Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

1,804 views

Published on

No Downloads

Total views

1,804

On SlideShare

0

From Embeds

0

Number of Embeds

10

Shares

0

Downloads

8

Comments

0

Likes

1

No embeds

No notes for slide

- 1. F∙A=B
- 2. EXAMPLE: Five eighths of the gnomes who lived in the magic forest had happy faces. If 840 gnomes had happy faces, how many gnomes lived in the magic forest. SOLUTION: Change the wording of this problem 5 of what number is 840? 8
- 3. Remember “of” refers to: " "and “is” corresponds to “=“ 5 A 840 8 8 5 8 A 840 5 8 5 840 8 6720 A 1 5 5 A 1344
- 4. SO…… 1344 gnomes lived in the forest. If 840 had happy faces, then 504 did not have happy faces
- 5. EXAMPLE: 4 On Monday times the acceptable number of rock badgers 2 5 took refuge in the mountain caves. If 640 was the acceptable number, how many rock badgers took refuge in the mountain caves on Monday? SOLUTION: Restate the problem 4 2 5 of 640 is what number?
- 6. Change to improper fraction 4 14 2 B 5 5 14 640 8960 B 5 1 5 1792 B
- 7. Thus….. A total of 1792 rock badgers took refuge in the mountain caves on Monday
- 8. EXAMPLE: When the fog lifted, 400 ghosts were spied skulking near the outskirts. If 240 ghosts were not spied, what fraction of the ghosts was not spied. SOLUTION: Restate the problem What fraction of 640 is 240?
- 9. Solution F 640 240 F 640 240 640 640 3 F 8
- 10. Thus… 3 8 of the ghosts were not spied

No public clipboards found for this slide

Be the first to comment