SlideShare a Scribd company logo

数学で解き明かす深層学習の原理

数学パワーが世界を変える2020発表資料

1 of 42
Download to read offline
数学で解き明かす深層学習の原理
鈴木大慈
東京大学大学院情報理工学系研究科数理情報学専攻
理研AIP
(「社会的課題の解決に向けた数学と諸分野の協働」さきがけ一期生)
2020年(令和2年)2月2日
数学パワーが世界を変える2020@秋葉原コンベンションホール
1
深層学習の広がり 2
[Glow: Generative Flow with Invertible 1x1 Convolutions. Kingma
and Dhariwal, 2018]
AlphaGo/Zero 画像の生成
画像の変換
画像認識
自動翻訳
[Zhu, Park, Isola, and Efros: Unpaired image-to-image translation using
cycle-consistent adversarial networks. ICCV2017.]
様々なタスクで高い精度
[Silver et al. (Google Deep Mind): Mastering the game of Go with
deep neural networks and tree search, Nature, 529, 484—489, 2016]
[Wu et al.: Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv:1609.08144]
[He, Gkioxari, Dollár, Girshick: Mask R-CNN, ICCV2017]
諸分野への波及 3
[Litjens, et al. (2017)]
医療分野における「深層学習」
を用いた論文数
医療
- 人を超える精度
(FROC73.3% -> 87.3%)
- 悪性腫瘍の場所も特定
[Detecting Cancer Metastases on
Gigapixel Pathology Images: Liu et
al., arXiv:1703.02442, 2017]
[Niepert, Ahmed&Kutzkov: Learning Convolutional Neural Networks
for Graphs, 2016]
[Gilmer et al.: Neural Message Passing for Quantum Chemistry, 2017]
[Faber et al.:Machine learning prediction errors better than DFT
accuracy, 2017.]
量子化学計算,分子の物性予測
[Google AI Blog, “Deep Learning for Robots: Learning from Large-
Scale Interaction,” 2016/5/8]
ロボット
ImageNet 4
ImageNet: 1,000カテゴリ,約120万枚の訓練画像データ
ILSVRC (ImageNet Large Scale Visual Recognition Competition)
[J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.]
ImageNetデータにおける識別精度の変遷 5
0
5
10
15
20
25
30
ILSVRC
2010
ILSVRC
2011
ILSVRC
2012
AlexNet
ILSVRC
2013
ILSVRC
2014
VGG
ILSVRC
2014
GoogleNet
Human ILSVRC
2015
ResNet
Classification error (%) (top5 error)
深層学習
ImageNet: 1,000カテゴリ,約120万枚の訓練画像データ
8層 8層 19層 22層 152層
解決すべき問題点
なぜ深層学習はうまくいくのか?
• 「○○法が良い」という様々な仮説の氾濫.
• 世界的課題
6
“錬金術”という批判
学会の問題意識 民間の問題意識
Ali Rahimi’s talk at NIPS2017 (test of time award).
“Random features for large-scale kernel methods.”
• 中で何が行われているか分か
らないものは用いたくない.
• 企業の説明責任.深層学習の
ホワイトボックス化.
• 原理解明
• どうすれば“良い”学習が実現できるか?→新手法の開発
数学の必要性

Recommended

【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual FeaturesARISE analytics
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)Masahiro Suzuki
 
『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会takehikoihayashi
 
不均衡データのクラス分類
不均衡データのクラス分類不均衡データのクラス分類
不均衡データのクラス分類Shintaro Fukushima
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)Satoshi Hara
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門Kawamoto_Kazuhiko
 

More Related Content

What's hot

畳み込みLstm
畳み込みLstm畳み込みLstm
畳み込みLstmtak9029
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Yusuke Uchida
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII
 
Active Learning と Bayesian Neural Network
Active Learning と Bayesian Neural NetworkActive Learning と Bayesian Neural Network
Active Learning と Bayesian Neural NetworkNaoki Matsunaga
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -tmtm otm
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選Yusuke Uchida
 
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and EditingDeep Learning JP
 
モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化Yusuke Uchida
 
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 
機械学習で嘘をつく話
機械学習で嘘をつく話機械学習で嘘をつく話
機械学習で嘘をつく話Satoshi Hara
 
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational AutoencoderDeep Learning JP
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化Yusuke Uchida
 
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Yamato OKAMOTO
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential EquationsDeep Learning JP
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)RyuichiKanoh
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門tmtm otm
 

What's hot (20)

畳み込みLstm
畳み込みLstm畳み込みLstm
畳み込みLstm
 
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
Swin Transformer (ICCV'21 Best Paper) を完璧に理解する資料
 
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
SSII2022 [TS1] Transformerの最前線〜 畳込みニューラルネットワークの先へ 〜
 
Active Learning と Bayesian Neural Network
Active Learning と Bayesian Neural NetworkActive Learning と Bayesian Neural Network
Active Learning と Bayesian Neural Network
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選
 
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
 
モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化
 
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
SSII2021 [OS2-02] 深層学習におけるデータ拡張の原理と最新動向
 
Semantic segmentation
Semantic segmentationSemantic segmentation
Semantic segmentation
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
実装レベルで学ぶVQVAE
実装レベルで学ぶVQVAE実装レベルで学ぶVQVAE
実装レベルで学ぶVQVAE
 
機械学習で嘘をつく話
機械学習で嘘をつく話機械学習で嘘をつく話
機械学習で嘘をつく話
 
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
[DL輪読会]NVAE: A Deep Hierarchical Variational Autoencoder
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
 
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
 

More from Taiji Suzuki

[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...Taiji Suzuki
 
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...Taiji Suzuki
 
深層学習の数理:カーネル法, スパース推定との接点
深層学習の数理:カーネル法, スパース推定との接点深層学習の数理:カーネル法, スパース推定との接点
深層学習の数理:カーネル法, スパース推定との接点Taiji Suzuki
 
Iclr2020: Compression based bound for non-compressed network: unified general...
Iclr2020: Compression based bound for non-compressed network: unified general...Iclr2020: Compression based bound for non-compressed network: unified general...
Iclr2020: Compression based bound for non-compressed network: unified general...Taiji Suzuki
 
深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理Taiji Suzuki
 
はじめての機械学習
はじめての機械学習はじめての機械学習
はじめての機械学習Taiji Suzuki
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Taiji Suzuki
 
Sparse estimation tutorial 2014
Sparse estimation tutorial 2014Sparse estimation tutorial 2014
Sparse estimation tutorial 2014Taiji Suzuki
 
Stochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersStochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersTaiji Suzuki
 
機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論Taiji Suzuki
 
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...Taiji Suzuki
 
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)Taiji Suzuki
 

More from Taiji Suzuki (15)

[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
[ICLR2021 (spotlight)] Benefit of deep learning with non-convex noisy gradien...
 
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
[NeurIPS2020 (spotlight)] Generalization bound of globally optimal non convex...
 
深層学習の数理:カーネル法, スパース推定との接点
深層学習の数理:カーネル法, スパース推定との接点深層学習の数理:カーネル法, スパース推定との接点
深層学習の数理:カーネル法, スパース推定との接点
 
Iclr2020: Compression based bound for non-compressed network: unified general...
Iclr2020: Compression based bound for non-compressed network: unified general...Iclr2020: Compression based bound for non-compressed network: unified general...
Iclr2020: Compression based bound for non-compressed network: unified general...
 
深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理
 
はじめての機械学習
はじめての機械学習はじめての機械学習
はじめての機械学習
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
 
Ibis2016
Ibis2016Ibis2016
Ibis2016
 
Sparse estimation tutorial 2014
Sparse estimation tutorial 2014Sparse estimation tutorial 2014
Sparse estimation tutorial 2014
 
Stochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersStochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of Multipliers
 
機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論
 
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
 
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
 
Jokyokai
JokyokaiJokyokai
Jokyokai
 
Jokyokai2
Jokyokai2Jokyokai2
Jokyokai2
 

Recently uploaded

Introductory materials for Ziktas, a corporate reskilling training program
Introductory materials for Ziktas, a corporate reskilling training programIntroductory materials for Ziktas, a corporate reskilling training program
Introductory materials for Ziktas, a corporate reskilling training programkishita2
 
JMAT支援チームの心得 国保一本松病院 #日本医師会 #災害支援 #準備 #被災地支援
JMAT支援チームの心得 国保一本松病院 #日本医師会 #災害支援 #準備 #被災地支援JMAT支援チームの心得 国保一本松病院 #日本医師会 #災害支援 #準備 #被災地支援
JMAT支援チームの心得 国保一本松病院 #日本医師会 #災害支援 #準備 #被災地支援JUNYA SHIMAMOTO
 
The Product Introduction of MoiMoi English
The Product Introduction of MoiMoi EnglishThe Product Introduction of MoiMoi English
The Product Introduction of MoiMoi Englishsoushi1130
 
東工大 工学院 情報通信系 大学院説明会2023
東工大 工学院 情報通信系 大学院説明会2023東工大 工学院 情報通信系 大学院説明会2023
東工大 工学院 情報通信系 大学院説明会2023Tokyo Institute of Technology
 
3分で攻略ガイド! FASTとFOCUS 【ADVANCED 2023】
3分で攻略ガイド! FASTとFOCUS  【ADVANCED 2023】3分で攻略ガイド! FASTとFOCUS  【ADVANCED 2023】
3分で攻略ガイド! FASTとFOCUS 【ADVANCED 2023】NEURALGPNETWORK
 
地域での療養生活の支え 療養生活を支える制度 ②障害者手帳の取得 【ADVANCED2023】
地域での療養生活の支え 療養生活を支える制度 ②障害者手帳の取得 【ADVANCED2023】地域での療養生活の支え 療養生活を支える制度 ②障害者手帳の取得 【ADVANCED2023】
地域での療養生活の支え 療養生活を支える制度 ②障害者手帳の取得 【ADVANCED2023】NEURALGPNETWORK
 
特定非営利活動法人Locaneer | みんなの共創でイノベーションを生み出す。
特定非営利活動法人Locaneer | みんなの共創でイノベーションを生み出す。特定非営利活動法人Locaneer | みんなの共創でイノベーションを生み出す。
特定非営利活動法人Locaneer | みんなの共創でイノベーションを生み出す。Eito Noritake
 

Recently uploaded (7)

Introductory materials for Ziktas, a corporate reskilling training program
Introductory materials for Ziktas, a corporate reskilling training programIntroductory materials for Ziktas, a corporate reskilling training program
Introductory materials for Ziktas, a corporate reskilling training program
 
JMAT支援チームの心得 国保一本松病院 #日本医師会 #災害支援 #準備 #被災地支援
JMAT支援チームの心得 国保一本松病院 #日本医師会 #災害支援 #準備 #被災地支援JMAT支援チームの心得 国保一本松病院 #日本医師会 #災害支援 #準備 #被災地支援
JMAT支援チームの心得 国保一本松病院 #日本医師会 #災害支援 #準備 #被災地支援
 
The Product Introduction of MoiMoi English
The Product Introduction of MoiMoi EnglishThe Product Introduction of MoiMoi English
The Product Introduction of MoiMoi English
 
東工大 工学院 情報通信系 大学院説明会2023
東工大 工学院 情報通信系 大学院説明会2023東工大 工学院 情報通信系 大学院説明会2023
東工大 工学院 情報通信系 大学院説明会2023
 
3分で攻略ガイド! FASTとFOCUS 【ADVANCED 2023】
3分で攻略ガイド! FASTとFOCUS  【ADVANCED 2023】3分で攻略ガイド! FASTとFOCUS  【ADVANCED 2023】
3分で攻略ガイド! FASTとFOCUS 【ADVANCED 2023】
 
地域での療養生活の支え 療養生活を支える制度 ②障害者手帳の取得 【ADVANCED2023】
地域での療養生活の支え 療養生活を支える制度 ②障害者手帳の取得 【ADVANCED2023】地域での療養生活の支え 療養生活を支える制度 ②障害者手帳の取得 【ADVANCED2023】
地域での療養生活の支え 療養生活を支える制度 ②障害者手帳の取得 【ADVANCED2023】
 
特定非営利活動法人Locaneer | みんなの共創でイノベーションを生み出す。
特定非営利活動法人Locaneer | みんなの共創でイノベーションを生み出す。特定非営利活動法人Locaneer | みんなの共創でイノベーションを生み出す。
特定非営利活動法人Locaneer | みんなの共創でイノベーションを生み出す。
 

数学で解き明かす深層学習の原理