Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Recsys2014 recruit

Recsys 2014勉強会資料

  • Be the first to comment

Recsys2014 recruit

  1. 1. Recsysຮᙉ఍2014 Gradient boos4ng factoriza4on machines ᆤᆏṇᚿ m.tsubosaka@gmail.com
  2. 2. Context-­‐aware recommenda4on • Tradi4onal recommenda4on – 䝴䞊䝄䛸䜰䜲䝔䝮䛾䝺䞊䝔䜱䞁䜾᝟ሗ䛜୚䛘䜙䜜 䛯≧ἣ䛷䝴䞊䝄䛸䜰䜲䝔䝮䛾ᑐ䛻ᑐ䛧䛶䝺䞊䝔䜱 䞁䜾䜢ண 䛩䜛䜘䛖䛺㛵ᩘ䜢Ꮫ⩦䛩䜛 – ௦⾲ⓗ䛺ᡭἲ䛻Matrix factoriza4on䛜䛒䜛 • Context-­‐aware recommenda4on – 䝴䞊䝄䛸䜰䜲䝔䝮䛰䛡䛷䛿䛺䛟䚸䝴䞊䝄䛾䝮䞊䝗 䜔ఇ᪥䛛䛹䛖䛛䛺䛹䝺䝁䝯䞁䝗䛾䛸䛝䛾context䜒 ⪃៖䛧䛶䝺䝁䝯䞁䝗䜢⾜䛖
  3. 3. Factoriza4on machine • Matrix factoriza4on䛺䛹factoriza4on䛾ᡭἲ䜢୍⯡໬䛧䛯 ᡭἲ – KDD Cup 2012䛷SNS䛷䛾䛴䛺䛜䜚ண 䜔ᗈ࿌䛾CTRண 䛺䛹ᐇ 㝿ⓗ䛺䝍䝇䜽䛻ᑐ䛧䛶䜒㧗䛔⢭ᗘ䜢㐩ᡂ䛧䛶䛔䜛 – Rendle, Social networks and click-­‐through predic4on with factoriza4on machines, KDDCUP 2012 yi = • ᢅ䛖䝕䞊䝍䛿䜹䝔䝂䝸ኚᩘ䜢⪃䛘䚸䝧䜽䝖䝹䛷⾲⌧䛩䜛 – ౛䛘䜀䝴䞊䝄䛜{U1,U2,U3},䜰䜲䝔䝮䛜{I1,I2,I3,I4},䝮䞊䝗䛜 {happy,normal,sad}䛾ሙྜ – U1䛻I2䜢䝮䞊䝗䛜happy䛺䛸䛝䛻᥎⸀䛩䜛≧ἣ䛷䛿䝧䜽䝖䝹⾲ ⌧䛸䛧䛶䛿(1,0,0, 0,1,0,0, 1,0,0)䛾䜘䛖䛻⾲⌧䛩䜛 • ≉ᚩ㔞䛛䜙䛾ண 䛻䛚䛔䛶஧ḟ䛾㡯䜎䛷⪃៖䛩䜛 – ୖ䛾౛䛻⨨䛔䛶䛿U1*I2, U1*happy, I2 * happy䛾୕䛴䛾┦஫ స⏝䛻䛴䛔䛶㔜䜏䜢ィ⟬䛩䜛
  4. 4. Factoriza4on machine • ஧ḟ䛾┦஫స⏝䜢䛭䛾䜎䜎䛩䜉䛶㔜䜏䜢ồ䜑䜘 䛖䛸䛩䜛䛸䝟䝷䝯䞊䝍䛾ᩘ䛜⭾኱䛻䛺䜛 • 䛣䛾䛯䜑஧ḟ䛾┦஫స⏝㡯w_ij䜢kḟඖ䝧䜽䝖䝹 䛾ෆ✚䛷㏆ఝ䛩䜛 – n * n䛾ኚᩘ䛾௦䜟䜚䛻n*k䛾ኚᩘ䜢฼⏝䛩䜛 Rendle, Factoriza4on machine, ICDM 2010䜘䜚
  5. 5. Gradient boos4ng factoriza4on machine • Factoriza4on machine䛿┦஫స⏝䜢⾲⌧䛩䜛 ୖ䛷䛿ᙉຊ䛺ᡭἲ䛷䛿䛒䜛䛜䚸䛒䜎䜚ண 䛻 ᐤ୚䛧䛺䛔┦஫స⏝䜎䛷䝰䝕䝹䛻ධ䜜䜛䛸䛔 䛖ၥ㢟䛜䛒䜛 • 䛭䛣䛷ᮏㄽᩥ䛷䛿ண 䛻ᐤ୚䛧䛶䛔䛟䜘䛖䛺 㡰␒䛷┦஫స⏝㡯䜢㏣ຍ䛧䛶䛔䛟᪉ἲ䜢ᥦ᱌ ⤂௓ㄽᩥ䜘䜚ᘬ⏝
  6. 6. ᐇ㦂⤖ᯝ • ᪤Ꮡ䛾PMF(Probabilis4c matrix factoriza4on), FM(Factoriza4on machine)䛸ẚ㍑䛧䛶䜘䛔⢭ᗘ䛜 䛷䛶䛔䜛 • 䝍䝇䜽䛿twiWer䛾䜘䛖䛺䝃䞊䝡䝇䛻䛚䛔䛶䚸䝴䞊 䝄䛜ᥦ♧䛥䜜䛯䛴䛺䛜䜚䛾䝺䝁䝯䞁䝗䜢accept䛩 䜛䛛䛹䛖䛛䜢ண  ⤂௓ㄽᩥ䜘䜚ᘬ⏝
  7. 7. 䝺䝡䝳䞊 • ᪂つᛶ䞉⊂๰ᛶ : 2 – ᡭἲ⮬య䛿[Chen+ 2013, ICML]䛾MF䛻Gradient boos4ng algorithm䜢㐺ᛂ䛧䛯᪉ἲ䜢FM䛻㐺ᛂ䛧 䛯䛰䛡䛷䛒䜎䜚᪂つᛶ䛿䛺䛔 • ᭷ຠᛶ䞉ᐇ⏝ᛶ㻌: 4 – 䜒䛸䜒䛸䛾FM䛜᭷ຠ䛺ᡭἲ䛷䛒䜚 – ᚑ᮶䛾FM䛷䛿䛷䛝䛺䛛䛳䛯᭷ຠ䛺஧ḟ䛾㡯䛰䛡 㑅ᢥ䛷䛝䜛䜘䛖䛻䛺䛳䛯䛸䛔䛖Ⅼ䛷ᐇ⏝ⓗ䛸䛔䛘䜛

×