ICT in Intelligent Transportation Systems: 
  real‐time traffic forecasting and control

                                 ...
Information: uses and abuses




Collection      Transport      Processing    Serving

         Real‐time Information (ICT...
Information collection: senses & 
                                 aggregates real‐time information  

    Collection     ...
Transporting Information; makes the 
                      information flow from sensors to system

Collection         Tra...
Processing Information: brings add 
                                               value at the brut information

   Colle...
Information serving: services to users


  Collection           Transport                Processing   Serving




The resu...
Market evolution: in Advanced Traffic 
                                     management Systems (ATMS)




   Total value o...
GTL is a WSN data collection platform for
                                             real-time traffic modeling, predict...
Micro & Macro models




    Macro models




Micro models                   P/9
Traffic Forecasting 




                         Predicted quantities at;  (t+T)


State Observers
And Prediction        ...
Centralized Control Setup




                            P / 11
Limitation of the Decentralized
                                    Control strategies




Local control:
• Two possible v...
Cooperative ramp metering control




Cooperative ramp metering control:

•   Control with Forward‐(Back) view 
•   Limite...
Mixed control:  variable‐speed and 
                            ramp metering control




Cooperative mixed variable speed...
NeCS Team Agenda


Agenda for Grenoble experiments in 2010:
• Installation of 30/40 sensors covering 2Km (Fev.)
• Calibrat...
Expected impact & Benefits of using 
                                           feedback control 




Expected Benefits

•...
Summary: “academic” challengers

Challengers:
• Bring to maturity sensor technologies with a holistic view
• Massive data ...
Collection            Transport            Processing             Serving


Workshop . « ICT challengers in Intelligent Tr...
Upcoming SlideShare
Loading in …5
×

Carlos canudas

1,098 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,098
On SlideShare
0
From Embeds
0
Number of Embeds
220
Actions
Shares
0
Downloads
11
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Carlos canudas

  1. 1. ICT in Intelligent Transportation Systems:  real‐time traffic forecasting and control Carlos Canudas de Wit NeCS Joint INRIA/CNRS Team DR‐CNRS Control System Department 21 June 2010, Jouy-en-Josas GIPSA‐Lab Grenoble France Information flow: a holistic view Traffic Forecasting & Control  http://necs.inrialpes.fr Impacts & benefits carlos.canudas‐de‐wit@gipsa‐lab.inpg.fr UMR 5216
  2. 2. Information: uses and abuses Collection Transport Processing Serving Real‐time Information (ICT) flow P/2
  3. 3. Information collection: senses &  aggregates real‐time information   Collection Transport Processing Serving Era of new sensor Technologies is  at place: • Wireless,  • Heterogeneous,  • Richness, • Mobile  P/3
  4. 4. Transporting Information; makes the  information flow from sensors to system Collection Transport Processing Serving New communication Technologies will open  opportunities: • Vehicle‐to‐Vehicle communications,  • Vehicle‐to‐Infrastructure,  • Infrastructure‐to‐Vehicles, • Information to users P/4
  5. 5. Processing Information: brings add  value at the brut information Collection Transport Processing Serving Ramp meeting control (EURAMP source) Variable speed control (Mail online source) Ramp metering control: Variable velocity control: • Products already in use are not  • Under investigation,  optimal,  • Relay on “Soft” actuators (drivers), • Decentralized, • High potentially  • Room for a lot of improvements  P/5
  6. 6. Information serving: services to users Collection Transport Processing Serving The results of the processed information is   transformed into user services: • Desktop applications,  • Mobile phones,  • On‐board navigation devices, • Traffic control centers P/6
  7. 7. Market evolution: in Advanced Traffic  management Systems (ATMS) Total value of the European  ATMS market (in M€) A clear grown & opportunities in: • ATMS • Sensors, Signal & systems Total interurban advanced traffic  • Infrastructure & communications management market 2004‐2015.  • Services & business   Source Frost & Sullivan P/7
  8. 8. GTL is a WSN data collection platform for real-time traffic modeling, prediction and control Show room Data Base Model-based control NeCS Research in model estimation & Control M2M network M2M network 4 sensors per line each 400 m Public Data DIR-CE Micro‐Simulator • A national center of traffic data collection • Multi‐purposes data exploitation (model, prediction control, statistics, etc.) • A partnership with: INRETS, DIR‐CE, CG38 Wireless magnetic sensor • Research focusing transfer to KARRUS‐ITS (start‐up) Speed and density P/8
  9. 9. Micro & Macro models Macro models Micro models P/9
  10. 10. Traffic Forecasting  Predicted quantities at;  (t+T) State Observers And Prediction Out‐products: Demand (t+T) • Predicted Traveling time • Time to congestion Demand Prediction • Distant to congestion • Imputation (sensors maintenance) Past demand data P / 10 P / 10 • Change in capacity
  11. 11. Centralized Control Setup P / 11
  12. 12. Limitation of the Decentralized Control strategies Local control: • Two possible versions • Does not handle ramps queue • Try to get maximum capacity • Limited by its preview   P / 12
  13. 13. Cooperative ramp metering control Cooperative ramp metering control: • Control with Forward‐(Back) view  • Limited amount of information (decentralized implementation)   • Increases system robustness • Control also the waiting queue • Finally trades flow throughput  vs. Ramp waiting queue P / 13
  14. 14. Mixed control:  variable‐speed and  ramp metering control Cooperative mixed variable speed, and ramp metering control: • Distributed actuators • More control authority  • Compensate lack of queuing space    • Relay of drivers behavior (radars will help) P / 14
  15. 15. NeCS Team Agenda Agenda for Grenoble experiments in 2010: • Installation of 30/40 sensors covering 2Km (Fev.) • Calibrate a micro & macro models • First traffic congestion predictions • Model‐based Travel‐time Estimation • Evaluate improvement by using control metering • Semi‐decentralized metering control • Developing desktop applications  • Show case (HYCON2) Associated Projects/ collaborations: • HYCON2 (NoE‐FP7), VTT‐MOCOPO • DIR‐CE, CG38, INRETS, METRO,  • Start up Karrus‐ITS P / 15
  16. 16. Expected impact & Benefits of using  feedback control  Expected Benefits • Decrease traveling time • Regularity  • Reduce accidents • Decreases stop‐go behavior    • Reduce emission of pollutants • Minimize fuel consumptions  P / 16 From Cambridge Systematics for the Minnesota Department of Transportation 2001
  17. 17. Summary: “academic” challengers Challengers: • Bring to maturity sensor technologies with a holistic view • Massive data aggregation: noise, geo‐localization, video, radars… • Heterogeneous traffic models: peri‐urban, arterials, more on micro‐macro… • Simulations: develop associated simulators for all kinds of traffic models, • Communications: new control opportunities when using VéV & V2I information • Traffic forecasting: short terms and real‐time (adaptive) prediction • Traffic control: Hybrid systems (analysis) , collaborative ramp metering control, combined  ramp metering with variable speed control, large scale experiments and evaluation • Traffic services. Many things already there, much more to be invented. Needs & gateways: • Merging communities: mathematics, control, transportation, communications, computing • Large‐scale (city labs) control experiments. Evaluate the impact of such technologies • Holistic view of the whole information chain (sensing, communication, control & services) P / 17
  18. 18. Collection Transport Processing Serving Workshop . « ICT challengers in Intelligent Transportation Systems: Information  transportation &  processing» •(15 min) Olivier Berder (CAIRN.)  “Vehicle‐to‐infrastructure  communication”, •(15 min) Michel Parent (IMARA)  « Urbain Mobility Management » •(15 min) Christian Laugier (EMOTION)  “ICT for improving Car Safety" Demos & posters • P / 18

×