Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Talk given at JAX DevOps London on 2019-05-15.
Kubernetes has the concept of resource requests and limits. Pods get scheduled on the nodes based on their requests and optionally limited in how much of the resource they can consume. Understanding and optimizing resource requests/limits is crucial both for reducing resource "slack" and ensuring application performance/low-latency. This talk shows our approach to monitoring and optimizing Kubernetes resources for 90+ clusters to achieve cost-efficiency and reducing impact for latency-critical applications. All shown tools are open source and can be applied to most Kubernetes deployments. Topics covered in the talk include: understanding resource requests and limits, cgroups and CFS quota behavior, contributing factors to cluster costs (in public clouds), and best practices for managing Kubernetes resources.
Login to see the comments