SlideShare a Scribd company logo

Event-Processing-und-BigData-kombiniert-guido_schmutz

Trivadis
Trivadis

Event-Processing und BigData kombiniert - geht das? Präsentation von Guido Schmutz, Trivadis AG

1 of 62
Download to read offline
Guido Schmutz | Trivadis
Event-Processing und Big
Data kombiniert, geht das?
2013 © Trivadis
BASEL BERN BRUGG LAUSANNE ZUERICH DUESSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MUNICH STUTTGART VIENNA

2013 © Trivadis
Event-Processing und Big Data
kombiniert, geht das?
Guido Schmutz
24.02.2014
Event-Processing und Big Data kombiniert, geht das?
2
2013 © Trivadis
Guido Schmutz
Working for Trivadis for more than 16 years
Oracle ACE Director for Fusion Middleware and SOA
Co-Author of different books
Consultant, Trainer Software Architect for Java, Oracle, SOA and EDA
Member of Trivadis Architecture Board
Technology Manager @ Trivadis
More than 20 years of software development
experience
Contact: guido.schmutz@trivadis.com
Blog: http://guidoschmutz.wordpress.com
Twitter: gschmutz
24.02.2014
Event-Processing und Big Data kombiniert, geht das?
3
2013 © Trivadis
Trivadis is a market leader in IT consulting, system integration,
solution engineering and the provision of IT services focusing
on and technologies in Switzerland,
Germany and Austria.
We offer our services in the following strategic business fields:
Trivadis Services takes over the interacting operation of your IT systems.
Our company
24.02.2014
Event-Processing und Big Data kombiniert, geht das?
O P E R A T I O N
4
2013 © Trivadis
With over 600 specialists and IT experts in your region
24.02.2014
5
12 Trivadis branches and more than
600 employees
 
200 Service Level Agreements
 
Over 4,000 training participants
 
Research and development budget:
CHF 5.0 / EUR 4 million
 
Financially self-supporting and
sustainably profitable
 
Experience from more than 1,900
projects per year at over 800
customers
Hamburg
Düsseldorf
Frankfurt
Freiburg
München
Wien
Basel
ZurichBern
Lausanne
Stuttgart
Brugg
Event-Processing und Big Data kombiniert, geht das?
5
2013 © Trivadis
AGENDA
1.  Big Data and Fast Data, what is it?
2.  Motivation
3.  The Lambda Architecture
4.  Implementing the Lambda Architecture
5.  Demo – Event Processing with Oracle OEP
6.  Summary
24.02.2014
Event-Processing und Big Data kombiniert, geht das?
6

Recommended

Big Data – Is it a hype or for real?
 Big Data – Is it a hype or for real?  Big Data – Is it a hype or for real?
Big Data – Is it a hype or for real? Dirk Ortloff
 
Facilitating Collaborative Life Science Research in Commercial & Enterprise E...
Facilitating Collaborative Life Science Research in Commercial & Enterprise E...Facilitating Collaborative Life Science Research in Commercial & Enterprise E...
Facilitating Collaborative Life Science Research in Commercial & Enterprise E...Chris Dagdigian
 
BioIT Trends - 2014 Internet2 Technology Exchange
BioIT Trends - 2014 Internet2 Technology ExchangeBioIT Trends - 2014 Internet2 Technology Exchange
BioIT Trends - 2014 Internet2 Technology ExchangeChris Dagdigian
 
BioIT World 2016 - HPC Trends from the Trenches
BioIT World 2016 - HPC Trends from the TrenchesBioIT World 2016 - HPC Trends from the Trenches
BioIT World 2016 - HPC Trends from the TrenchesChris Dagdigian
 
2015 CDC Workshop on ScienceDMZ
2015 CDC Workshop on ScienceDMZ2015 CDC Workshop on ScienceDMZ
2015 CDC Workshop on ScienceDMZChris Dagdigian
 
Bio-IT Trends From The Trenches (digital edition)
Bio-IT Trends From The Trenches (digital edition)Bio-IT Trends From The Trenches (digital edition)
Bio-IT Trends From The Trenches (digital edition)Chris Dagdigian
 
2013: Trends from the Trenches
2013: Trends from the Trenches2013: Trends from the Trenches
2013: Trends from the TrenchesChris Dagdigian
 

More Related Content

What's hot

Cloud Sobriety for Life Science IT Leadership (2018 Edition)
Cloud Sobriety for Life Science IT Leadership (2018 Edition)Cloud Sobriety for Life Science IT Leadership (2018 Edition)
Cloud Sobriety for Life Science IT Leadership (2018 Edition)Chris Dagdigian
 
Mapping Life Science Informatics to the Cloud
Mapping Life Science Informatics to the CloudMapping Life Science Informatics to the Cloud
Mapping Life Science Informatics to the CloudChris Dagdigian
 
Cloud Security for Life Science R&D
Cloud Security for Life Science R&DCloud Security for Life Science R&D
Cloud Security for Life Science R&DChris Dagdigian
 
Practical Petabyte Pushing
Practical Petabyte PushingPractical Petabyte Pushing
Practical Petabyte PushingChris Dagdigian
 
Trends from the Trenches: 2019
Trends from the Trenches: 2019Trends from the Trenches: 2019
Trends from the Trenches: 2019Chris Dagdigian
 
Building Data Science Teams
Building Data Science TeamsBuilding Data Science Teams
Building Data Science TeamsEMC
 
Multi-Tenant Pharma HPC Clusters
Multi-Tenant Pharma HPC ClustersMulti-Tenant Pharma HPC Clusters
Multi-Tenant Pharma HPC ClustersChris Dagdigian
 
The Evolution of Big Data Frameworks
The Evolution of Big Data FrameworksThe Evolution of Big Data Frameworks
The Evolution of Big Data FrameworkseXascale Infolab
 
Maximizing the Benefits of Virtualization with Real-­time Compression
Maximizing the Benefits of Virtualization with Real-­time CompressionMaximizing the Benefits of Virtualization with Real-­time Compression
Maximizing the Benefits of Virtualization with Real-­time CompressionIBM India Smarter Computing
 
Bio-IT & Cloud Sobriety: 2013 Beyond The Genome Meeting
Bio-IT & Cloud Sobriety: 2013 Beyond The Genome MeetingBio-IT & Cloud Sobriety: 2013 Beyond The Genome Meeting
Bio-IT & Cloud Sobriety: 2013 Beyond The Genome MeetingChris Dagdigian
 
Everything has changed except us
Everything has changed except usEverything has changed except us
Everything has changed except usmark madsen
 
Cas pratique de la science de la donnée dans le domaine universitaire - Data ...
Cas pratique de la science de la donnée dans le domaine universitaire - Data ...Cas pratique de la science de la donnée dans le domaine universitaire - Data ...
Cas pratique de la science de la donnée dans le domaine universitaire - Data ...Swiss Data Forum Swiss Data Forum
 
Bi isn't big data and big data isn't BI (updated)
Bi isn't big data and big data isn't BI (updated)Bi isn't big data and big data isn't BI (updated)
Bi isn't big data and big data isn't BI (updated)mark madsen
 
Everything Has Changed Except Us: Modernizing the Data Warehouse
Everything Has Changed Except Us: Modernizing the Data WarehouseEverything Has Changed Except Us: Modernizing the Data Warehouse
Everything Has Changed Except Us: Modernizing the Data Warehousemark madsen
 
Overview of big data in cloud computing
Overview of big data in cloud computingOverview of big data in cloud computing
Overview of big data in cloud computingViet-Trung TRAN
 
Big Data and Enterprise Data - Oracle -1663869
Big Data and Enterprise Data - Oracle -1663869Big Data and Enterprise Data - Oracle -1663869
Big Data and Enterprise Data - Oracle -1663869Edgar Alejandro Villegas
 
2021 Trends from the Trenches
2021 Trends from the Trenches2021 Trends from the Trenches
2021 Trends from the TrenchesChris Dagdigian
 
Briefing room: An alternative for streaming data collection
Briefing room: An alternative for streaming data collectionBriefing room: An alternative for streaming data collection
Briefing room: An alternative for streaming data collectionmark madsen
 
Disruptive Innovation: how do you use these theories to manage your IT?
Disruptive Innovation: how do you use these theories to manage your IT?Disruptive Innovation: how do you use these theories to manage your IT?
Disruptive Innovation: how do you use these theories to manage your IT?mark madsen
 
7 Big Data Challenges and How to Overcome Them
7 Big Data Challenges and How to Overcome Them7 Big Data Challenges and How to Overcome Them
7 Big Data Challenges and How to Overcome ThemQubole
 

What's hot (20)

Cloud Sobriety for Life Science IT Leadership (2018 Edition)
Cloud Sobriety for Life Science IT Leadership (2018 Edition)Cloud Sobriety for Life Science IT Leadership (2018 Edition)
Cloud Sobriety for Life Science IT Leadership (2018 Edition)
 
Mapping Life Science Informatics to the Cloud
Mapping Life Science Informatics to the CloudMapping Life Science Informatics to the Cloud
Mapping Life Science Informatics to the Cloud
 
Cloud Security for Life Science R&D
Cloud Security for Life Science R&DCloud Security for Life Science R&D
Cloud Security for Life Science R&D
 
Practical Petabyte Pushing
Practical Petabyte PushingPractical Petabyte Pushing
Practical Petabyte Pushing
 
Trends from the Trenches: 2019
Trends from the Trenches: 2019Trends from the Trenches: 2019
Trends from the Trenches: 2019
 
Building Data Science Teams
Building Data Science TeamsBuilding Data Science Teams
Building Data Science Teams
 
Multi-Tenant Pharma HPC Clusters
Multi-Tenant Pharma HPC ClustersMulti-Tenant Pharma HPC Clusters
Multi-Tenant Pharma HPC Clusters
 
The Evolution of Big Data Frameworks
The Evolution of Big Data FrameworksThe Evolution of Big Data Frameworks
The Evolution of Big Data Frameworks
 
Maximizing the Benefits of Virtualization with Real-­time Compression
Maximizing the Benefits of Virtualization with Real-­time CompressionMaximizing the Benefits of Virtualization with Real-­time Compression
Maximizing the Benefits of Virtualization with Real-­time Compression
 
Bio-IT & Cloud Sobriety: 2013 Beyond The Genome Meeting
Bio-IT & Cloud Sobriety: 2013 Beyond The Genome MeetingBio-IT & Cloud Sobriety: 2013 Beyond The Genome Meeting
Bio-IT & Cloud Sobriety: 2013 Beyond The Genome Meeting
 
Everything has changed except us
Everything has changed except usEverything has changed except us
Everything has changed except us
 
Cas pratique de la science de la donnée dans le domaine universitaire - Data ...
Cas pratique de la science de la donnée dans le domaine universitaire - Data ...Cas pratique de la science de la donnée dans le domaine universitaire - Data ...
Cas pratique de la science de la donnée dans le domaine universitaire - Data ...
 
Bi isn't big data and big data isn't BI (updated)
Bi isn't big data and big data isn't BI (updated)Bi isn't big data and big data isn't BI (updated)
Bi isn't big data and big data isn't BI (updated)
 
Everything Has Changed Except Us: Modernizing the Data Warehouse
Everything Has Changed Except Us: Modernizing the Data WarehouseEverything Has Changed Except Us: Modernizing the Data Warehouse
Everything Has Changed Except Us: Modernizing the Data Warehouse
 
Overview of big data in cloud computing
Overview of big data in cloud computingOverview of big data in cloud computing
Overview of big data in cloud computing
 
Big Data and Enterprise Data - Oracle -1663869
Big Data and Enterprise Data - Oracle -1663869Big Data and Enterprise Data - Oracle -1663869
Big Data and Enterprise Data - Oracle -1663869
 
2021 Trends from the Trenches
2021 Trends from the Trenches2021 Trends from the Trenches
2021 Trends from the Trenches
 
Briefing room: An alternative for streaming data collection
Briefing room: An alternative for streaming data collectionBriefing room: An alternative for streaming data collection
Briefing room: An alternative for streaming data collection
 
Disruptive Innovation: how do you use these theories to manage your IT?
Disruptive Innovation: how do you use these theories to manage your IT?Disruptive Innovation: how do you use these theories to manage your IT?
Disruptive Innovation: how do you use these theories to manage your IT?
 
7 Big Data Challenges and How to Overcome Them
7 Big Data Challenges and How to Overcome Them7 Big Data Challenges and How to Overcome Them
7 Big Data Challenges and How to Overcome Them
 

Viewers also liked

WPF Troubleshooting mit VS2015
WPF Troubleshooting mit VS2015WPF Troubleshooting mit VS2015
WPF Troubleshooting mit VS2015Trivadis
 
Trivadis TechEvent 2016 Analyzing Oracle related issues using TFACTL by Raine...
Trivadis TechEvent 2016 Analyzing Oracle related issues using TFACTL by Raine...Trivadis TechEvent 2016 Analyzing Oracle related issues using TFACTL by Raine...
Trivadis TechEvent 2016 Analyzing Oracle related issues using TFACTL by Raine...Trivadis
 
Was Sie schon immer über APEX-Transaktionen wissen wollten
Was Sie schon immer über APEX-Transaktionen wissen wolltenWas Sie schon immer über APEX-Transaktionen wissen wollten
Was Sie schon immer über APEX-Transaktionen wissen wolltenTrivadis
 
Sonnenstrahlen am wolkenhimmel - Oracle in der Infrastruktur Cloud
Sonnenstrahlen am wolkenhimmel - Oracle in der Infrastruktur CloudSonnenstrahlen am wolkenhimmel - Oracle in der Infrastruktur Cloud
Sonnenstrahlen am wolkenhimmel - Oracle in der Infrastruktur CloudTrivadis
 
Trivadis TechEvent 2016 Der Trivadis Weg mit der Cloud von Florian van Keulen...
Trivadis TechEvent 2016 Der Trivadis Weg mit der Cloud von Florian van Keulen...Trivadis TechEvent 2016 Der Trivadis Weg mit der Cloud von Florian van Keulen...
Trivadis TechEvent 2016 Der Trivadis Weg mit der Cloud von Florian van Keulen...Trivadis
 
Trivadis TechEvent 2016 Backpropagation - das e = mc2 des Machine Learning - ...
Trivadis TechEvent 2016 Backpropagation - das e = mc2 des Machine Learning - ...Trivadis TechEvent 2016 Backpropagation - das e = mc2 des Machine Learning - ...
Trivadis TechEvent 2016 Backpropagation - das e = mc2 des Machine Learning - ...Trivadis
 
Three in12c: Row Limiting, PL/SQL With SQL and Temporal Validity
Three in12c: Row Limiting, PL/SQL With SQL and Temporal ValidityThree in12c: Row Limiting, PL/SQL With SQL and Temporal Validity
Three in12c: Row Limiting, PL/SQL With SQL and Temporal ValidityTrivadis
 
Cross-Platform Development with Xamarin
Cross-Platform Development with XamarinCross-Platform Development with Xamarin
Cross-Platform Development with XamarinTrivadis
 
Trivadis TechEvent 2016 Useful Oracle 12c Features for Data Warehousing by Da...
Trivadis TechEvent 2016 Useful Oracle 12c Features for Data Warehousing by Da...Trivadis TechEvent 2016 Useful Oracle 12c Features for Data Warehousing by Da...
Trivadis TechEvent 2016 Useful Oracle 12c Features for Data Warehousing by Da...Trivadis
 
Oracle on Azure
Oracle on AzureOracle on Azure
Oracle on AzureTrivadis
 
Oracle Database Backup Service
Oracle Database Backup ServiceOracle Database Backup Service
Oracle Database Backup ServiceTrivadis
 
Trivadis TechEvent 2016 IoT Portal with PowerBI and SharePoint by Jens Berten...
Trivadis TechEvent 2016 IoT Portal with PowerBI and SharePoint by Jens Berten...Trivadis TechEvent 2016 IoT Portal with PowerBI and SharePoint by Jens Berten...
Trivadis TechEvent 2016 IoT Portal with PowerBI and SharePoint by Jens Berten...Trivadis
 
Trivadis TechEvent 2016 Go - The Cloud Programming Language by Andija Sisko
Trivadis TechEvent 2016 Go - The Cloud Programming Language by Andija SiskoTrivadis TechEvent 2016 Go - The Cloud Programming Language by Andija Sisko
Trivadis TechEvent 2016 Go - The Cloud Programming Language by Andija SiskoTrivadis
 
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...Trivadis
 
Oracle Failover Database Cluster with Grid Infrastructure 12c
Oracle Failover Database Cluster with Grid Infrastructure 12cOracle Failover Database Cluster with Grid Infrastructure 12c
Oracle Failover Database Cluster with Grid Infrastructure 12cTrivadis
 
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...Trivadis
 
Trivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan Ott
Trivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan OttTrivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan Ott
Trivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan OttTrivadis
 
Enterprise manager 13c -let's connect to the Oracle Cloud
Enterprise manager 13c -let's connect to the Oracle CloudEnterprise manager 13c -let's connect to the Oracle Cloud
Enterprise manager 13c -let's connect to the Oracle CloudTrivadis
 
WebLogic JMS System Best Practices
WebLogic JMS System Best PracticesWebLogic JMS System Best Practices
WebLogic JMS System Best PracticesTrivadis
 

Viewers also liked (19)

WPF Troubleshooting mit VS2015
WPF Troubleshooting mit VS2015WPF Troubleshooting mit VS2015
WPF Troubleshooting mit VS2015
 
Trivadis TechEvent 2016 Analyzing Oracle related issues using TFACTL by Raine...
Trivadis TechEvent 2016 Analyzing Oracle related issues using TFACTL by Raine...Trivadis TechEvent 2016 Analyzing Oracle related issues using TFACTL by Raine...
Trivadis TechEvent 2016 Analyzing Oracle related issues using TFACTL by Raine...
 
Was Sie schon immer über APEX-Transaktionen wissen wollten
Was Sie schon immer über APEX-Transaktionen wissen wolltenWas Sie schon immer über APEX-Transaktionen wissen wollten
Was Sie schon immer über APEX-Transaktionen wissen wollten
 
Sonnenstrahlen am wolkenhimmel - Oracle in der Infrastruktur Cloud
Sonnenstrahlen am wolkenhimmel - Oracle in der Infrastruktur CloudSonnenstrahlen am wolkenhimmel - Oracle in der Infrastruktur Cloud
Sonnenstrahlen am wolkenhimmel - Oracle in der Infrastruktur Cloud
 
Trivadis TechEvent 2016 Der Trivadis Weg mit der Cloud von Florian van Keulen...
Trivadis TechEvent 2016 Der Trivadis Weg mit der Cloud von Florian van Keulen...Trivadis TechEvent 2016 Der Trivadis Weg mit der Cloud von Florian van Keulen...
Trivadis TechEvent 2016 Der Trivadis Weg mit der Cloud von Florian van Keulen...
 
Trivadis TechEvent 2016 Backpropagation - das e = mc2 des Machine Learning - ...
Trivadis TechEvent 2016 Backpropagation - das e = mc2 des Machine Learning - ...Trivadis TechEvent 2016 Backpropagation - das e = mc2 des Machine Learning - ...
Trivadis TechEvent 2016 Backpropagation - das e = mc2 des Machine Learning - ...
 
Three in12c: Row Limiting, PL/SQL With SQL and Temporal Validity
Three in12c: Row Limiting, PL/SQL With SQL and Temporal ValidityThree in12c: Row Limiting, PL/SQL With SQL and Temporal Validity
Three in12c: Row Limiting, PL/SQL With SQL and Temporal Validity
 
Cross-Platform Development with Xamarin
Cross-Platform Development with XamarinCross-Platform Development with Xamarin
Cross-Platform Development with Xamarin
 
Trivadis TechEvent 2016 Useful Oracle 12c Features for Data Warehousing by Da...
Trivadis TechEvent 2016 Useful Oracle 12c Features for Data Warehousing by Da...Trivadis TechEvent 2016 Useful Oracle 12c Features for Data Warehousing by Da...
Trivadis TechEvent 2016 Useful Oracle 12c Features for Data Warehousing by Da...
 
Oracle on Azure
Oracle on AzureOracle on Azure
Oracle on Azure
 
Oracle Database Backup Service
Oracle Database Backup ServiceOracle Database Backup Service
Oracle Database Backup Service
 
Trivadis TechEvent 2016 IoT Portal with PowerBI and SharePoint by Jens Berten...
Trivadis TechEvent 2016 IoT Portal with PowerBI and SharePoint by Jens Berten...Trivadis TechEvent 2016 IoT Portal with PowerBI and SharePoint by Jens Berten...
Trivadis TechEvent 2016 IoT Portal with PowerBI and SharePoint by Jens Berten...
 
Trivadis TechEvent 2016 Go - The Cloud Programming Language by Andija Sisko
Trivadis TechEvent 2016 Go - The Cloud Programming Language by Andija SiskoTrivadis TechEvent 2016 Go - The Cloud Programming Language by Andija Sisko
Trivadis TechEvent 2016 Go - The Cloud Programming Language by Andija Sisko
 
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
 
Oracle Failover Database Cluster with Grid Infrastructure 12c
Oracle Failover Database Cluster with Grid Infrastructure 12cOracle Failover Database Cluster with Grid Infrastructure 12c
Oracle Failover Database Cluster with Grid Infrastructure 12c
 
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
 
Trivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan Ott
Trivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan OttTrivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan Ott
Trivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan Ott
 
Enterprise manager 13c -let's connect to the Oracle Cloud
Enterprise manager 13c -let's connect to the Oracle CloudEnterprise manager 13c -let's connect to the Oracle Cloud
Enterprise manager 13c -let's connect to the Oracle Cloud
 
WebLogic JMS System Best Practices
WebLogic JMS System Best PracticesWebLogic JMS System Best Practices
WebLogic JMS System Best Practices
 

Similar to Event-Processing-und-BigData-kombiniert-guido_schmutz

Big Data and Fast Data – Big and Fast Combined, is it Possible?
Big Data and Fast Data – Big and Fast Combined, is it Possible?Big Data and Fast Data – Big and Fast Combined, is it Possible?
Big Data and Fast Data – Big and Fast Combined, is it Possible?Guido Schmutz
 
Big Data and Fast Data - big and fast combined, is it possible?
Big Data and Fast Data - big and fast combined, is it possible?Big Data and Fast Data - big and fast combined, is it possible?
Big Data and Fast Data - big and fast combined, is it possible?Guido Schmutz
 
Big Data and Fast Data - Lambda Architecture in Action
Big Data and Fast Data - Lambda Architecture in ActionBig Data and Fast Data - Lambda Architecture in Action
Big Data and Fast Data - Lambda Architecture in ActionGuido Schmutz
 
Data, Interconnectedness & The Internet of Things
Data, Interconnectedness & The Internet of Things Data, Interconnectedness & The Internet of Things
Data, Interconnectedness & The Internet of Things Software AG
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An IntroductionDenodo
 
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)Denodo
 
An Overview of BigData
An Overview of BigDataAn Overview of BigData
An Overview of BigDataValarmathi V
 
Matthew Johnston - Big Data Futures Outlook BCM
Matthew Johnston - Big Data Futures Outlook BCMMatthew Johnston - Big Data Futures Outlook BCM
Matthew Johnston - Big Data Futures Outlook BCMHoi Lan Leong
 
Big Data Management: A Unified Approach to Drive Business Results
Big Data Management: A Unified Approach to Drive Business ResultsBig Data Management: A Unified Approach to Drive Business Results
Big Data Management: A Unified Approach to Drive Business ResultsCA Technologies
 
The Path to Net Positive: Principles, Practical Models and Progress to Date A...
The Path to Net Positive: Principles, Practical Models and Progress to Date A...The Path to Net Positive: Principles, Practical Models and Progress to Date A...
The Path to Net Positive: Principles, Practical Models and Progress to Date A...Sustainable Brands
 
The Future of Data Management: The Enterprise Data Hub
The Future of Data Management: The Enterprise Data HubThe Future of Data Management: The Enterprise Data Hub
The Future of Data Management: The Enterprise Data HubCloudera, Inc.
 
Big Data & Analytics, Peter Jönsson
Big Data & Analytics, Peter JönssonBig Data & Analytics, Peter Jönsson
Big Data & Analytics, Peter JönssonIBM Danmark
 
Innovation med big data – chr. hansens erfaringer
Innovation med big data – chr. hansens erfaringerInnovation med big data – chr. hansens erfaringer
Innovation med big data – chr. hansens erfaringerMicrosoft
 
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data PipelinesPutting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data PipelinesDATAVERSITY
 
big data Big Things
big data Big Thingsbig data Big Things
big data Big Thingspateelhs
 
Introduction to Big Data
Introduction to Big DataIntroduction to Big Data
Introduction to Big DataAmpoolIO
 
Expanded top ten_big_data_security_and_privacy_challenges
Expanded top ten_big_data_security_and_privacy_challengesExpanded top ten_big_data_security_and_privacy_challenges
Expanded top ten_big_data_security_and_privacy_challengesTom Kirby
 

Similar to Event-Processing-und-BigData-kombiniert-guido_schmutz (20)

Big Data and Fast Data – Big and Fast Combined, is it Possible?
Big Data and Fast Data – Big and Fast Combined, is it Possible?Big Data and Fast Data – Big and Fast Combined, is it Possible?
Big Data and Fast Data – Big and Fast Combined, is it Possible?
 
Big Data and Fast Data - big and fast combined, is it possible?
Big Data and Fast Data - big and fast combined, is it possible?Big Data and Fast Data - big and fast combined, is it possible?
Big Data and Fast Data - big and fast combined, is it possible?
 
Big Data and Fast Data - Lambda Architecture in Action
Big Data and Fast Data - Lambda Architecture in ActionBig Data and Fast Data - Lambda Architecture in Action
Big Data and Fast Data - Lambda Architecture in Action
 
Big Data and Fast Data combined – is it possible?
Big Data and Fast Data combined – is it possible?Big Data and Fast Data combined – is it possible?
Big Data and Fast Data combined – is it possible?
 
Data, Interconnectedness & The Internet of Things
Data, Interconnectedness & The Internet of Things Data, Interconnectedness & The Internet of Things
Data, Interconnectedness & The Internet of Things
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
 
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
Big Data with Data Virtualization (session 3 from Packed Lunch Webinar Series)
 
An Overview of BigData
An Overview of BigDataAn Overview of BigData
An Overview of BigData
 
Matthew Johnston - Big Data Futures Outlook BCM
Matthew Johnston - Big Data Futures Outlook BCMMatthew Johnston - Big Data Futures Outlook BCM
Matthew Johnston - Big Data Futures Outlook BCM
 
Big Data Management: A Unified Approach to Drive Business Results
Big Data Management: A Unified Approach to Drive Business ResultsBig Data Management: A Unified Approach to Drive Business Results
Big Data Management: A Unified Approach to Drive Business Results
 
The Path to Net Positive: Principles, Practical Models and Progress to Date A...
The Path to Net Positive: Principles, Practical Models and Progress to Date A...The Path to Net Positive: Principles, Practical Models and Progress to Date A...
The Path to Net Positive: Principles, Practical Models and Progress to Date A...
 
Big data.pptx
Big data.pptxBig data.pptx
Big data.pptx
 
Big data
Big dataBig data
Big data
 
The Future of Data Management: The Enterprise Data Hub
The Future of Data Management: The Enterprise Data HubThe Future of Data Management: The Enterprise Data Hub
The Future of Data Management: The Enterprise Data Hub
 
Big Data & Analytics, Peter Jönsson
Big Data & Analytics, Peter JönssonBig Data & Analytics, Peter Jönsson
Big Data & Analytics, Peter Jönsson
 
Innovation med big data – chr. hansens erfaringer
Innovation med big data – chr. hansens erfaringerInnovation med big data – chr. hansens erfaringer
Innovation med big data – chr. hansens erfaringer
 
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data PipelinesPutting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
Putting the Ops in DataOps: Orchestrate the Flow of Data Across Data Pipelines
 
big data Big Things
big data Big Thingsbig data Big Things
big data Big Things
 
Introduction to Big Data
Introduction to Big DataIntroduction to Big Data
Introduction to Big Data
 
Expanded top ten_big_data_security_and_privacy_challenges
Expanded top ten_big_data_security_and_privacy_challengesExpanded top ten_big_data_security_and_privacy_challenges
Expanded top ten_big_data_security_and_privacy_challenges
 

More from Trivadis

Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...
Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...
Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...Trivadis
 
Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...
Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...
Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...Trivadis
 
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)Trivadis
 
Azure Days 2019: Master the Move to Azure (Konrad Brunner)
Azure Days 2019: Master the Move to Azure (Konrad Brunner)Azure Days 2019: Master the Move to Azure (Konrad Brunner)
Azure Days 2019: Master the Move to Azure (Konrad Brunner)Trivadis
 
Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...
Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...
Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...Trivadis
 
Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)
Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)
Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)Trivadis
 
Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...
Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...
Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...Trivadis
 
Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...
Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...
Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...Trivadis
 
Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...
Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...
Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...Trivadis
 
Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...
Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...
Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...Trivadis
 
TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...
TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...
TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...Trivadis
 
TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...
TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...
TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...Trivadis
 
TechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - Trivadis
TechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - TrivadisTechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - Trivadis
TechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - TrivadisTrivadis
 
TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...
TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...
TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...Trivadis
 
TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...
TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...
TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...Trivadis
 
TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...
TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...
TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...Trivadis
 
TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...
TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...
TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...Trivadis
 
TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...
TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...
TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...Trivadis
 
TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...
TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...
TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...Trivadis
 
TechEvent 2019: The sleeping Power of Data; Eberhard Lösch - Trivadis
TechEvent 2019: The sleeping Power of Data; Eberhard Lösch - TrivadisTechEvent 2019: The sleeping Power of Data; Eberhard Lösch - Trivadis
TechEvent 2019: The sleeping Power of Data; Eberhard Lösch - TrivadisTrivadis
 

More from Trivadis (20)

Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...
Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...
Azure Days 2019: Azure Chatbot Development for Airline Irregularities (Remco ...
 
Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...
Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...
Azure Days 2019: Trivadis Azure Foundation – Das Fundament für den ... (Nisan...
 
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
Azure Days 2019: Business Intelligence auf Azure (Marco Amhof & Yves Mauron)
 
Azure Days 2019: Master the Move to Azure (Konrad Brunner)
Azure Days 2019: Master the Move to Azure (Konrad Brunner)Azure Days 2019: Master the Move to Azure (Konrad Brunner)
Azure Days 2019: Master the Move to Azure (Konrad Brunner)
 
Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...
Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...
Azure Days 2019: Keynote Azure Switzerland – Status Quo und Ausblick (Primo A...
 
Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)
Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)
Azure Days 2019: Grösser und Komplexer ist nicht immer besser (Meinrad Weiss)
 
Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...
Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...
Azure Days 2019: Get Connected with Azure API Management (Gerry Keune & Stefa...
 
Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...
Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...
Azure Days 2019: Infrastructure as Code auf Azure (Jonas Wanninger & Daniel H...
 
Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...
Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...
Azure Days 2019: Wie bringt man eine Data Analytics Plattform in die Cloud? (...
 
Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...
Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...
Azure Days 2019: Azure@Helsana: Die Erweiterung von Dynamics CRM mit Azure Po...
 
TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...
TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...
TechEvent 2019: Kundenstory - Kein Angebot, kein Auftrag – Wie Du ein individ...
 
TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...
TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...
TechEvent 2019: Oracle Database Appliance M/L - Erfahrungen und Erfolgsmethod...
 
TechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - Trivadis
TechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - TrivadisTechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - Trivadis
TechEvent 2019: Security 101 für Web Entwickler; Roland Krüger - Trivadis
 
TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...
TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...
TechEvent 2019: Trivadis & Swisscom Partner Angebote; Konrad Häfeli, Markus O...
 
TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...
TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...
TechEvent 2019: DBaaS from Swisscom Cloud powered by Trivadis; Konrad Häfeli ...
 
TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...
TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...
TechEvent 2019: Status of the partnership Trivadis and EDB - Comparing Postgr...
 
TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...
TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...
TechEvent 2019: More Agile, More AI, More Cloud! Less Work?!; Oliver Dörr - T...
 
TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...
TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...
TechEvent 2019: Kundenstory - Vom Hauptmann zu Köpenick zum Polizisten 2020 -...
 
TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...
TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...
TechEvent 2019: Vom Rechenzentrum in die Oracle Cloud - Übertragungsmethoden;...
 
TechEvent 2019: The sleeping Power of Data; Eberhard Lösch - Trivadis
TechEvent 2019: The sleeping Power of Data; Eberhard Lösch - TrivadisTechEvent 2019: The sleeping Power of Data; Eberhard Lösch - Trivadis
TechEvent 2019: The sleeping Power of Data; Eberhard Lösch - Trivadis
 

Recently uploaded

How AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxHow AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxInfosec
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...UiPathCommunity
 
LF Energy Webinar: Introduction to TROLIE
LF Energy Webinar: Introduction to TROLIELF Energy Webinar: Introduction to TROLIE
LF Energy Webinar: Introduction to TROLIEDanBrown980551
 
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)Jay Zhao
 
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...Product School
 
Introduction to Multimodal LLMs with LLaVA
Introduction to Multimodal LLMs with LLaVAIntroduction to Multimodal LLMs with LLaVA
Introduction to Multimodal LLMs with LLaVARobert McDermott
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, GoogleISPMAIndia
 
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsFrom Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsInflectra
 
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...DianaGray10
 
The Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolThe Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolProduct School
 
Roundtable_-_API_Research__Testing_Tools.pdf
Roundtable_-_API_Research__Testing_Tools.pdfRoundtable_-_API_Research__Testing_Tools.pdf
Roundtable_-_API_Research__Testing_Tools.pdfMostafa Higazy
 
Pragmatic UI testing with Compose Semantics.pdf
Pragmatic UI testing with Compose Semantics.pdfPragmatic UI testing with Compose Semantics.pdf
Pragmatic UI testing with Compose Semantics.pdfinfogdgmi
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfSafe Software
 
Empowering Net-Zero: Digital Insights and Funding Opportunities for Industria...
Empowering Net-Zero: Digital Insights and Funding Opportunities for Industria...Empowering Net-Zero: Digital Insights and Funding Opportunities for Industria...
Empowering Net-Zero: Digital Insights and Funding Opportunities for Industria...IES VE
 
Enterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book ReviewEnterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book ReviewAshraf Fouad
 
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Product School
 
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...ISPMAIndia
 
Centralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-ManagerCentralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-ManagerSaiLinnThu2
 
Unleash the Solace Pub Sub connector | Banaglore MuleSoft Meetup #31
Unleash the Solace Pub Sub connector | Banaglore MuleSoft Meetup #31Unleash the Solace Pub Sub connector | Banaglore MuleSoft Meetup #31
Unleash the Solace Pub Sub connector | Banaglore MuleSoft Meetup #31shyamraj55
 
Artificial Intelligence, Design, and More-than-Human Justice
Artificial Intelligence, Design, and More-than-Human JusticeArtificial Intelligence, Design, and More-than-Human Justice
Artificial Intelligence, Design, and More-than-Human JusticeJosh Gellers
 

Recently uploaded (20)

How AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptxHow AI and ChatGPT are changing cybersecurity forever.pptx
How AI and ChatGPT are changing cybersecurity forever.pptx
 
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
Dev Dives: Leverage APIs and Gen AI to power automations for RPA and software...
 
LF Energy Webinar: Introduction to TROLIE
LF Energy Webinar: Introduction to TROLIELF Energy Webinar: Introduction to TROLIE
LF Energy Webinar: Introduction to TROLIE
 
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)
Leonis Insights: The State of AI (7 trends for 2023 and 7 predictions for 2024)
 
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
 
Introduction to Multimodal LLMs with LLaVA
Introduction to Multimodal LLMs with LLaVAIntroduction to Multimodal LLMs with LLaVA
Introduction to Multimodal LLMs with LLaVA
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
 
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+PluginsFrom Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
From Challenger to Champion: How SpiraPlan Outperforms JIRA+Plugins
 
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...Building Bridges:  Merging RPA Processes, UiPath Apps, and Data Service to bu...
Building Bridges: Merging RPA Processes, UiPath Apps, and Data Service to bu...
 
The Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product SchoolThe Future of Product, by Founder & CEO, Product School
The Future of Product, by Founder & CEO, Product School
 
Roundtable_-_API_Research__Testing_Tools.pdf
Roundtable_-_API_Research__Testing_Tools.pdfRoundtable_-_API_Research__Testing_Tools.pdf
Roundtable_-_API_Research__Testing_Tools.pdf
 
Pragmatic UI testing with Compose Semantics.pdf
Pragmatic UI testing with Compose Semantics.pdfPragmatic UI testing with Compose Semantics.pdf
Pragmatic UI testing with Compose Semantics.pdf
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
 
Empowering Net-Zero: Digital Insights and Funding Opportunities for Industria...
Empowering Net-Zero: Digital Insights and Funding Opportunities for Industria...Empowering Net-Zero: Digital Insights and Funding Opportunities for Industria...
Empowering Net-Zero: Digital Insights and Funding Opportunities for Industria...
 
Enterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book ReviewEnterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book Review
 
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
 
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
AI MODELS USAGE IN FINTECH PRODUCTS: PM APPROACH & BEST PRACTICES by Kasthuri...
 
Centralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-ManagerCentralized TLS Certificates Management Using Vault PKI + Cert-Manager
Centralized TLS Certificates Management Using Vault PKI + Cert-Manager
 
Unleash the Solace Pub Sub connector | Banaglore MuleSoft Meetup #31
Unleash the Solace Pub Sub connector | Banaglore MuleSoft Meetup #31Unleash the Solace Pub Sub connector | Banaglore MuleSoft Meetup #31
Unleash the Solace Pub Sub connector | Banaglore MuleSoft Meetup #31
 
Artificial Intelligence, Design, and More-than-Human Justice
Artificial Intelligence, Design, and More-than-Human JusticeArtificial Intelligence, Design, and More-than-Human Justice
Artificial Intelligence, Design, and More-than-Human Justice
 

Event-Processing-und-BigData-kombiniert-guido_schmutz

  • 1. Guido Schmutz | Trivadis Event-Processing und Big Data kombiniert, geht das?
  • 2. 2013 © Trivadis BASEL BERN BRUGG LAUSANNE ZUERICH DUESSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MUNICH STUTTGART VIENNA
 2013 © Trivadis Event-Processing und Big Data kombiniert, geht das? Guido Schmutz 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 2
  • 3. 2013 © Trivadis Guido Schmutz Working for Trivadis for more than 16 years Oracle ACE Director for Fusion Middleware and SOA Co-Author of different books Consultant, Trainer Software Architect for Java, Oracle, SOA and EDA Member of Trivadis Architecture Board Technology Manager @ Trivadis More than 20 years of software development experience Contact: guido.schmutz@trivadis.com Blog: http://guidoschmutz.wordpress.com Twitter: gschmutz 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 3
  • 4. 2013 © Trivadis Trivadis is a market leader in IT consulting, system integration, solution engineering and the provision of IT services focusing on and technologies in Switzerland, Germany and Austria. We offer our services in the following strategic business fields: Trivadis Services takes over the interacting operation of your IT systems. Our company 24.02.2014 Event-Processing und Big Data kombiniert, geht das? O P E R A T I O N 4
  • 5. 2013 © Trivadis With over 600 specialists and IT experts in your region 24.02.2014 5 12 Trivadis branches and more than 600 employees   200 Service Level Agreements   Over 4,000 training participants   Research and development budget: CHF 5.0 / EUR 4 million   Financially self-supporting and sustainably profitable   Experience from more than 1,900 projects per year at over 800 customers Hamburg Düsseldorf Frankfurt Freiburg München Wien Basel ZurichBern Lausanne Stuttgart Brugg Event-Processing und Big Data kombiniert, geht das? 5
  • 6. 2013 © Trivadis AGENDA 1.  Big Data and Fast Data, what is it? 2.  Motivation 3.  The Lambda Architecture 4.  Implementing the Lambda Architecture 5.  Demo – Event Processing with Oracle OEP 6.  Summary 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 6
  • 7. 2013 © Trivadis Big Data Definition (4 Vs) 24.02.2014 Event-Processing und Big Data kombiniert, geht das? + Time to action ? – Big Data + Event Processing = Fast Data Characteristics of Big Data: Its Volume, Velocity and Variety in combination 7
  • 8. 2013 © Trivadis The world is changing … The model of Generating/Consuming Data has changed …. Old Model: few companies are generating data, all others are consuming data New Model: all of use are generating data, and all of us are consuming data 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 8
  • 9. 2013 © Trivadis Who is generating Big Data? The progress and innovation is no longer hindered by the ability to collect data But by the ability to manage, analyze, summarize, visualize and discover knowledge from the collected data in a timely manner and in a scalable fashion 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Social media and networks (all of us are generating data) Scientific instruments (collecting all sorts of data) Mobile devices (tracking all objects all the time) Sensor technology and networks (measuring all kinds of data) 9
  • 10. 2013 © Trivadis 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 10
  • 11. 2013 © Trivadis Internet Of Things – Sensors are/will be everywhere There are more devices tapping into the internet than people on earth How do we prepare our systems/architecture for the future? 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Source: CiscoSource: The Economist 11
  • 12. 2013 © Trivadis Data as an Asset - Store Anything? 24.02.2014 Event-Processing und Big Data kombiniert, geht das? But then data is
 just too valuable
 to delete!
 We must 
 store anything! Nonsense! Just 
 store the data 
 you know 
 you need today! It depends … but Big Data technologies allow to store the raw information from both new data sources as well as existing ones so that you can later use it to create new data-driven products, you would not have thought about today! 12
  • 13. 2013 © Trivadis Big Data vs. Traditional Enterprise Data §  Big Data is not just “a lots more enterprise data” §  Big Data is usually states, events, transactions etc. – not master data §  Big Data is commonly generated outside of traditional enterprise applications but needs to be associated with it §  Big Data is often composed of un(evenly)structured information types that continually arrive in enormous amounts §  Data / Information as an Asset! 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 13
  • 14. 2013 © Trivadis AGENDA 1.  Big Data and Fast Data, what is it? 2.  Architecting (Big) Data Systems 3.  The Lambda Architecture 4.  Implementing the Lambda Architecture 5.  Demo – Event Processing with Oracle OEP 6.  Summary 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 14
  • 15. 2013 © Trivadis What is a data system? •  A (data) system that manages the storage and querying of data with a lifetime measured in years encompassing every version of the application to ever exist, every hardware failure and every human mistake ever made. •  A data system answers questions based on information that was acquired in the past 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 15
  • 16. 2013 © Trivadis How do we build (data) systems today – Today’s Architectures Source of Truth is mutable! •  CRUD pattern What is the problem with this? •  Lack of Human Fault Tolerance •  Potential loss of information/ data 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Mutable Database Application (Query) RDBMS NoSQL NewSQL Mobile Web RIA Rich Client Source of Truth Source of Truth 16
  • 17. 2013 © Trivadis Problems in today’s architecture/systems Bugs will be deployed to production over the lifetime of a data system Operational mistakes will be made Humans are part of the overall system •  Just like hard disks, CPUs, memory, software •  design for human error like you design for any other fault Examples of human error •  Deploy a bug that increments counters by two instead of by one •  Accidentally delete data from database •  Accidental DOS on important internal service Worst two consequences: data loss or data corruption As long as an error doesn‘t lose or corrupt good data, you can fix what went wrong 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Lack of Human Fault Tolerance 17
  • 18. 2013 © Trivadis Immutability vs. Mutability The U and D in CRUD A mutable system updates the current state of the world Mutable systems inherently lack human fault-tolerance Easy to corrupt or lose data An immutable system captures historical records of events Each event happens at a particular time and is always true 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Immutability restricts the range of errors causing data loss/data corruption Vastly more human fault-tolerant Conclusion: Your source of truth should always be immutable 18
  • 19. 2013 © Trivadis A different kind of architecture with immutable source of truth Instead of using our traditional approach … why not building data systems like this 24.02.2014 Event-Processing und Big Data kombiniert, geht das? HDFS NoSQL NewSQL RDBMS View on Data Mobile Web RIA Rich Client Source of Truth Immutable data View on Data Application (Query) Source of Truth 19
  • 20. 2013 © Trivadis How to create the views on the Immutable data? On the fly ? Materialized, i.e. Pre-computed ? 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Immutable data View Immutable data Pre-
 Computed
 Views Query Query 20
  • 21. 2013 © Trivadis Big Data Processing - Batch 24.02.2014 Event-Processing und Big Data kombiniert, geht das? HDFS Data Store optimized for appending large results Queries Stream 1 Stream 2 Event Hadoop cluster Map/Reduce in Pig Hadoop Distributed File System 21
  • 22. 2013 © Trivadis Big Data Processing – Batch 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Immutable data Batch View Query?? Incoming Data How to compute the batch views ? How to compute queries from the views ? 22
  • 23. 2013 © Trivadis Big Data Processing - Batch 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 1.2.13 Add iPAD 64GB 10.3.13 Add Sony RX-100 11..3.13 Add Canon GX-10 11.3.13 Remove Sony RX-100 12.3.13 Add Nikon S-100 14.4.13 Add BoseQC-15 15.4.13 Add MacBook Pro 15 20.4.13 Remove Canon GX10 iPAD 64GB Nikon S-100 BoseQC-15 MacBook Pro 15 4derive derive Favorite Product List Changes Current Favorite 
 Product List Current Product Count Raw information => data Information => derived 23
  • 24. 2013 © Trivadis Big Data Processing - Batch 24.02.2014 Event-Processing und Big Data kombiniert, geht das? §  Using only batch processing, leaves you always with a portion of non- processed data. Fully processed data Last full batch period Time for
 batch job time now non-processed data time now batch-processed data Adapted from Ted Dunning (March 2012): http://www.youtube.com/watch?v=7PcmbI5aC20 But we are not done yet … 24
  • 25. 2013 © Trivadis Big Data Processing - Adding Real-Time 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Immutable data Batch Views Query ? Data Stream Realtime Views Incoming Data How to compute queries 
 from the views ?How to compute real-time views 25
  • 26. 2013 © Trivadis Big Data Processing - Adding Real-Time 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 1.2.13 Add iPAD 64GB 10.3.13 Add Sony RX-100 11..3.13 Add Canon GX-10 11.3.13 Remove Sony RX-100 12.3.13 Add Nikon S-100 14.4.13 Add BoseQC-15 15.4.13 Add MacBook Pro 15 20.4.13 Remove Canon GX10 Now Add Canon Scanner iPAD 64GB Nikon S-100 BoseQC-15 MacBook Pro 15 5 compute Favorite Product List Changes Current Favorite 
 Product List Current Product Count Now Canon ScannercomputeAdd Canon Scanner Stream of Favorite Product List Changes Immutable data Views Data Stream Query incoming 26
  • 27. 2013 © Trivadis Big Data Processing - Batch & Real Time 24.02.2014 Event-Processing und Big Data kombiniert, geht das? time Fully processed data Last full batch period now Time for
 batch job batch processing
 worked fine here (e.g. Hadoop) real time processing
 works here blended view for end user Adapted from Ted Dunning (March 2012): http://www.youtube.com/watch?v=7PcmbI5aC20 27
  • 28. 2013 © Trivadis AGENDA 1.  Big Data and Fast Data, what is it? 2.  Architecting (Big) Data Systems 3.  The Lambda Architecture 4.  Implementing the Lambda Architecture 5.  Demo – Event Processing with Oracle OEP 6.  Summary 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 28
  • 29. 2013 © Trivadis Lambda Architecture 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Immutable data Batch View Query Data Stream Realtime View Incoming Data Serving Layer Speed Layer Batch Layer A B C D E F G 29
  • 30. 2013 © Trivadis Lambda Architecture A.  All data is sent to both the batch and speed layer B.  Master data set is an immutable, append-only set of data C.  Batch layer pre-computes query functions from scratch, result is called Batch Views. Batch layer constantly re-computes the batch views. D.  Batch views are indexed and stored in a scalable database to get particular values very quickly. Swaps in new batch views when they are available E.  Speed layer compensates for the high latency of updates to the Batch Views F.  Uses fast incremental algorithms and read/write databases to produce real- time views G.  Queries are resolved by getting results from both batch and real-time views 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 30
  • 31. 2013 © Trivadis Lambda Architecture 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Stores the immutable constantly growing dataset Computes arbitrary views from this dataset using BigData technologies (can take hours) Can be always recreated Computes the views from the constant stream of data it receives Needed to compensate for the high latency of the batch layer Incremental model and views are transient Responsible for indexing and exposing the pre-computed batch views so that they can be queried Exposes the incremented real-time views Merges the batch and the real-time views into a consistent result Serving Layer Batch Layer Speed Layer 31
  • 32. 2013 © Trivadis AGENDA 1.  Big Data and Fast Data, what is it? 2.  Architecting (Big) Data Systems 3.  The Lambda Architecture 4.  Implementing the Lambda Architecture 5.  Demo – Event Processing with Oracle OEP 6.  Summary 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 32
  • 33. 2013 © Trivadis Lambda Architecture 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Speed Layer Precompute Views query Source: Marz, N. & Warren, J. (2013) Big Data. Manning. Batch Layer Precomputed information All data Incremented information Process stream Incoming Data Batch recompute Realtime increment Serving Layer batch view batch view real time view real time view Merge 33
  • 34. 2013 © Trivadis Lambda Architecture in Action 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Implementation in ongoing Proof-of-concept (after completion of phase 1) Speed Layer Precompute Views query Batch Layer Precomputed information All data Incremented information Process stream Incoming Data Batch recompute Realtime increment Serving Layer batch view batch view real time view real time view Merge 34
  • 35. 2013 © Trivadis Lambda Architecture with Oracle Product Stack Possible implementation with Oracle Product stack 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Speed Layer Precompute Views query Batch Layer Precomputed information All data Incremented information Process stream Incoming Data Batch recompute Serving Layer batch view batch view real time view real time view Merge Oracle NoSQL Oracle RDBMS Oracle Coherence Oracle BigData Appliance Oracle NoSQL Oracle Coherence Oracle Event Processing Oracle GoldenGate Oracle Data Integrator Oracle GoldenGate Oracle Event Processing Oracle Service Bus OracleWebLogicServerOracleADF OBIEEOracleEndeca OracleBigData
 Connectors BAM 35
  • 36. 2013 © Trivadis AGENDA 1.  Big Data and Fast Data, what is it? 2.  Architecting (Big) Data Systems 3.  The Lambda Architecture 4.  Implementing the Lambda Architecture 5.  Demo – Event Processing with Oracle OEP 6.  Summary 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 36
  • 37. 2013 © Trivadis Retrieve Tweets and Visualize 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 37
  • 38. 2013 © Trivadis Access to Tweets 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Quelle Source Limitations Cost Twitter’s Search API 3200 / user 5000 / keyword 180 requests / 15 minutes free Twitter’s Streaming API 1%-40% of total volume free DataSift none 0.15 -0.20$ / unit Gnip none On request 38
  • 39. 2013 © Trivadis 1) Creating a Twitter Adapter 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Twitter Adapter Only 3 minutes remaining in the gold medalgame, @HC_Men with a commanding 3-0 lead. #CANvsSWE #TeamCanada #Sochi2014 Twitter 39
  • 40. 2013 © Trivadis 2) Send Tweets to BAM 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Twitter Adapter BAM Tweet Only 3 minutes remaining in the gold medalgame, @HC_Men with a commanding 3-0 lead. #CANvsSWE #TeamCanada #Sochi2014 Only 3 minutes remaining in the gold medalgame, @HC_Men with a commanding 3-0 lead. #CANvsSWE #TeamCanada #Sochi2014 JMS Twitter 40
  • 41. 2013 © Trivadis 3) Extract interesting information from Tweet 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Mention Extractor Twitter Adapter Hashtag
 Extractor Author Extractor BAM Tweet Only 3 minutes remaining in the gold medalgame, @HC_Men with a commanding 3-0 lead. #CANvsSWE #TeamCanada #Sochi2014 @hc_men hockeycanada #canvsswe #teamcanada JMS Twitter Only 3 minutes remaining in the gold medalgame, @HC_Men with a commanding 3-0 lead. #CANvsSWE #TeamCanada #Sochi2014 #sochi2014 41
  • 42. 2013 © Trivadis 4) Count occurrences within period 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Mention Extractor Twitter Adapter Counter
 Processor Hashtag
 Extractor Author Extractor BAM Tweet BAM CounterOnly 3 minutes remaining in the gold medalgame, @HC_Men with a commanding 3-0 lead. #CANvsSWE #TeamCanada #Sochi2014 #canvsswe,5 #sochi2014,9 hockeycanada,1 @hc_men,1 #teamcanada,5 JMS JMS Twitter range 30 seconds
 slide 30 seconds @hc_men hockeycanada #canvsswe #teamcanada Only 3 minutes remaining in the gold medalgame, @HC_Men with a commanding 3-0 lead. #CANvsSWE #TeamCanada #Sochi2014 #sochi2014 42
  • 43. 2013 © Trivadis Implementing in Oracle Event Processing 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Mention Extractor Twitter Adapter Counter
 Processor Hashtag
 Extractor Author Extractor BAM Tweet BAM Counter JMS JMS Twitter range 30 seconds
 slide 30 seconds 43
  • 44. 2013 © Trivadis 1) Creating Twitter Adapter – Connecting to Twitter Stream 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 44
  • 45. 2013 © Trivadis 1) Creating Twitter Adapter – Tweet Event 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 45
  • 46. 2013 © Trivadis 1) Creating Twitter Adapter – Adapter Factory 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 46
  • 47. 2013 © Trivadis 1) Creating Twitter Adapter – Assembly 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 47
  • 48. 2013 © Trivadis 1) Creating Twitter Adapter – Export Adapter to server 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 48
  • 49. 2013 © Trivadis 1) Creating Twitter Adapter – Using Twitter Adapter 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 49
  • 50. 2013 © Trivadis 2) Sending Tweets to BAM Using Oracle BAM Enterprise Message Sources (JMS) interface 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 50
  • 51. 2013 © Trivadis 2) Sending Tweets to BAM – Convert events to JMS MapMessage 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 51
  • 52. 2013 © Trivadis 3) Extract information from Tweet – Extract Hashtags from TweetEvent 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 52
  • 53. 2013 © Trivadis 3) Extract information from Tweet – Extract Hashtags from TweetEvent 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 53
  • 54. 2013 © Trivadis 4) Count occurrences within period – Using CQL 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 54
  • 55. 2013 © Trivadis Implementation – Complete Picture 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 55
  • 56. 2013 © Trivadis Oracle BAM: Architected for Integration and Visualization Event-Processing und Big Data kombiniert, geht das? Internet BAM Dashboards WebApplications StartPage ActiveViewer ActiveStudio Architect Administrator ReportServer iCommand Oracle Database (Grid) BAM Data & Metadata External Data Objects WebServices Internet Enterprise Integration Framework Application Server BI Web Services JMS Connector BAM Adapter ADF BAM DataControl ADF Pages with DVT BAM ServerEventEngine Actions & Escalations Notification Services ReportCache Snapshots & Change Lists Memory / Disk ActiveDataCache ViewSets API Kernel DataSets DataStorageEngine ODI Databases OLTP & Data Warehouses Mobile Devices Data & Metadata Import & Export BPEL BPM Message Queues CEP OESB 24.02.2014 56
  • 57. 2013 © Trivadis Oracle BAM – Create a Data Object 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 57
  • 58. 2013 © Trivadis Oracle BAM Enterprise Message Source Configuration 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 58
  • 59. 2013 © Trivadis 5) Adding Cassandra NoSQL for storing results 24.02.2014 Event-Processing und Big Data kombiniert, geht das? Mention Extractor Twitter Adapter Counter
 Processor Hashtag
 Extractor Author Extractor Cassandra Counter BAM Tweet Cassandra Tweet BAM Counter Only 3 minutes remaining in the gold medalgame, @HC_Men with a commanding 3-0 lead. #CANvsSWE #TeamCanada #Sochi2014 Only 3 minutes remaining in the gold medalgame, @HC_Men with a commanding 3-0 lead. #CANvsSWE #TeamCanada #Sochi2014 JMS JMS Twitter range 30 seconds
 slide 30 seconds Only 3 minutes remaining in the gold medalgame, @HC_Men with a commanding 3-0 lead. #CANvsSWE #TeamCanada #Sochi2014 #canvsswe,5 #sochi2014,9 hockeycanada,1 @hc_men,1 #teamcanada,5 @hc_men hockeycanada #canvsswe #teamcanada #sochi2014 59
  • 60. 2013 © Trivadis AGENDA 1.  Big Data, what is it? 2.  Architecting (Big) Data Systems 3.  The Lambda Architecture 4.  Implementing the Lambda Architecture 5.  Demo – Event Processing with Oracle OEP 6.  Summary 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 60
  • 61. 2013 © Trivadis Summary – The lambda architecture §  The Lambda Architecture §  Can discard batch views and real-time views and recreate everything from scratch §  Mistakes corrected via re-computation §  Data storage layer optimized independently from query resolution layer §  Still in a very early …. But a very interesting idea! -  Today a zoo of technologies are needed => Operations won‘t like it §  The technology/implementation §  Different query language for batch and real time §  An abstraction over batch and speed layer needed -  Cascading and Trident are already similar §  Not everything works out-of-the-box and together §  Industry standards needed! 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 61
  • 62. 2013 © Trivadis Questions and answers ... 2013 © Trivadis BASEL BERN BRUGG LAUSANNE ZUERICH DUESSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MUNICH STUTTGART VIENNA
 Guido Schmutz Technology Manager guido.schmutz@trivadis.com 24.02.2014 Event-Processing und Big Data kombiniert, geht das? 62