層学習による機械とのコミュニケーション
深層学習による機械とのコミュニケーション
 
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...最先端NLP勉強会“Learning Language Games through Interaction”Sida I. Wang, Percy L...
最先端NLP勉強会 “Learning Language Games through Interaction” Sida I. Wang, Percy L...
 
Chainer, Cupy入門
Chainer, Cupy入門Chainer, Cupy入門
Chainer, Cupy入門
 
Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用Chainerのテスト環境とDockerでのCUDAの利用
Chainerのテスト環境とDockerでのCUDAの利用
 
深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴
 
子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得子供の言語獲得と機械の言語獲得
子供の言語獲得と機械の言語獲得
 
NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」NIP2015読み会「End-To-End Memory Networks」
NIP2015読み会「End-To-End Memory Networks」
 
Chainer入門と最近の機能
Chainer入門と最近の機能Chainer入門と最近の機能
Chainer入門と最近の機能
 
Chainerの使い方と 自然言語処理への応用
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と 自然言語処理への応用
 
GPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装についてGPU上でのNLP向け深層学習の実装について
GPU上でのNLP向け深層学習の実装について
 
言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール言語と知識の深層学習@認知科学会サマースクール
言語と知識の深層学習@認知科学会サマースクール
 
企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端企業における自然言語処理技術利用の最先端
企業における自然言語処理技術利用の最先端
 
「知識」のDeep Learning
「知識」のDeep Learning「知識」のDeep Learning
「知識」のDeep Learning
 

Recently uploaded

AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentationyogeshlabana357357
 
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?Paolo Missier
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctBrainSell Technologies
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...panagenda
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxFIDO Alliance
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...marcuskenyatta275
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform EngineeringMarcus Vechiato
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxFIDO Alliance
 
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...FIDO Alliance
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightSafe Software
 
2024 May Patch Tuesday
2024 May Patch Tuesday2024 May Patch Tuesday
2024 May Patch TuesdayIvanti
 
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdfMuhammad Subhan
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfSrushith Repakula
 
Revolutionizing SAP® Processes with Automation and Artificial Intelligence
Revolutionizing SAP® Processes with Automation and Artificial IntelligenceRevolutionizing SAP® Processes with Automation and Artificial Intelligence
Revolutionizing SAP® Processes with Automation and Artificial IntelligencePrecisely
 
Using IESVE for Room Loads Analysis - UK & Ireland
Using IESVE for Room Loads Analysis - UK & IrelandUsing IESVE for Room Loads Analysis - UK & Ireland
Using IESVE for Room Loads Analysis - UK & IrelandIES VE
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...ScyllaDB
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!Memoori
 
ADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxFIDO Alliance
 

Recently uploaded (20)

AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentation
 
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
(Explainable) Data-Centric AI: what are you explaininhg, and to whom?
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage Intacct
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptx
 
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...Hyatt driving innovation and exceptional customer experiences with FIDO passw...
Hyatt driving innovation and exceptional customer experiences with FIDO passw...
 
The Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and InsightThe Zero-ETL Approach: Enhancing Data Agility and Insight
The Zero-ETL Approach: Enhancing Data Agility and Insight
 
2024 May Patch Tuesday
2024 May Patch Tuesday2024 May Patch Tuesday
2024 May Patch Tuesday
 
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
“Iamnobody89757” Understanding the Mysterious of Digital Identity.pdf
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
Revolutionizing SAP® Processes with Automation and Artificial Intelligence
Revolutionizing SAP® Processes with Automation and Artificial IntelligenceRevolutionizing SAP® Processes with Automation and Artificial Intelligence
Revolutionizing SAP® Processes with Automation and Artificial Intelligence
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
Using IESVE for Room Loads Analysis - UK & Ireland
Using IESVE for Room Loads Analysis - UK & IrelandUsing IESVE for Room Loads Analysis - UK & Ireland
Using IESVE for Room Loads Analysis - UK & Ireland
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
ADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptx
 

Statistical Semantic入門 ~分布仮説からword2vecまで~