SlideShare a Scribd company logo

機械学習におけるオンライン確率的最適化の理論

情報処理学会連続セミナー2013

1 of 54
Download to read offline
機械学習における
オンライン確率的最適化の理論
鈴木 大慈
東京大学
情報理工学系研究科
数理情報学専攻
2013/6/26
1
本発表の狙い
オンライン確率的最適化の理論
いろいろな手法
簡単な手法を軸にして基本となる考え方を紹介
2
発表の構成
• 最適化問題としての定式化
• オンライン確率的最適化
– 確率的勾配降下法
– 正則化学習におけるオンライン確率的最適化
– 構造的正則化学習におけるオンライン確率的最適化
• バッチデータに対する確率的最適化
3
教師有り学習の
最適化問題としての定式化
4
5
経験リスク関数
正則化項付きリスク関数
: t個目のサンプルに対するロス
: 過学習を避けるためのペナルティ項
機械学習における最適化問題
(“誤り” へのペナルティ)
6
• 回帰
-二乗ロス
-分位点回帰
ロス関数の例
• 判別
-ヒンジロス
-ロジッスティックロス
Ad

Recommended

深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理Taiji Suzuki
 
ブラックボックス最適化とその応用
ブラックボックス最適化とその応用ブラックボックス最適化とその応用
ブラックボックス最適化とその応用gree_tech
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)Masahiro Suzuki
 
深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)深層生成モデルと世界モデル(2020/11/20版)
深層生成モデルと世界モデル(2020/11/20版)Masahiro Suzuki
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -tmtm otm
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)Shota Imai
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Yamato OKAMOTO
 

More Related Content

What's hot

[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習Deep Learning JP
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoderSho Tatsuno
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方joisino
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential EquationsDeep Learning JP
 
[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展Deep Learning JP
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究についてMasahiro Suzuki
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会Kenyu Uehara
 
[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習Deep Learning JP
 
計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-sleepy_yoshi
 
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイDeep Learning JP
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向Motokawa Tetsuya
 
Transformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてTransformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてSho Takase
 
Maximum Entropy IRL(最大エントロピー逆強化学習)とその発展系について
Maximum Entropy IRL(最大エントロピー逆強化学習)とその発展系についてMaximum Entropy IRL(最大エントロピー逆強化学習)とその発展系について
Maximum Entropy IRL(最大エントロピー逆強化学習)とその発展系についてYusuke Nakata
 
Semi supervised, weakly-supervised, unsupervised, and active learning
Semi supervised, weakly-supervised, unsupervised, and active learningSemi supervised, weakly-supervised, unsupervised, and active learning
Semi supervised, weakly-supervised, unsupervised, and active learningYusuke Uchida
 
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...Deep Learning JP
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門tmtm otm
 
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...Hideki Tsunashima
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?Masanao Ochi
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 

What's hot (20)

ELBO型VAEのダメなところ
ELBO型VAEのダメなところELBO型VAEのダメなところ
ELBO型VAEのダメなところ
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
 
最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations
 
[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
 
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
サポートベクターマシン(SVM)の数学をみんなに説明したいだけの会
 
[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習[DL輪読会]Deep Learning 第15章 表現学習
[DL輪読会]Deep Learning 第15章 表現学習
 
計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-計算論的学習理論入門 -PAC学習とかVC次元とか-
計算論的学習理論入門 -PAC学習とかVC次元とか-
 
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
 
Transformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法についてTransformerを多層にする際の勾配消失問題と解決法について
Transformerを多層にする際の勾配消失問題と解決法について
 
Maximum Entropy IRL(最大エントロピー逆強化学習)とその発展系について
Maximum Entropy IRL(最大エントロピー逆強化学習)とその発展系についてMaximum Entropy IRL(最大エントロピー逆強化学習)とその発展系について
Maximum Entropy IRL(最大エントロピー逆強化学習)とその発展系について
 
Semi supervised, weakly-supervised, unsupervised, and active learning
Semi supervised, weakly-supervised, unsupervised, and active learningSemi supervised, weakly-supervised, unsupervised, and active learning
Semi supervised, weakly-supervised, unsupervised, and active learning
 
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
[DL輪読会]Set Transformer: A Framework for Attention-based Permutation-Invariant...
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
 
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
 
【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?【論文紹介】How Powerful are Graph Neural Networks?
【論文紹介】How Powerful are Graph Neural Networks?
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 

More from Taiji Suzuki

[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...Taiji Suzuki
 
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...Taiji Suzuki
 
深層学習の数理:カーネル法, スパース推定との接点
深層学習の数理:カーネル法, スパース推定との接点深層学習の数理:カーネル法, スパース推定との接点
深層学習の数理:カーネル法, スパース推定との接点Taiji Suzuki
 
Iclr2020: Compression based bound for non-compressed network: unified general...
Iclr2020: Compression based bound for non-compressed network: unified general...Iclr2020: Compression based bound for non-compressed network: unified general...
Iclr2020: Compression based bound for non-compressed network: unified general...Taiji Suzuki
 
数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理Taiji Suzuki
 
はじめての機械学習
はじめての機械学習はじめての機械学習
はじめての機械学習Taiji Suzuki
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Taiji Suzuki
 
Sparse estimation tutorial 2014
Sparse estimation tutorial 2014Sparse estimation tutorial 2014
Sparse estimation tutorial 2014Taiji Suzuki
 
Stochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersStochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersTaiji Suzuki
 
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...Taiji Suzuki
 
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)Taiji Suzuki
 

More from Taiji Suzuki (14)

[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
 
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
 
深層学習の数理:カーネル法, スパース推定との接点
深層学習の数理:カーネル法, スパース推定との接点深層学習の数理:カーネル法, スパース推定との接点
深層学習の数理:カーネル法, スパース推定との接点
 
Iclr2020: Compression based bound for non-compressed network: unified general...
Iclr2020: Compression based bound for non-compressed network: unified general...Iclr2020: Compression based bound for non-compressed network: unified general...
Iclr2020: Compression based bound for non-compressed network: unified general...
 
数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理数学で解き明かす深層学習の原理
数学で解き明かす深層学習の原理
 
はじめての機械学習
はじめての機械学習はじめての機械学習
はじめての機械学習
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
 
Ibis2016
Ibis2016Ibis2016
Ibis2016
 
Sparse estimation tutorial 2014
Sparse estimation tutorial 2014Sparse estimation tutorial 2014
Sparse estimation tutorial 2014
 
Stochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersStochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of Multipliers
 
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
 
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
 
Jokyokai
JokyokaiJokyokai
Jokyokai
 
Jokyokai2
Jokyokai2Jokyokai2
Jokyokai2
 

Recently uploaded

scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんtoshinori622
 
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。iPride Co., Ltd.
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHubK Kinzal
 
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)Kanta Sasaki
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdfAyachika Kitazaki
 
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfMatsushita Laboratory
 

Recently uploaded (6)

scikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみんscikit-learn以外の分類器でpipelineを作ってみた! いずみん
scikit-learn以外の分類器でpipelineを作ってみた! いずみん
 
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
AWS (Amazon Web Services) を勉強してみる おさらい 2024/02/16の勉強会で発表されたものです。
 
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub解説: Token Extensions - Solana Developer Hub Online #SolDevHub
解説: Token Extensions - Solana Developer Hub Online #SolDevHub
 
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
オリジナルNFTを発行するブロックチェーン開発ハンズオン(NFTの発行に必要なツールから実装まで)
 
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
20240222_Neko_IoTLT_vol9_kitazaki_v1.pdf
 
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdfHarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
HarukiShinkawa_果樹農家が期待する行動への変容を促す仕掛け設計のための収穫作業体験者の行動観察とモデル化_仕掛学2024.pdf
 

機械学習におけるオンライン確率的最適化の理論